If Content is King,

Context is God!




Handling Out-of-Vocabulary

* One of the main problems of using pre-trained word embeddings is
that they are unable to deal with out-of-vocabulary (OOV) words, i.e.
words that have not been seen during training.

* Typically, such words are set to the UNK token and are assigned the
same vector, which is an ineffective choice if the number of OOV words
is large.




Subword-Level Embeddings

* separating unseen or rare words into common subwords, potentially
address OQV issue
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* “AppleCare” = “Apple” + “Care”, “unfortunately” = “un” + “fortunate” +”
IyH
* Possibility of leveraging morphological information

* Morphological Recursive Neural Network
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Why Subwords?

VAN X 0 Rk VR x4, S
R R

* suboptimal word segmentation system

* ambiguity in word segmentation: “VR 522 ” or “URE” B EH”

* informal spelling: ”"So goooooooood.”, “lolllIII"




How to Decide Subwords?

* by n-gram: Apple = [App, ppl, ple]
* Automatically decides vocab for system: Byte Pair Encoding

* Most frequent n-gram pairs = a new n-gram




Character-Level

* modeling word-level representation by character-level information
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e completely solve OOV problem
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Character-Level

* modeling word-level representation by character-level information

e completely address OOV
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Figure 1: MIMICK model architecture.



FastText

* An extension of the word2vec skip-gram model with character n-grams

* Represent word as char n-grams augmented with boundary symbols
and as whole word: Apple = [<Ap, App, ppl, ple, le>, Apple]

* Prefix, suffixes and whole words are special

* supervised objective: text classification
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Sentence/Document Embedding

» extend to sentence/document-level

* simply averaging word embeddings, inferring by trained models, ... etc.

* training objective?




Skip-Thought

* extend skip-gram concept to sentence-level

* inspired by the distributional hypothesis: sentences that have similar
surrounding context are likely to be both semantically and syntactically
similar

ZlogP(lelwffl,hi) + ZlogP(wf_ﬂwf_tl,hi)
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a door confronted her <eons>

a );gr confronted < her
@ >@ >@ >@ >»@—>@ >Q >@ . bud
she  stopped and tried to pull it open idnt - budge :<F'-05>
<eos> it didnt budge



Quick-Thought

* change the objective to classification problem

* the model can choose to ignore aspects of the sentence that are
irrelevant in constructing a semantic embedding space

Spring had come. l (e00e)——

They were so black. l @—L
And yet his crops didn’t grow. l (ceee)—2
He had blue eyes. I @_?L
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InferSent

e trained on natural language inference (NLI) task

* NLI is the task of determining whether a “hypothesis” is true
(entailment), false (contradiction), or undetermined (neutral) given a
“premise”.
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InferSent

* so what is the best objective/task to learn generalized representation?
* should we train the model?

BiLSTM-Max (untrainf:d)}r 775 813 89.6 88.7 80.7 858 73.2/81.6 0.860 83.4 .39/.48
Unsupervised representation training (ordered sentences)

FastSent 70.8 784 83.7 806 - 768 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 815 - 804 71.2/79.1 - - .62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 794 831 937 89.3 829 884 - 0.858 79.5 44/.45
Supervised representation training
CaptionRep (bow) 619 693 774 708 - 722 73.6/81.9 - - 46/.42
DictRep (bow) 76.7 78.7 90.7 872 - 81.0 68.4/76.8 - - 67/.70
NMT En-to-Fr 64.7 70.1 849 81.5 - 828 69.1/77.1 - A43/.42

Paragram-phrase - - - - 197 - - 0.849 33.1 11/ -

BiLSTM-Max (on SST)' (*) 837 90.2 805 (*) 86.0 72.7/809 0.863 83.1 .55/.54
BiLSTM-Max (on SNLI)T | 79.9 84.6 92.1 89.8 833 887 75.1/82.3  0.885 86.3 .68/.65
BiLSTM-Max (on ALINLI)'| 81.1 86.3 92.4 90.2 84.6 882 76.2/83.1 0.884 86.3 .70/.67




Smooth Inverse Frequency (SIF)

* key ideas: smooth inverse frequency weighting (W) and common
component removal (R)

* no need to train

Algorithm 1 Sentence Embedding

Input: Word embeddings {v,, : w € V}, a set of sentences &, parameter a and estimated probabil-
ities {p(w) : w € V} of the words.

{]utput Sentence embeddings {vs : s € S}

: for all senten{:e sin S do

i, ]a_l I mvw

: end for

: Form a matrix X whose columns are {v, : s € §}, and let u be its first singular vector

: for all sentence s in S do

Uy ¢ Uy — UL Vs

: end for

-] O Lh e La b e




References

*http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecturel2-subwords.pdf

*http://www.aclweb.org/anthology/W13-3512

*http://www.aclweb.org/anthology/D15-1176

*https://arxiv.org/pdf/1508.07909.pdf

*https://arxiv.org/pdf/1707.06961.pdf

*https://github.com/Separius/awesome-sentence-embedding

*https://openreview.net/pdf?id=SyKOOv5xx

*https://openreview.net/pdf?id=rJvIXZbOW

*https://arxiv.org/pdf/1607.01759.pdf

*https://arxiv.org/pdf/1705.02364.pdf



http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf
http://www.aclweb.org/anthology/W13-3512
http://www.aclweb.org/anthology/D15-1176
https://arxiv.org/pdf/1508.07909.pdf
https://arxiv.org/pdf/1707.06961.pdf
https://github.com/Separius/awesome-sentence-embedding
https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=rJvJXZb0W
https://arxiv.org/pdf/1607.01759.pdf
https://arxiv.org/pdf/1705.02364.pdf

