

Outline

Limited Labeled Data

- How to incorporate the prior knowledge
- How to utilize the current observations

Unlabeled Data

- How to re-use the trained dialogue acts
- How to share knowledge across languages
- How to utilize parallel data

Conclusions

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations

Unlabeled Data

- How to re-use the trained dialogue acts
- How to share knowledge across languages
- How to utilize parallel data

Conclusions

Prior Structural Knowledge

Sentence *s* show me the flights from seattle to san francisco

K-SAN: Knowledge-Guided Structural Attention Networks

Sentence Structural Knowledge

Sentence sshow me the flights from seattle to san franciscoSyntax (Dependency Tree)Semantics (AMR Graph)

Knowledge-Guided Structures

Networks," preprint arXiv: 1609.00777, 2016.

K-SA	N Experimen	TS	
	ATIS Dataset	Small	Medium
		1.1.0	1.1.0

(F1 slot filling)	Small (1/40)	(1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75

K-SAN Experiments

ATIS Dataset (F1 slot filling)	Small (1/40)	Medium (1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75
K-SAN (Stanford dep)	74.60 ⁺	87.99	94.86+
K-SAN (Syntaxnet dep)	74.35 <mark>+</mark>	88.40 +	95.00 ⁺

Syntax provides richer knowledge and more general guidance when less training data.

K-SAN Experiments

ATIS Dataset (F1 slot filling)	Small (1/40)	Medium (1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75
K-SAN (Stanford dep)	74.60+	87.99	94.86+
K-SAN (Syntaxnet dep)	74.35 +	88.40 ⁺	95.00 ⁺
K-SAN (AMR)	74.32 +	88.14	94.85 ⁺
K-SAN (JAMR)	74.27 <mark>+</mark>	88.27 <mark>+</mark>	94.89 <mark>+</mark>

Syntax provides richer knowledge and more general guidance when less training data.

Semantics captures the most salient info so it achieves similar performance with much less substructures

Attention Analysis

Darker blocks and lines correspond to higher attention weights

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, "Knowledge as a Teacher: Knowledge-Guided Structural Attention Networks," preprint arXiv: 1609.00777, 2016.

11

Attention Analysis

Darker blocks and lines correspond to higher attention weights

EHR Data

Predicting diagnosis codes for clinical reports

- Present illness text
 - "fever up to 39.4C intermittent in recent 3 days, cough/sputum(+), shortness of breath tonight"
- ICD-9 diagnosis codes
 - 486: Pneumonia, organism unspecified; 780.6: Fever

CNN for Diagnosis Code Prediction (Li et al., 2017)

Convolutional neural network (CNN) for multi-label code prediction

• Multiple convolutional filters for extracting different patterns

Hierarchy Category Knowledge

Hierarchy Category Knowledge (Cluster Penalty)

Low-level code

- 301.0: Paranoid personality disorder
- 301.1: Affective personality disorder
- 301.2: Schizoid personality disorder

High-level category

• All belong to the "personality disorders"

Category constrained loss

$$\Omega_{\text{between}} = \sum_{k=1}^{K} ||\bar{\theta}_k - \bar{\theta}||^2$$
$$\Omega_{\text{within}} = \sum_{k=1}^{K} \sum_{i \in \mathscr{J}(k)} ||\theta_i - \bar{\theta}_k||^2$$

Hierarchy Category Knowledge (Multi-Task)

Low-level code

- 301.0: Paranoid personality disorder
- 301.1: Affective personality disorder
- 301.2: Schizoid personality disorder

High-level category

• All belong to the "personality disorders"

Low-level code infers the high-level category

 $y_{\rm high} = 1$ if $y_{\rm low} = 1$ Category integrated loss via multi-task

$$L = L_{\rm low} + \gamma \cdot L_{\rm high}$$

Hierarchy Category Knowledge (Avg Meta-Label)

Low-level code

- 301.0: Paranoid personality disorder
- 301.1: Affective personality disorder
- 301.2: Schizoid personality disorder

High-level category

• All belong to the "personality disorders"

High-level prob can be approximated by the average of low-level code prob

$$y_{\text{high}} = \frac{1}{k} \sum y_{\text{low}}^k$$

Category integrated loss

$$L = L_{\rm low} + \gamma \cdot L_{\rm high}$$

Hierarchy Category Knowledge (At-Least-One Meta-Label)

Low-level code

- 301.0: Paranoid personality disorder
- 301.1: Affective personality disorder
- 301.2: Schizoid personality disorder

High-level category

• All belong to the "personality disorders"

High-level prob can be approximated by the at-least-one of low-level code prob

$$y_{\rm high} = 1 - \prod_k \left(1 - y_{\rm low}^k\right)$$

Category integrated loss

$$L = L_{\rm low} + \gamma \cdot L_{\rm high}$$

State-of-the-Art Performance

MIMIC3-50	P@1	P@3	P@5	MAP	Macro-F	Micro-F	Macro-AUC	Micro-AUC
CNN (Shi et al., 2017)	82.8	71.2	61.4	72.4	57.9	63.0	88.2	91.2
+ Cluster Penalty	83.5†	71.9^{\dagger}	62.4†	73.1 [†]	58.3^{\dagger}	63.7 [†]	88.5^{+}	91.3 [†]
+ Multi-Task	83.5†	71.3^{\dagger}	61.9^{\dagger}	72.5^{\dagger}	57.6	62.8	88.1	91.1
+ Hierarchical avg	84.5 [†]	72.1^{+}	62.4 [†]	73.5^{\dagger}	58.6 [†]	64.3 [†]	88.9 [†]	91.4 [†]
at-least-one	83.4 [†]	72.1^{\dagger}	62.4^{\dagger}	73.4^{\dagger}	58.5^{+}	63.8^{\dagger}	88.4^{\dagger}	91.3 [†]
MIMIC3-Full	P@1	P@3	P@8	P@15	Macro-F	Micro-F	Macro-AUC	Micro-AUC
CNN (Shi et al., 2017)	80.5	73.6	59.6	45.4	3.8	42.9	81.8	97.1
+ Cluster Penalty	80.9†	74.0^{\dagger}	59.5	45.2	3.3	40.5	82.1^{+}	97.0
+ Multi-Task	82.8 [†]	75.8 [†]	61.5 [†]	46.6 [†]	3.6	43.9 [†]	83.3 [†]	97.3 [†]
+ Hierarchical avg	79.0	73.1	59.2	45.2	4.3 [†]	42.7	83.0^{\dagger}	97.1
at-least-one	82.1 [†]	74.3†	59.7†	44.9	2.6	42.0	80.3	96.7
CAML (Mullenbach et al., 2018)	89.6	83.4	69.5	54.6	6.1	51.7	88.4	98.4
+ Cluster Penalty	88.4	82.4	68.8	54.0	5.4	51.2	87.5	98.3
+ Multi-Task	89.7 [†]	83.4	69.7 [†]	54.8	6.9^{+}	52.3 [†]	88.8^{\dagger}	98.5^{\dagger}
+ Hierarchical avg	89.6	83.5 [†]	70.9 [†]	56.1 [†]	8.2 [†]	53.9 [†]	89.5 [†]	98.6 [†]
at-least-one	89.4	83.3	69.5	54.8 [†]	6.2^{\dagger}	51.7	88.3	98.4

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data

- How to re-use the trained dialogue acts
- How to share knowledge across languages
- How to utilize parallel data

Conclusions

Semi-Supervised Multi-Task SLU (Lan et al., 2018)

Idea: language understanding objective can enhance other tasks

BLM exploits the *unsupervised knowledge*, the *shared-private framework* and *adversarial training* make the slot tagging model more generalized

O. Lan, S. Zhu, and K. Yu, "Semi-supervised Training using Adversarial Multi-task Learning for Spoken Language Understanding," in *Proceedings of ICASSP*, 2018.

Semi-Supervised Multi-Task SLU (Lan et al., 2018)

STM – BLSTM for slot tagging

MTL – multi-task learning for STM and LM, where they share the embedding layer

PSEUDO – train an STM with labeled data, generate labels for unlabeled data, and retrain STM

Method	5k	10k	15k	all
STM	67.25	71.04	73.94	76.60
MTL_e	69.57	73.04	75.00	77.24
PSEUDO	69.82	72.55	74.80	-
BSPM	68.46	72.52	75.05	77.52
$BSPM+D^{(w)}$	71.55	73.67	74.61	77.42
$BSPM+D^{(s)}$	70.99	73.58	74.22	77.24

The model is more efficient when the labeled data is limited and the data for LM is more sufficient.

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data

- How to re-use the trained dialogue acts: Zero-Shot Intent Expansion
- How to share knowledge across languages
- How to utilize parallel data

Conclusions

Zero-Shot Intent Expansion (Chen et al., 2016)

Goal: resolve domain constraint and enable flexible intent expansion for unlabeled domains

Y.-N. Chen, D. Hakkani-Tur, and X. He, "Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic Models," in *Proceedings of ICASSP*, 2016.

CDSSM: Convolutional Deep Structured Semantic Models

Y.-N. Chen, D. Hakkani-Tur, and X. He, "Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic Models," in *Proceedings of ICASSP*, 2016.

Zero-Shot Intent Expansion (Chen et al., 2016)

The expanded models <u>consider new intents without training samples</u>, and produces better understanding for unseen domains with comparable results for seen domains.

Y.-N. Chen, D. Hakkani-Tur, and X. He, "Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic Models," in *Proceedings of ICASSP*, 2016.

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data

- How to re-use the trained dialogue acts: Zero-Shot Intent Expansion
- How to share knowledge across languages: Zero-Shot Crosslingual SLU
- How to utilize parallel data

Conclusions

Zero-Shot Crosslingual SLU (Upadhyay et al., 2018)

Source language: English (full annotations)

Target language: Hindi (limited annotations)

RT: round trip, FC: from city, TC: to city, DDN: departure day name

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, "(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding," in *Proceedings of ICASSP*, 2018.

Zero-Shot Crosslingual SLU (Upadhyay et al., 2018)

MT system is not required and both languages can be processed by a single model

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, "(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding," in *Proceedings of ICASSP*, 2018.

Joint Model for Crosslingual SLU

For rare slots (like meal, airline code), there is a huge difference between the bilingual model and the naive model when the target training data is limited in Proceedings of iccourse , 20

S. Upac

Bilingual Model SLU Experiments

The bilingual model outperforms others and does not suffer from latency introduced by MT

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, "(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding," in *Proceedings of ICASSP*, 2018.

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data

- How to re-use the trained dialogue acts: Zero-Shot Intent Expansion
- How to share knowledge across languages: Zero-Shot Crosslingual SLU
- How to utilize parallel data: Crosslingual Sense Embeddings

Conclusions

Crosslingual Embeddings

Tokens in source language shall be mapped to tokens in target language

- This assumption only holds in sense level token
- Sets of crosslingual sense embeddings are therefore important

Embeddings in a Unified Space (Conneau et al., 2017; Lample et al., 2017)

May largely benefit tasks such as unsupervised machine translation

A. Conneau, G. Lample, L. Denoyer, MA. Ranzato, H. Jégou, "Word Translation Without Parallel Data," *preprint arXiv: 1710:04087*, 2017. G. Lample, A. Conneau, L. Denoyer, MA. Ranzato, "Unsupervised Machine Translation With Monolingual Data Only," *preprint arXiv:1711.00043*, 2017. **35**

Modular Framework

Our method can be separated into two steps (Lee & Chen, 2017):

- 1. Select the most probable (argmax) sense given the context
- 2. Use skip-gram to train the representation of the selected senses
- > Reinforcement learning is used to connected the two modules

Sense Selection Module

Input:

- Chinese text context $C_t = [C_{t-m}, ..., C_t = w_i, ..., C_{t+m}]$
- English text context $C_t' = [C'_{t-m}, ..., C'_t = w'_i, ..., C'_{t+m}]$

Output: the fitness for each sense z_{i1}, \ldots, z_{i3}

Model architecture: Continuous Bag-of-Words (CBOW) for efficiency

Sense Representation Module

Input: sense collocation s_i, s_j, s'_l

Output: collocation likelihood estimation

Model architecture: skip-gram architecture

Sense selection (optimized by negative sampling)

$$p(s'_{l} \mid s_{i}) = \frac{\exp((U_{s_{i}}^{en})^{T} V_{s'_{l}}^{zh})}{\sum_{s'_{k}} \exp((U_{s_{i}}^{en})^{T} V_{s'_{k}}^{zh})}$$

Crosslingual Model Architecture

Enabling bilingual sense embedding learning with parallel data

Qualitative Analysis

fruit, cake, sweet	蘋果, 春天, 蛋糕, iphone, 雞蛋, 巧克力, 葡萄 (apple, spring, cake, iphone, egg, chocolate, purples)
	(apple, spring, cake, iphone, egg, chocolate, purples)
iphone, <u>cake</u> , google, stores	· 蘋果, iphone, 微軟, 競爭對手, 春天, 谷歌
	(apple, iphone, microsoft, competitor, spring, google)
dressed, worn, tape, wearing, cloth	均匀,光滑,衣服,鞋子,穿著,服装
particle, computed, varying, gradient	(<u>even</u> , smooth, clothes, shoes, wearing, clothing) 態,粉末,縱向,等離子體,剪切,剛度 (phase, powder, longitudinal, plasma, cut, stiffness)
	dressed, worn, tape, wearing, cloth

The words with similar senses from both languages have similar embeddings in a unified space

New Dataset – BCWS (Bilingual Contextual Word Similarity)

English sentence	Chinese sentence	Score
Judges must give both sides an equal	我非常喜歡這個故事,它<告訴>我們一些	7.00
opportunity to <i><state></state></i> their cases.	重要的啓示。 (I like this story a lot, which	
	< tells > us some important inspiration.)	
It was of negligible <i><</i> importance <i>></i> prior	黄斑部病變的預防及早期治療是相當<重要>	6.94
to 1990, with antiquated weapons and	約 \circ (The prevention and early treatment of	
few members.	macular lesions is very <i><important></important></i> .)	
Due to the San Andreas Fault bisecting	水果攤老闆似乎很意外眞有人買這<冷>貨	3.70
the hill, one side has <cold></cold> water, the	,露出「你真内行」的眼神與我聊了幾句。	
other has hot.	(The owner of the fruit stall seemed surprised	
	that someone bought this <i><unpopular></unpopular></i> product,	
	talking me few words about "you are such a pro".)	

A newly collected dataset for evaluating bilingual sense embeddings

Contextual Word Similarity Experiment

Model	0	EN	EN-DE	
WIOdel	α .	Bilingual/BCWS	Mono(EN)/SCWS	Mono(EN)/SCWS
1) Monolingual Sense Embeddings				
Lee and Chen (2017)			66.8 / 65.5	63.8 / 63.4
2) Crosslingual Word Em	beddings			
Luong et al. (2015)		49.2	61.1	62.1
Conneau et al. (2017)		52.5	65.5	64.0
3) Crosslingual Sense Em	beddings			
Upadhyay et al. (2017)		-	45.0^{2}	-
Proposed	0.1	55.8 / 55.8	65.6 / 65.6	63.8 / 63.9
	0.3	55.7 / 55.7	64.9 / 65.1	63.8 / 64.0
0.5		56.3 / 56.3	65.8 / 66.0	63.6 / 63.9
	0.7	56.7 / 56.7	65.6 / 65.8	63.1 / 63.2
	0.9	56.0 / 56.0	66.0 / 66.2	62.9 / 63.1

The crosslingual sense embeddings learned in an unsupervised way produce better results on BCWS (bilingual) and comparable performance on SCWS (monolingual)

Outline

Limited Labeled Data

- How to incorporate the prior knowledge: Knowledge-Guided Model
- How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data

- How to re-use the trained dialogue acts: Zero-Shot Intent Expansion
- How to share knowledge across languages: Zero-Shot Crosslingual SLU
- How to utilize parallel data: Crosslingual Sense Embeddings

Conclusions

Concluding Remarks

Prior knowledge can benefit understanding when less training data

Language modeling objective can be incorporated to benefit other tasks

Dialogue acts can be shared across different domains

Crosslingual word embeddings and *joint model* help extend models to different languages

Sense-level representations can be learned via contexts

The *parallel data* for MT can bridge the embeddings from different languages