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Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model

o How to utilize the current observations

Unlabeled Data
> How to re-use the trained dialogue acts

° How to share knowledge across languages
° How to utilize parallel data

Conclusions



Prior Structural Knowledge

Sentence S show me the flights from seattle to san francisco

Syntax (Dependency Tree) Semantics (AMR Graph)

ROOT

y show
show
1. &
me flights

A flight \
> [the from to C|ty-\

3 ¥ *_ C'ty Seattle
seattle francisco
4 v San Francisco
san

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention
Networks,” preprint arXiv: 1609.00777, 2016.




K-SAN: Knowledge-Guided Structural Attention Networks

Prior knowledge as a teacher Input Sentence s
Knowledge Encoding Module l Knowledge-Guided
ROOT Sentence Representation
show me the fllghts from seattle to sanfranusco + CNN,, >
e T s 1 A
[ I I
| knowledge-guided structure {x} E Inner
STt B — J Product

l Knowledge Attention Distribution il
,D,- B N ] Nl | 17
CNN,,
| ~
Knowledge h : :
Encodi J slot tagging sequence y
ncoding Encoded Knowledge Representation Weighted Sum

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016.



Sentence Structural Knowledge

Sentence S show me the flights from seattle to san francisco

Syntax (Dependency Tree) Semantics (AMR Graph)
ROOT show ]
} Knowledge-Guided Substructure X; Knowledge-Guided Substructure X;
show 1. show me 1. show you
L /\ 2. show flights the 2. show flight seattle
me flights flight \ _ _
A 3. show flights from seattle city _\ 3. show flight san francisco
2 the from to 4. show flights to francisco san C|ty 2. 4. show i
v 4 (s / show N Seattle

3. . :ARGO (y / you)
seattle francisco
‘ :ARG1 (f / flight

4. :source (c / city
Sl :name (d / name :0p1 Seattle))
:destination (c2 / city
:name (s2 / name :op1 San :0p2 Francisco)))
:ARG2 (i /1)
:mode imperative)

San Francisco

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016.



Knowledge-Guided Structures

Knowledge Encoding Module Knowledge-Guided
ROOT

Sentence Representation

show me the fllghts from seattle to sanfranusco + CNN,, >

________________________________________________________

l Input Sentence s

knowledge-guided structure {x} Inner
Tt B — Product

l Knowledge Attention Distribution J

p;(r N . - h
CNN,,

EE— 1 = :

Knowledge )
Encodi | h slot tagging sequence y
ncoding Encoded Knowledge Representation Weighted Sum

The model will pay more attention to more important substructures that may be crucial for slot tagging.

Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments

ATIS Dataset Small Medium Large

(F1 slot filling) (1/40) (1/10) 8
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments

ATIS Dat.ajqet Small Medium Large

(F1 slot filling) (1/40) (1/10)
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75
K-SAN (Stanford dep) 74.60* 87.99 94.86*
K-SAN (Syntaxnet dep) 74.35% 88.40* 95.00*

___________________________________________________________________________________________________________________________________

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments

ATIS Dat-atset Small Medium Large

(F1 slot filling) (1/40) (1/10)
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75
K-SAN (Stanford dep) 74.60* 87.99 94.86*
K-SAN (Syntaxnet dep) 74.35% 88.40* 95.00¢
K-SAN (AMR) 74.32+ 88.14 94.85+
K-SAN (JAMR) 74.27+ 88.27+ 94.89+

___________________________________________________________________________________________________________________________________

. Semantics captures the most salient info so it achieves similar performance with much
' less substructures

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention
Networks,” preprint arXiv: 1609.00777, 2016.
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Attention Analysis

Darker blocks and lines correspond to higher attention weights

Dataset 3 —
(Large) -n0n5t0pﬂ|ghts from salt Iake-to new apri

flight_stop fromloc.city_name oIoc.aty_name deoart_date deoart_date. depart_date.
day_name month_name day_number

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016. 11



Attention Analysis

Darker blocks and lines correspond to higher attention weights

Dataset 1 —
(Small) -nonstOPfllghts from salt lake

i

to hew

on satufday april ninth

W
Dataset 2
(Medium) -nonstopfhghts from salt Iake- to new-on _ apri

Dataset 3 —
(Large) -nonstopfllghts from salt Iake-to new apri

depart_date. depart_date. depart_date.

flight_stop fromloc.city_name toIoc.mtv_name

day_name month_name day_number

Using less training data with K-SAN allows the model pay the similar attention to
the salient substructures that are important for tagging.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided Structural Attention

Networks,” preprint arXiv: 1609.00777, 2016.

12



EHR Data

Predicting diagnosis codes for clinical reports
o Present illness text

o “fever up to 39.4C intermittent in recent 3 days, cough/sputum(+), shortness of
breath tonight”

o |CD-9 diagnosis codes

o 486: Pneumonia, organism unspecified; 780.6: Fever




CNN for Diagnosis Code Prediction

(Lietal., 2017)

Convolutional neural network (CNN) for multi-label code prediction
o Multiple convolutional filters for extracting different patterns

MY T Multi-Label
Code Prediction

A

r

Fully-Connected

A

Max Pooling

Conv Layer

*
[ Embedding Layer ]

No dizziness No fever ...  Clinic Text

C. Li, et al., “Convolutional Neural Networks for Medical Diagnosis from Admission Notes,” in arXiv, 2017.




Hierarchy Category Knowledge

Low-level code

Idea: category knowledge provides > 301.0: Paranoid personality disorder
additional cues to know code relatedness > 301.1: Affective personality disorder

o 301.2: Schizoid personality disorder

MY T Multi-Label Hi
igh-level categor
| ) Code Prediction & sory o
- A \ o All belong to the “personality disorders”
Fully-Connected
Max Pooling [ T | |
A : “"'Tq':’.ﬂ'.qmi, [ P::E::::a ] mm‘::::::m., More Pneumonias
Conv Layer e . e aeg

) * l’neumoeou'}l eumonia Othernnﬂeilmummia
[ Embedding Layer ] Wﬁw
NO dizziness NO fever vee clinic Text Pseudomnnalstmonlu Hemoj hllusaneumum +qumonll Sta hlocm:i!neumom More Btctleﬂal
e e y—’—wi’“’”—mifT sy
1C09: 482.1) 1CD9: 482.2) 1CD9: 482.3 i 1CD9: 482.4)
|

Staph Aureus Pneumonia IMSSA Staph Pneumonia | [ MRSA Staph Pneumonia Other Staph Pneumonia
Pneumonia due to Methicillin Susceptable| | Methicillin Resistant Staph Other Staphylococcus
Staphylococcus, unspecified Staph Aureus (MSSA)| | Aureus (MRSA) F i
1CD9: 482.40) P t ICDY; 482,42 1CD9: 482.49)
ICD9: 3




Hierarchy Category Knowledge
(Cluster Penalty)

Low-level code
o 301.0: Paranoid personality disorder
o 301.1: Affective personality disorder
o 301.2: Schizoid personality disorder
(TUT WTUNE )  Multi-label High-level category

) Code Prediction o
A o All belong to the “personality disorders”

Fully-Connected

A

Category constrained loss

Max Pooling
A < K . .
Conv Layer , Qbetween = Z 116, — 9”2
1 k=1
[ Embedding Layer ] K _
— - Quitin = Y. Y 16— 8
No dizziness No fever ...  Clinic Text i=lic 7 )

A. Nie, et al., “DeepTag: inferring all-cause diagnoses from clinical notes in under-resourced medical domain,” in arXiv, 2018.



Hierarchy Category Knowledge
(Multi-Task)

Low-level code

o 301.0: Paranoid personality disorder

Multi-Task Category Knowledge Integration o 301.1: Affective personality disorder

Low-Level Code High-Level Category _ - . .
Prediction Prediction 301.2: Schizoid personality disorder

ID Uy ETEN ] VL
[ ] High-level category
\/

o All belong to the “personality disorders”

Fully-Connected

A

Max Pooling

Low-level code infers the high-level category

Convlayer | Yhigh = 1if Yjow =1

1 Category integrated loss via multi-task
[ Embedding Layer ]

No dizziness No fever ...  Clinic Text L=Lowt+y- Lhigh



Hierarchy Category Knowledge
(Avg Meta-Label)

Low-level code

o 301.0: Paranoid personality disorder
Avg Meta-Label Category Knowledge Integration > 301.1: Affective personality disorder
High-Level Category

! ? —/l\ J Prediction o 301.2: Schizoid personality disorder
Low-Level Code )
High-level category

Prediction
- A S o All belong to the “personality disorders”
Fully-Connected
— ~ High-level prob can be approximated by
Max Pooling | the average of low-level code prob
A < 1
Conv Layer . = — z k
5 ) Yhigh k Ylow
[ Embedding Layer ] Category integrated loss
No dizziness No fever ...  Clinic Text L=Lgyy+7" Lhigh



Hierarchy Category Knowledge (at-
Least-One Meta-Label)

Low-level code
o 301.0: Paranoid personality disorder

At-Least-One Meta-Label Category Knowledge Integration 301.1: Affective personality disorder
High-Level Category

l%ﬁ—/,\ J Prediction > 301.2: Schizoid personality disorder

Low-Level Code High-I |
Prediction Igh-level category
o All belong to the “personality disorders”

Fully-Connected

— ~ High-level prob can be approximated by
Max PAOOI'ng , the at-least-one of low-level code prob
Conv Layer

x ' Yhigh = 1 — 1_[(1 — Viow)
k

[ Embedding Layer ]

No dizzi No f ... Clinic Text .
© dizziness To Tever Category integrated loss

L = Liow + ¥V * Lnign



State-of-the-Art Performance

MIMIC3-50 P@1 P@3 P@5 MAP Macro-F Micro-F Macro-AUC  Micro-AUC

CNN (Shi et al., 2017) 828 712 614 724 57.9 63.0 88.2 91.2

+ Cluster Penalty 8351 719" 6247 7317 58.31 63.71 88.57 91.3"

+ Multi-Task 83.57 7137 6197 7257 57.6 62.8 88.1 91.1

+ Hierarchical  avg 8457 7217 624" 7357 58.61 64.3 88.9°1 91.41
at-least-one 834t 7217 6247 7341 58.57 63.87 88.41 91.3%

MIMIC3-Full P@l P@3 P@8 P@l5 Macro-IF Micro-F Macro-AUC Micro-AUC

CNN (Shi et al., 2017) 80.5 73.6 59.6 454 3.8 42.9 31.8 97.1

+ Cluster Penalty 80.97 740" 595 452 3.3 40.5 82.1f 97.0

+ Multi-Task 8287 7587 6157 46.6' 3.6 43.97 83.37 97.31

+ Hierarchical — avg 790 731 592 452 4.3 42.7 83.0f 97.1
at-least-one 82.17 743" 5977 449 2.6 42.0 80.3 96.7

CAML (Mullenbach et al., 2018) | 80.6  83.4 695 546 6.1 51.7 88.4 08.4

+ Cluster Penalty 88.4 824 688  34.0 54 51.2 87.5 98.3

+ Multi-Task 897" 834 6977 5438 6.9 52.37 88.81 98.51

+ Hierarchical  avg 89.6 835" 709" 5617 8.21 53.91 89.51 98.6'
at-least-one 80.4 833 695 3548 6.21 51.7 88.3 08.4




Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model

c How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data
> How to re-use the trained dialogue acts

° How to share knowledge across languages
° How to utilize parallel data

Conclusions



Semi-Supervised Multi-Task SLU (Lanetal., 2018)

Idea: language understanding objective can enhance other tasks

B-FromCity York from
@ 4 Algorithm 1: Adversarial Multi-task Learning for SLU
(Wi-1)
«_’ LM Input : Labeled training data {(w',t!)}
_T_ Unlabeled data {w"}
Slot o D b - 1| Output: Adversarially enhanced slot tagging model
Taggi " % 1.9 Initiali 0°,6",6' 07} randoml
agging — 1 Initialhize parameters { 07,0, }ran omly.
Model Vil " sy Ik 2 repeat .
=0 il I =15 1| /* Sample from {(w',t")} */
L h | b L 3 | Train the STM and shared model by Eq.(8).
| Train the task discriminator and the shared model
e l by Eq.(6) or Eq.(7) as slot tagging task (y = 1).
/% Sample from {w!} and {w"} */
5 Train the LM and shared models by Eq.(9) (and
@ Eq.(10) for BLM).
6 Train the task discriminator and the shared model
words: . fom  New Yok by Eq.(6) or Eq.(7) as LM task (y = 0)
7 until convergence;
tags: .. O B-FromCity I-FromCity

BLM exploits the unsupervised knowledge, the shared-private framework and
adversarial training make the slot tagging model more generalized

O. Lan, S. Zhu, and K. Yu, “Semi-supervised Training using Adversarial Multi-task Learning for Spoken Language Understanding,” in

Proceedings of ICASSP, 2018.



Semi-Supervised Multi-Task SLU (Lanetal., 2018)

STM — BLSTM for slot tagging

MTL — multi-task learning for STM and LM, where they share the embedding layer

PSEUDO — train an STM with labeled data, generate labels for unlabeled data, and

retrain STM
Method 5k 10k 15k all
STM 6725 71.04 7394 76.60
MTL, 69.57 73.04 75.00 77.24
PSEUDO 69.82 72.55 74.80 -
BSPM 638.46 7252 75.05 77.52
BSPM+D®) | 71.55 73.67 74.61 77.42
BSPM+D() | 70.99 73.58 7422 77.24

The model is more efficient when the labeled data is limited and the data for LM is |
more sufficient. '

0. Lan, S. Zhu, and K. Yu, “Semi-supervised Training using Adversarial Multi-task Learning for Spoken Language Understanding,” in
Proceedings of ICASSP, 2018.




Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model
> How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data
> How to re-use the trained dialogue acts: Zero-Shot Intent Expansion

° How to share knowledge across languages
° How to utilize parallel data

Conclusions



/Zero-Shot Intent Expansion (chen et al., 2016)

Goal: resolve domain constraint and enable flexible intent
expansion for unlabeled domains

‘postpone my meeting to five pm” ]

Training Data } n _
<change_note>

“adjust my note” Klntent Embedding
: ? | | 1 _ Original
<change_setting> A’EDSSM > | | 2
“volume turn down” J | | K - Expand
l (U _
p
New Intent Embedding | 1 K+1
<change_calender> ~ — Generation > | K+2

Y.-N. Chen, D. Hakkani-Tur, and X. He, “Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic
Models,” in Proceedings of ICASSP, 2016.




CDSSM: Convolutional Deep Structured Semantic Models

4 )

P, 1U)  P(,[U) P(,[V)

Semantic Layer: y

Semantic Projection Matrix: W, ) ~~

S~ CosSim(U, 1,)

Max Pooling Layer: /

300 300 |[ 300 | [ 300 |
Max Pooling Operation T T T T
U I I, I,
Convolutional Layer: /. Utterance ‘ Y '
: , Intent )
Convolution Matrix: W, -
Word Hashing Layer: /, //////
Word Hashing Matrix: W, //////
Word Sequence: x w w w W/
z 2 3 d PAI) exp(CosSim(U, 1))
I want to adjust ... Y exp(CosSim(U, 1))

CDSSM maps language usage for the same dialogue acts together

Y.-N. Chen, D. Hakkani-Tur, and X. He, “Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic

Models,” in Proceedings of ICASSP, 2016.



/Zero-Shot Intent Expansion (chen et al., 2016)

MAP@K Intent Classification Performance

(%) 65.6 66 8

58.3
I

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

mOri MWExp

68.2
68.

0.

0.

The expanded models consider new intents without training samples, and produces
" better understanding for unseen domains with comparable results for seen domains.

Y.-N. Chen, D. Hakkani-Tur, and X. He, “Zero-Shot Learning of Intent Embeddings for Expansion by Convolutional Deep Structured Semantic
Models,” in Proceedings of ICASSP, 2016.




Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model
> How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data
o How to re-use the trained dialogue acts: Zero-Shot Intent Expansion

c How to share knowledge across languages: Zero-Shot Crosslingual SLU
° How to utilize parallel data

Conclusions



Zero-Shot Crosslingual SLU (Upadhyay et al., 2018)

Source language: English (full annotations)

Target language: Hindi (limited annotations)

RT: round trip, FC: from city, TC: to city, DDN: departure day name

Utt: finda one way flight from boston to atlanta on wednesday
Slots: O OB-RTI-RT O O B-FC O B-TC O B-DDN

(a) English Utterance
Utt: FUdR I dIFeT H 31CAil ddb STH dleil YebaRthl 3gM Elol
Slots: B-DDN O B-FC O BTC O O O BRT O O

(b) Hind1 Utterance

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, “(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding,”

in Proceedings of ICASSP, 2018.



Zero-Shot Crosslingual SLU (Upadhyay et al., 2018)

Hindi Test
TRAIN ON TARGET
English SLU
Train Results
TEST ON SOURCE
Hindi English English SLU
Test Test Tagger Results
Hindi Test
PROPOSED Joint Training
English Train (Large) Bilingual SLU
Hindi Train (Small) VB Results

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, “(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding,”
in Proceedings of ICASSP, 2018.




Joint Model for Crosslingual SLU

Hindi Test

Joint Training L : Flight

English Train (Large)

Bilingual L’—i
n
indi Trai Tagger <
Hindi Train (Small) g8 Y7 src o sic o =
: given 100 examples in ® Q . Q Q Q
E naive hi [ naive tr bilingual hi E2 bilingual tr | the tg rget lan guage E O T T T T T
80 78 77 J f - N 5
o0l 2 N s 71 Hindi * > » { B
N R 64 —S / € € < <
] 5910 English -
60 NE 53 \ lanet 2 1 1
47 2 N 46 anguage ) © :
= 0l P N NE indicator 1 i~ °
? 2 § s A PoEE dd W
23 i % % o N = pre-trained s i
20 = N % i NE 0 N vectors e e e
1 BN N TEN o o o
0 ot i 0 % 2 0 0 RN\ 0 N milwaukee  to denver one way
airline name depart period of day airline code  from state name meal

For rare slots (like meal, airline code), there is a huge difference between the
S. Upag bilingual model and the naive model when the target training data is limited

=)



Bilingual Model SLU Experiments

Hindi Slot Filling Turkish Slot Filling

Tagging Fl
Tagging F1

0 .
0 100 200 300 400 500 60 % 100 200 300 400 500 600
# train examples # train examples
—»— Naive --- Zero-Shot ~ ------ TrainOnTrg
- - TestOnSrc - - - Adapt-TestOnSrc —e— Bilingual

Hindi Intent Classification

g
<
§ 0.6 | —»— Naive —e— Bilingual
0 4_|_ ——
0 50 100 200 600
# Train Examples
Turkish Intent Classification
0.9
3 0.8
<
5 o7 | —— Naive —— Bilingual |
0.
. — ——
0 50 100 200 600

# Train Examples

S. Upadhyay, M. Faruqui, G. Tur, D. Hakkani-Tur, and L. Heck, “(Almost) Zero-Shot Cross-Lingual Spoken Language Understanding,”
in Proceedings of ICASSP, 2018.




Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model
> How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data
o How to re-use the trained dialogue acts: Zero-Shot Intent Expansion

° How to share knowledge across languages: Zero-Shot Crosslingual SLU
° How to utilize parallel data: Crosslingual Sense Embeddings

Conclusions



Crosslingual Embeddings

Tokens in source language shall be mapped to tokens in target language
° This assumption only holds in sense level token

> Sets of crosslingual sense embeddings are therefore important

o uniform/+#| PE are all polysemous words




Embeddings in a Unified Space (Conneau et al,,
2017; Lample et al., 2017)

May largely benefit tasks such as unsupervised machine translation

’ (C)
Y
WX

Asource sentences A|atent space Atarget sentences AIatent space Asource sentences

encoder encoder
C(x) - Xe
X g . zsrc /.’X\
d

ecoder

T decoder

A. Conneau, G. Lample, L. Denoyer, MA. Ranzato, H. Jégou, "Word Translation Without Parallel Data,” preprint arXiv: 1710:04087, 2017.

G. Lample, A. Conneau, L. Denoyer, MA. Ranzato, "Unsupervised Machine Translation With Monolingual Data Only,” preprint arXiv:1711.00043, 2017.



Modular Framework

Our method can be separated into two steps (Lee & Chen, 2017):
1. Select the most probable (argmax) sense given the context

2. Use skip-gram to train the representation of the selected senses
» Reinforcement learning is used to connected the two modules

N

apple-1 apple-2 cellphone-1 cellphone-2

~

Apple company designs the best cellphone in the world. :] parallel sentence w/o
$ER NE) BRET HR —meY FE - word alignment

Lee and Chen, "MUSE: Modularizing Unsupervised Sense Embeddings," in EMNLP, pages 327-337, 2017.



Sense Selection Module

Input:
o Chinese text context C; = [Ci_, ..., Cr = Wl, e Crym]
o English text context C,' = [C{_,,,, ..., C{ = W}, ..., C{ 1]

Output: the fitness for each sense z;4, ..., Zj3

Model architecture: Continuous Bag-of-Words (CBOW) for efficiency

[ Sense Selection Module h
Sense selection _ = _
qg(z;,|C q(zi,|C qg(ziz|C
1
C=a- ‘(,_me 15‘5)'HZPJ‘Z}L matrifon DAL
i ®ee
- ~ a - a
p(zik | ey i) = o((Q)"C) ,
G
* / matrix PE2= matrix P2
Zik — arg dep( ‘i ;)
“ik [Ct 1 ][ Ce=w; ][Ct+1 ] [Ct 1 ][ Ce=w; ][Ct+1 ]
Lcompanles like apple and £ ) %-gllgr; ;fg% =




Sense Representation Module

, , r )
Input: sense collocation s;, s;, 5] [ Peplz) || PGwlz | [ .
Output: collocation likelihood estimation matrixm
Model architecture: skip-gram architecture [‘ O ‘J
matrix U°€" i
Zi1
Sense selection (optimized by negative sampling) \_ y

Ty zh @ ~
p(g" | 9‘) B exp((U;T) Vs?) [ P(2},12:1) ][ P(zh|2:1) ]
L) l 29 —_—
Zsi-, exp((Uﬁ:‘)TViﬁ) matrixm

000

matrix U¢"




Crosslingual Model Architecture

r '

' '

Bilingual Sense Induction (EN-ZH)
QE’H

~

Monolingual Sense
Representation Learning (EN)

DT> company_1

p(zi1lci, i)

(P Pzl c)

i f—_—\
Apple company designs the best

: cellphone in the world
ch
c; |~

L
BRG] &I R ey 4T

Monolingual Sense Induction (ZH)

th

c pen

p(ziz|ci, ci)

j Apple_2 =

‘Bilingual Sense Representation)
Learning (EN-ZH)

F#_2

cellphone_2)




Qualitative Analysis

Target kNN Senses (EN) kNN Senses (ZH)

apple_0 fruit, cake, sweet R, H K, &EH, iphone, #E&, TN, W4
(apple, spring, cake, iphone, egg, chocolate, purples)

apple_1 iphone, cake, google, stores 48R, iphone, M3, #EFHF. £ X, &K

(apple, iphone, microsoft, competitor, spring, google)
uniform_0  dressed, worn, tape, wearing, cloth ¥ 8 %7& RIRE-T F & REK

(even, smooth, clothes, shoes, wearing, clothing)
uniform_1  particle, computed, varying, gradient & B K 4L @), 5 & 744, 9 W0 Al &

(phase, powder, longitudinal, plasma, cut, stiffness)




New Dataset — BCWS
(Bilingual Contextual Word Similarity)

English sentence Chinese sentence Score
Judges must give both sides an equal RIFW FHGERF > E<EHF>RM—L 7.00
opportunity to <state> their cases. #8974 o (1like this story a lot, which

<tells> us some important inspiration.)
It was of negligible <importance> prior THHEOTAG R FREH LM T<ETR> 6.94

to 1990, with antiquated weapons and f9 o (The prevention and early treatment of

few members. macular lesions is very <important>.)

Due to the San Andreas Fault bisecting KEHELEMFRENDNEAFAREZ<AST 3.70
the hill, one side has <cold> water, the s Tl TMREA4T) RAPEERIFT &4 -

other has hot. (The owner of the fruit stall seemed surprised

that someone bought this <unpopular> product,
talking me few words about “you are such a pro™.)




Contextual Word Similarity Experiment

Model N EN-ZH EN-DE
Bilingual/BCWS | Mono(EN)/SCWS  Mono(EN)/SCWS

1) Monolingual Sense Embeddings

Lee and Chen (2017) 66.8/65.5 63.8/63.4

2) Crosslingual Word Embeddings

Luong et al. (2015) 49.2 61.1 62.1

Conneau et al. (2017) 52.5 65.5 64.0

3) Crosslingual Sense Embeddings

Upadhyay et al. (2017) - 45.0 -

Proposed 0.1 55.8/55.8 65.6/65.6 63.8/63.9
0.3 55.7/55.7 64.9/65.1 63.8/64.0
0.5 56.3/56.3 65.8/66.0 63.6/63.9
0.7 56.7 / 56.7 65.6/65.8 63.1/63.2
0.9 56.0/56.0 66.0/ 66.2 62.9/63.1

The crosslingual sense embeddings learned in an unsupervised way produce better
results on BCWS (bilingual) and comparable performance on SCWS (monolingual)




Outline

Limited Labeled Data
> How to incorporate the prior knowledge: Knowledge-Guided Model

> How to utilize the current observations: Semi-Supervised Multi-Task SLU

Unlabeled Data
o How to re-use the trained dialogue acts: Zero-Shot Intent Expansion

° How to share knowledge across languages: Zero-Shot Crosslingual SLU
° How to utilize parallel data: Crosslingual Sense Embeddings

Conclusions



Concluding Remarks

Prior knowledge can benefit understanding when less training data

Language modeling objective can be incorporated to benefit other tasks
Dialogue acts can be shared across different domains

Crosslingual word embeddings and joint model help extend models to
different languages

Sense-level representations can be learned via contexts

The parallel data for MT can bridge the embeddings from different languages



