


Introduction

Big data # Big annotated data

Machine learning techniques include:

o Supervised learning (if we have labelled data)

> Reinforcement learning (if we have an environment for reward)
> Unsupervised learning (if we do not have labelled data)

What can we do if there is no sufficient training data?




Semi-Supervised Learning

Labelled
data

Unlabeled
data

(Image of cats and dogs without labeling)



Semi-Supervised Learning

Why semi-supervised learning helps?

The distribution of the unlabeled data provides some cues




Transfer Learning

Labelled
data

Labeled 5
elephant elephant tiger tiger

Not related to the task considered




Transfer Learning

Widely used on image processing
> Using sufficient labeled data to learn a CNN
> Using this CNN as feature extractor




Transfer Learning Example
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Self-Taught Learning

The unlabeled data sometimes is not related to the task

Labelled
data

Unlabeled
data

(Just crawl millions of images from the Internet)



Self-Taught Learning

The unlabeled data sometimes is not related to the task

Labelled data

Unlabeled data

Digit g !} 4 o & =
Recognition Ul 10 Digits g =1 - character
Document
Classification News

Speech ﬂ»)»»

Recognition
Taiwanese | ...

- Why can we use unlabeled and unrelated data to help our tasks? -



Self-Taught Learning

How does self-taught learning work?

Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations




Latent Factors for Handwritten Digits
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Latent Factors for Documents

Topics

gene 0.04
dna 0.02
genetic 0.01

-

Topic proportions and

Documents assignments

life 0.02
evolve 0.01
organism 0.01

o

brain 0.04

neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01

Seeking Life’s Bare (Genetic) Necessities
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Latent Factor Exploitation

Handwritten digits

..:,ﬂ =. 2 The handwritten images are
- composed of strokes
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Strokes (Latent Factors)

‘o || £IIQ]] -
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Latent Factor Exploitation

Strokes (Latent Factors)
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No. 1 No. 2 No. 3 No. 4 No. 5

No. 1 No. 3 No. 5
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Represented by 1 01010 ... ]

28 X 28 = 784 iixe|5 (simpler representation)



Autoencoder

Representation Learning

___________________________________________________________________________________________________________________]




Autoencoder

Represent a digit using 28 X 28 dimensions

Not all 28 X 28 images are digits

Compact
NN
Encoder » % rehpresentatit?n of
the input object
28 X 28 =784 Usually <784
Learn together

Can reconstruct
the original object
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Autoencoder

Minimize (x — y)?

1 As close as possible 1
encode decode
m X ‘ a ‘ y
|4 w’
hidden layer
Input layer Bottleneck layer output layer

a=cWx+b) y=cWa+b")




Autoencoder

De-noising auto-encoder

encode decode
m) m)
X x'

Add W
noise

As close as possible 1

Rifai, et al. "Contractive auto-encoders: Explicit invariance during feature extraction,” in ICML, 2011.



Deep Autoencoder

As close as possible
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| Initialize by RBM
layer-by-layer

Hinton and Salakhutdinov. “Reducing the dimensionality of data with neural networks,” Science, 2006.



Deep Autoencoder
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Feature Representation




Auto-encoder — Text Retrieval

Vector Space Model Bag-of-word

this
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® word string:

“This is an apple” @

an

apple
pen

document
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Semantics are not considered




Autoencoder — Text Retrieval

Interbank markets
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Autoencoder — Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

dist: 0.0

Krizhevsky et al. "Using very deep autoencoders for content-based image retrieval," in ESANN, 2011.



Autoencoder — Similar Image Retrieval
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(crawl millions of images from the Internet)
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Autoencoder — Similar Image Retrieval

Images retrieved using Euclidean distance in pixel intensity space

dist: 0.0 dist: 3064.2 dist: 3094.1 dist: 3132.4

Learning the useful latent factors




Autoencoder for DNN Pre-Training

Greedy layer-wise pre-training again

output 10
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Target
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Autoencoder for DNN Pre-Training

Greedy layer-wise pre-training again

output 10
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Autoencoder for DNN Pre-Training

Greedy layer-wise pre-training again

output 10

Target
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Autoencoder for DNN Pre-Training

Greedy layer-wise pre-training again Find-tune via backprop
output

output 10
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Variational Autoencoder

Representation Learning and Generation

___________________________________________________________________________________________________________________]




Generation from Latent Codes

encode decode
|14 w’

- How can we set a latent code for generation?




Latent Code Distribution Constraints

Constrain the data distribution for learned latent codes

Generate the latent code via a prior distribution
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Reconstruction
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VAE for Music Generation hitp://mvae.miulab.tw
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Distant Supervision

Representation Learning by Weak Labels

___________________________________________________________________________________________________________________]




Convolutional Deep Structured Semantic
Models (CDSSM/DSSM)

4 )
Semantic Layer: y ~ P(D | Q) P(D | Q) P(D | Q)
I 300 I ~o 1 2 n
Semantic Projection Matrix: W, ) S~

Max Pooling Layer: [,
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\~
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Word Sequence: x w . w w, / T
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****************************** T QD)
Semantically related documents are close to the ximizes the likelihood of clicked
guery in the encoded space documents given queries

Huang et al., "Learning deep structured semantic models for web search using clickthrough data," in Proc. of CIKM, 2013.
Shen et al., “Learning semantic representations using “ convolutional neural networks for web search," in Proc. of WWW, 2014.




Multi-Tasking

Representation Learning by Different Tasks




Task-Shared Representation

Task 1 Task 2
Query classifi- Query Classification Web Search Web search pos-
cation posterior terior probability
probability com- P p P(D P(D computed by soft-
e co P(GIQ) P(CIQ) (D:Q) P(D:JQ) ™

Relevance mea-
sured by cosine

[5: Task-Specific W;_cl Wg_cz similarity
Representation Qfl -
(128) wi=C | wi=C=] TwiSs [wiSe Twisa
B lo: Semantic Representation (300)
Shared | W, T
layers l1: Letter 3gram (50k)
H

X: Bag-of-Words Input (500k)




Concluding Remarks

Labeling data is expensive, but we have large unlabeled data

Autoencoder / VAE
> exploits unlabeled data to learn latent factors as representations

°|learned representations can be transfer to other tasks

Distant Labels / Labels from Other Tasks
°|learn the representations that are useful for other tasks

°|earned representations may be also useful for the target task



