

Unsupervised Learning

May 21st, 2019

Applied Deep Learning

YUN-NUNG (VIVIAN) CHEN

HTTP://ADL.MIULAB.TW

Introduction

Big data ≠ Big annotated data

Machine learning techniques include:

- Supervised learning (if we have labelled data)
- Reinforcement learning (if we have an environment for reward)
- Unsupervised learning (if we do not have labelled data)

What can we do if there is no sufficient training data?

Semi-Supervised Learning

Labelled data

Unlabeled data

(Image of cats and dogs without labeling)

Semi-Supervised Learning

Why semi-supervised learning helps?

The distribution of the unlabeled data provides some cues

Transfer Learning

Labelled data

Labeled data

elephant

elephant

tiger

tiger

Not related to the task considered

Transfer Learning

Widely used on image processing

- Using sufficient labeled data to learn a CNN
- Using this CNN as feature extractor

Transfer Learning Example

研究生 online

漫畫家 online

研究生 生存守則

研究生

指導教授

跑實驗

投稿期刊

漫畫家

責編

畫分鏡

投稿 jump

爆漫王

Self-Taught Learning

The unlabeled data sometimes is not related to the task

Labelled data

Unlabeled data

(Just crawl millions of images from the Internet)

Self-Taught Learning

The unlabeled data sometimes is not related to the task

Labelled data

Unlabeled data

Digit Recognition

Digits

character

Document Classification

News

Webpages

Speech Recognition

Taiwanese

English Chinese

• • • • •

Self-Taught Learning

How does self-taught learning work?

Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

Latent Factors for Handwritten Digits

Latent Factors for Documents

Latent Factors for Recommendation System

Latent Factor Exploitation

Handwritten digits

The handwritten images are composed of **strokes**

Strokes (Latent Factors)

Latent Factor Exploitation

Strokes (Latent Factors)

Representation Learning

Represent a digit using 28 X 28 dimensions Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way

Compact representation of the input object

Can reconstruct the original object

Output of the hidden layer is the code

De-noising auto-encoder

Deep Autoencoder

Deep Autoencoder

Feature Representation

Auto-encoder – Text Retrieval

Autoencoder – Text Retrieval

Bag-of-word (document or query)

Autoencoder – Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

Autoencoder – Similar Image Retrieval

(crawl millions of images from the Internet)

Autoencoder – Similar Image Retrieval

Images retrieved using Euclidean distance in pixel intensity space

Images retrieved using 256 codes

Learning the useful latent factors

Greedy layer-wise pre-training again

Greedy layer-wise pre-training again

Greedy layer-wise pre-training again

Variational Autoencoder

Representation Learning and Generation

Generation from Latent Codes

How can we set a latent code for generation?

Latent Code Distribution Constraints

Constrain the data distribution for learned latent codes

Generate the latent code via a prior distribution

$$\mathcal{L}(x) = \mathcal{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x \mid z)] - D_{KL}(q_{\phi}(z \mid x) || p_{\theta}(z))$$

Reconstruction

VAE for Music Generation http://mvae.miulab.tw

Distant Supervision

Representation Learning by Weak Labels

Convolutional Deep Structured Semantic Models (CDSSM/DSSM)

Multi-Tasking

Representation Learning by Different Tasks

Task-Shared Representation

The latent factors can be learned by different tasks

Concluding Remarks

Labeling data is expensive, but we have large unlabeled data Autoencoder / VAE

- exploits unlabeled data to learn latent factors as representations
- learned representations can be transfer to other tasks

Distant Labels / Labels from Other Tasks

- learn the representations that are useful for other tasks
- learned representations may be also useful for the target task