


Beyond SGD

2



Vanilla Gradient Descent

3

• Computes the gradient of the cost function w.r.t. to the parameters θ for 
the entire training dataset.

• As we need to calculate the gradients for the whole dataset to perform 
just one update, batch gradient descent can be very slow and is 
intractable for datasets that don't fit in memory.

• Batch gradient descent also doesn't allow us to update our model online, 
i.e. with new examples on-the-fly.



Stochastic Gradient Descent

4

• Stochastic gradient descent (SGD) in contrast performs a parameter 
update for each training example.

• It is therefore usually much faster and can also be used to learn online.



Mini-batch Stochastic Gradient Descent

5

• Mini-batch gradient descent finally takes the best of both worlds and 
performs an update for every mini-batch of n training examples.

• This way reduces the variance of the parameter updates, which can lead 
to more stable convergence.



Local Minimum

6


0 1



Local Minimum

7


0 1



Challenges

8

• Choosing a proper learning rate can be difficult.
• Learning rate schedules try to adjust the learning rate during training by 

e.g. annealing, i.e. reducing the learning rate according to a pre-defined 
schedule or when the change in objective between epochs falls below a 
threshold.

• These schedules and thresholds, however, have to be defined in advance 
and are thus unable to adapt to a dataset's characteristics



Momentum

9


0 1



Momentum

10


0 1



Momentum
• Mini-batch accumulates the gradient of the past steps to determine the 
direction to go.

• faster convergence and reduced oscillation.

11



Nesterov Accelerated Gradient
• However, a ball that rolls down a hill, blindly following the slope, is highly 
unsatisfactory. We'd like to have a smarter ball, a ball that has a notion of where 
it is going so that it knows to slow down before the hill slopes up again.

•Look ahead by calculating the gradient not w.r.t. to our current parameters θ but 
w.r.t. the approximate future position of our parameters:

12



Nesterov Accelerated Gradient
• This anticipatory update prevents us from going too fast and results in 
increased responsiveness.

13



Adagrad
• It adapts the learning rate to the parameters, performing smaller updates
(i.e. low learning rates) for parameters associated with frequently occurring 
features, and larger updates (i.e. high learning rates) for parameters associated 
with infrequent features.

• For this reason, it is well-suited for dealing with sparse data.

• G is the accumulation of previous gradient values.

14



RMSProp
• Instead of inefficiently storing all previous squared gradients, the sum of 
gradients is recursively defined as a decaying average of all past squared 
gradients.

• resolve Adagrad's radically diminishing learning rates

• RNN?

15



Adam
• common choice

• first moment + second moment (momentum + RMSprop)

16



Which to use?

17



Adam is the best?
• Issue of non-convergence

18



Missing Global-Optima
• The solutions found by adaptive methods generalize worse (often significantly
worse) than SGD, even when these solutions have better training performance. 
These results suggest that practitioners should reconsider the use of adaptive 
methods to train neural networks

19



Adam + SGD

20

• prior period : Adam for fast convergence

• last period: SGD for gradually seeking the global optima



Back to the Data

21



references
• http://ruder.io/optimizing-gradient-descent/

•http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Gradient%20D
escent%20(v2).pdf

•
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/DNN%20tip.pdf

22

http://ruder.io/optimizing-gradient-descent/
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Gradient Descent (v2).pdf
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/DNN tip.pdf

