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A” Kinds Of GAN ves https://github.com/hindupuravinash/the-gan-zoo
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Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, “Variational Approaches for Auto-Encoding
Generative Adversarial Networks”, arXiv, 2017

*We use the Greek « prefix for a-GAN, as AEGAN and most other Latin prefixes seem to have been taken
https://deephunt.in/the-gan-z00-79597dc8c347.
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Powered by: http://mattya.github.io/chainer-DCGAN/

Basic |dea of GAN  'tisaneural network

(NN), or a function.
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Basic Idea of GAN

image ‘

Discri-

It is a neural network

/ (NN), or a function.

scalar

minator ‘ Larger value means real,
smaller value means fake.
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Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Database

generated
objects

randomly
sampled

Discriminator learns to assign high scores to real objects
and low scores to generated objects.



Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to “fool” the discriminator

hidden layer ﬁJ
NN Discri-
—) —) e V)
I Generator minator TR
vector update fix

Gradient Ascent

large network




Algorithm

* Initialize generator and discriminator i
* In each training iteration:

Sample some
real objects:

Learning Generate some
D fake objects:

Learning
G




YT

v

The faces
generated by
machine.

The images are generated by
Yen-Hao Chen, Po-Chun Chien,
Jun-Chen Xie, Tsung-Han Wu.
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Amazing Results!

[Tero Karras, et al., ICLR, 2018]




Amazing Results!

[Andrew Brock, et al., arXiv, 2018]




(Variational) Auto-encoder

As close as possible

» » é » B »
Encoder ) Decoder
a2

= Generator

» NN »Ima e’
Decoder 5€ !

= Generator

&

Randomly generate
a vector as code

3p0d




Auto-encoder v.s. GAN

Auto-encoder

3 » NN » As close as possible
Q. <
1 Decoder Just copy an image
= Generator Fuzzy ...
GAN
é Genera- Qiscri- —_
e tor : minator
2 4

If discriminator does not simply memorize the images,
Generator learns the patterns of faces.



FID Score
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[Mario Lucic, et al. arXiv, 2017]
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FID[Martin Heusel, et al., NIPS, 2017]: Smaller is better
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X: an image (a high-
dimensional vector)

Generator

* A generator G is a network. The network defines a
probability distribution P

Normal P (x) Piata(x)

Distribution

as close as possible

G* =arg mGjn Div(Pg, Pigia)
Divergence between distributions P; and P44
How to compute the divergence?



Discriminator
G* = arg mGjn DiU(PG; Pdata)

Although we do not know the distributions of P; and P44,
we can sample from them.

,%W‘
g H/ } ‘

Sampling from P ;,;,

< < < . &y IR
sample from > |8 3 G TR YRS 4
normal S48 g N 20 )

Sampling from P

Database fw g




Discriminator G* = argminDiv(Pg;, Pyata)

G

* . data sampled from P;,,, USingthe example objective

* . data sampled from P fun.ct.lon is gxactly the. s.ame as
training a binary classifier.

Discriminator

* * train

Example Objective Function for D

-
V(G,D) = Ey-pyy,, [logD ()] + Exp,[log(1 — D(x))]
s =

(G is fixed)

Training: D* = arg‘mglx V(D, G)‘ The maximum objective value
is related to JS divergence.

[Goodfellow, et al., NIPS, 2014]



Discriminator 6" = arg min Div(Ps, Paqtra)

* : data sampled from Py,¢4 Training:
* : data sampled from P, D* = arg‘mgx V(D, G)‘

*
* *
Discriminator

** * ** train

small divergence hard to discriminate
Smalljmax V (D, G)‘
* + s
*, X%

** * train

Discriminator

large divergence easy to discriminate



[Goodfellow, et al., NIPS, 2014]

G* =arg mGjn max V(G,D)

D* = arg‘maxV(D, G)‘ The maximum objective value
D is related to JS divergence.

* |nitialize generator and discriminator

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G




Can we use other divergence?

Name D¢(P|@Q) Generator f(u)

Total variation 2 [ |p(z) — q(z)|da 2w —1]

Kullback-Leibler [ p(x)log? W dz ulog u

Reverse Kullback-Leibler [ ¢(x)log g{r% dx —logu

Pearson 2 | (qmp f) @)” 4y (u—1)2

2 (p(x)—q(x))* (1—u)?

Neyman y | q(q,) da ) u

Squared Hellinger | (\/p(:r) —aq(x) ) dx (Vu—1)°

Jeffirey [ (p() = a(a)) log (25) da (u—1)logu

2p(x) . 2q(x) . . 14w _ -

Jensen-Shannon 1 [ p(x)log m +q(x) log m dx | —(u+1)log +5* + ulogu

Jensen-Shannon-weighted [ p(z)7log i r()ﬁ;J((f)r)q(J) + (1 — 2)%r(;)r) log wp(x)f((fﬁn)q(r) dr  mulogu — (1 — 7+ 7mu)log(l — m + 7mu)

GAN J p(2)log - + q(2) log w5 dar — log(4) 4 ulogu — (u+ 1) log(u + 1)
Name Conjugate f*(t)
Total variation t

Kullback-Leibler (KL) exp(t —1)

Using the divergence Reverse KL T Tog(—)

] Pearson x* e+t
you ||ke @ Neyman y> 2 —21—1
Squared Hellinger =
) ) Jeffrey W(e™") + i + 1 — 2
(el=*)
[Sebastian Nowozin, et al., NIPS, 2016] Jensen-Shannon ~log(2 — exp(1))
Jensen-Shannon-weighted (1 — 7)log — 1= ==

GAN —log(1 —(xp( ))
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GAN is hard to train

NO PAIN

NOGA N



JS divergence is not suitable

* In most cases, P; and P,;,:, are not overlapped.

* 1. The nature of data
Both P;,¢q, and P are low-dim
manifold in high-dim space.
The overlap can be ignored.

e 2. Sampling

Even though P, .+, and P
have overlap.

If you do not have enough
sampling ......




What is the problem of JS divergence?

PGO — Pdata PGl <) Pdata ------ PGlOO

/ Equally bad X
]S(PGor Pdata) ]S(Pcl: Pdata) """ ]S(PGloo» Pdata)
= log?2 = log2 =

JS divergence is log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier
achieves 100% accuracy

» Same objective value is obtained. » Same divergence




Wasserstein distance

* Considering one distribution P as a pile of earth,
and another distribution Q as the target

* The average distance the earth mover has to move
the earth.

P Q




Wasserstein distance

Smaller
distance?

Larger
distance?

—

There are many possible “moving plans”.

Using the “moving plan” with the smallest average distance to
define the Wasserstein distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/



What is the problem of JS divergence?

dO dl
P Go | |Paata P G, | Paata - P G100 || Paata
]S(PGo' Pdata) ]S(PG1’ Pdata) """ ]S(PG100’ Pdata)
W(PG(): Pdata) W(Ple Pdata) ------ W(PGloor Pdata)
= dO = dl S O

Better!
—



[Martin Arjovsky, et al., arXiv, 2017]

WGAN

Evaluate wasserstein distance between P, and P

V(G,D) a S =

= oomax A [D@] — Erepg [DCO])

D has to be smooth enough. How to fulfill this constraint?

CO

Without the constraint, the
training of D will not converge.

generated

Keeping the D smooth forces
D(x) become oo and —oo D



V(GJ D) — DEl—I}Jli???S'(ChitZ{EXNPdata [D (x)] o EXNPG [D (x)]}

* Original WGAN — Weight Clipping [Martin Arjovsky, et al.,

arXiv, 2017]
Force the parameters w between c and -c
After parameter update, ifw>c,w=c;ifw<-c,w=-cC

* Improved WGAN — Gradient Penalty [ishaan Gulrajani,
NIPS, 2017]

|
v\rea' 9
[Kodali, et al., arXiv, 2017]

[Wei, et al., ICLR, 2018] samples

* Spectral Normalization = Keep gradient norm
smaller than 1 everywhere [miyato, et al., ICLR, 2018]



[Junbo Zhao, et al., arXiv, 2016]

Energy-based GAN (EBGAN)

e Using an autoencoder as discriminator D
» Using the negative reconstruction error of
auto-encoder to determine the goodness

» Benefit: The auto-encoder can be pre-train
by real images without generator.

Discriminator

ﬂ ‘Ij“. , ’ \ . * -O. 1
Autoencoder 0 for the
best images




. . . . A R R
Tip: Improve Quality during Testing  his tip is also used in [Andrew

Brock, et al., arXiv, 2018]

Normal
Distribution

generator

Some samples are poor.

Smaller
Variance

The output would be more stable,
but sacrifice the diversity.



Mode Collapse

Training with too many iterations ......

* !b

-,....»(Jw

Y : real data
i\( . generated data




Generator
at iteration t

Generator
at iteration t+1

BEGAN on CelebA



Tip: Ensemble

To generate an image

Random pick a generator G;, and then use G; to
generate the image

1 2 ......

Train a set of generators: {G{, G,, -, Gy }



[Tim Salimans, et al., NIPS, 2016]

Objective Evaluation  *'meee
y: class (output of CNN)

class 2

Off-the-shelf
.- » P(:le) class 1

lass 3
— class

Image Classifier

e.g. Inception net,
VGG, etc.

Concentrated distribution
means higher visual quality

1## Py'IxY) P(y) = zP(y |x™)

x? ﬁ# P(y?|x?) | >

x3 ## P(y3|x3) Uniform distribution

means higher variety




Objective Evaluation ..

class 1

P(ylx) class 2

class 3

¥

Inception Score
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[Tim Salimans, et al., NIPS 2016]

— 2 y P(y|x)logP(y|x) ' Negative entropy of P(y|x)
X

y

— Z P(y)logP(y) Entropy of P(y)
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* Original Generator

Normal /@ ©
Distribution OCZDO G

e Conditional Generator

condition C =)

Normal /@ © G
Distribution OCZDO '

[Mehdi Mirza, et al., arXiv, 2014]
e.g. Text-to-Image

“Girl with red hair
and red eyes . NN

“Girl with yellow Generator
ribbon”




a dog is running &
TeXt_tO_l mage a bird is flying E

* Traditional supervised approach

cl: a dogis running » NN

Text: “train”

as close as
possible




[Scott Reed, et al, ICML, 2016]

Conditional GAN

c: train »

G » Image x = G(c,z)
Normal distribution z »

X is real image or not

» D » ‘l Generator will learn to
* (original) >calar generate realistic images ....
But completely ignore the
Real images: W 1 input conditions.

Generated images: Image



[Scott Reed, et al, ICML, 2016]

Conditional GAN

c: train »

G » Image x = G(c,z)
Normal distribution z »

¢ » D X is realistic or not +
scalar

N » (better) c and x are matched or not

True text-image pairs: (train, ﬁ ) 1

(cat, ﬁ) 0 (train, mage ) Q




Conditional GAN - Discriminator

object x — Network —

Network —» score

condition c —» Network —— X is realistic or not +
al ) c and x are matched
almost ever aper

v pap or not
object x — Network » X is realistic or not
condition ¢ \ Network —> c and x are matched
[Augustus Odena et al., ICML, 2017] or not

[Takeru Miyato, et al., ICLR, 2018]
[Han Zhang, et al., arXiv, 2017]



The images are generated by
Yen-Hao Chen, Po-Chun Chien,

CO n d |t|O n a ‘ GA N Jun-Chen Xie, Tsung-Han Wu.
paired data
\&L\ blue eyes Collecting anime faces
N 8 red hair and the description of its
Ry short hair characteristics

4 v |
red hair,
green eyes
M]

~

blue hair,
red eyes




[Phillip Isola, et al., CVPR, 2017]

Conditional GAN - Image-to-image

— it

Labels to Street Scene

Day to Night __ Edges to Photo

v,
i

input output input output

Image translation, or pix2pix



[Phillip Isola, et al., CVPR, 2017]

Conditional GAN - Image-to-image

* Traditional supervised approach

Hiiaield
» NN » Image ~ . EANE]
as close as e
. 3 ']mf ‘ *', i H
possible

e.g. L1

Testing:

It is blurry.




[Phillip Isola, et al., CVPR, 2017]

Conditional GAN - Image-to-image

D » scalar

Testing:




[Michael Mathieu, et al., arXiv, 2015]

Conditional GAN
- Video Generation

Generator »

Discriminator thinks it is real

Discrimi » Last frame is real
nator or generated



Ground Truth Adversarial NMon-Adversarial

https://github.com/dyelax/Adversarial_Video_Generation



Conditional GAN
- Sound-to-image

G » Image

MWMM c: sound »

"a dog barking sound”

Training Data

Collection WWWMWW

B R QQRY




The images are generated by Chia-

Cond |t|ona | GAN Hung Wan and Shun-Po Chuang.

https://wjohn1483.github.io/

_ SO un d _to_i ma ge audio_to_scene/index.html

 Audio-to-image Louder




Conditional GAN - Image-to-label

Multi-label Image Classifier

Input condition

person, sports ball,

Generated output
baseball bat, baseball glove

—)
—)

Positive example :
person, boat,
bird
’
y
egative example:

N
[pe;s?,ms:ee] Discriminator
{ ports ball 2 m } g

Generator person 1

" frisbee 0.9 3
/ " - .. sampling
X==| Classifier [=— _ V! =—)

sports ball 0.5 1

Discriminator

(=34 28 L

y—

2!

= D(,%)

y X

=3 "_— }_,

y X

—> | Fixed feature extractor : foy; =  m—




Conditional GAN - Image-to-label

The classifiers can have |VGG-16 56.0 33.9
different architectures. |+ GAN 60.4 412 |
The classifiers are LInception 02.4 535 |
trained as conditional | *GAN 63.8 55.8 |
GAN. | Resnet-101 62.8 53.1 |
| +GAN 64.0 55.4 |
| Resnet-152 63.3 52.1 |

+GAN 63.9 54.1

Att-RNN 62.1 54.7

[Tsai, et al., submitted to

ICASSP 2019] RLSD 62.0 46.9



Conditional GAN - Image-to-label

The classifiers can have VGG-16 56.0 33.9
different architectures. + GAN 60.4 412
The classifiers are ACCRuCh 62.4 >3-
trained as conditional +GAN 63.8 | 55.8
GAN. Resnet-101 62.8 53.1
+GAN | 640 | 554
Conditional GAN
Resnet-152 63.3 52.1
outperforms other
models designed for +GAN 63.9 54.1
multi-label. Att-RNN 62.1 54.7

RLSD 62.0 46.9




Domain Adversarial Training

* Training and testing data are in different domains

data The same
Testing distribution
data

Generator 4>I feature
Take digit

classification as example



Domain Adversarial Training

feature extractor (Generator) Always output }
o
-

E>m|:> EE>E E:> [ zero vectors

image l’

Domain Classifier Fails }
Which domain?
|:> n |:> @) domain label d

Discriminator
:.» (Domain classifier)

blue points

red points



Domain Adversarial Training

feature extractor (Generator) Label gredictor
[> E> [> E> §[> [> |:> E class label y
U- ~ Which digits?
image ’ J
‘.f-u

Which domain?

|:> m |:> @) domain label d
Discriminator

(Domain classifier)

Not only cheat the domain L

classifier, but satisfying label
predictor at the same time

Successfully applied on image classification
[Ganin et al, ICML, 2015][Ajakan et al. IMLR, 2016 ]

More speech-related applications in Part Il.
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Unsupervised Conditional GAN
» G » Generated Object

Object in Domain Y

Condition
Object in Domain X

Transform an object from one domain to another
without paired data

Domain X

ke NB ‘5
photos Vincent van Gogh’s
paintings

Use image style transfer as example here
More Applications in Parts Il and Il



Unsupervised
Conditional Generation

* Approach 1: Direct Transformation

Domain X

For texture or
color change

* Approach 2: Projection to Common Space

&-} ENy —>I—> DEy

Domain X Encoder of Face Decoder of
domain X Attribute domainyY

DomainY

Larger change, only keep the semantics



Doi X

S
i

»scalar

{on ] ’ Input image
belongs to
domain Y or not

DomainY



Doi X

S
5%

Direct Transformation

Become similar

todomainY

ignore input

»scalar

’ Input image
belongs to
domain Y or not

DomainY



Domain X

ni
T

Direct Transformation

Become similar

Domain X to domain Y

2

|y T & e |
- 53 5
» L pit 2 £ slLLL]
N = B 1
- : _: <ol M _|‘\ |
AT, T

ignore input

Dy »scalar

The issue can be avoided by network design.

Input image
Simpler generator makes the input and belongs to
output more closely related. domain Y or not

[Tomer Galanti, et al. ICLR, 2018]



Domain X

SuR £ o]
- . -

T L e ] I

a3 557 e i i

Dy m) scalar

. Encoder
<«— pre-trained —» '
Network Input image
as close as belongs to
possible ‘ domain Y or not
T « -~y

Baseline of DTN [yaniv Taigman, et al., ICLR, 2017]



[Jun-Yan Zhu, et al., ICCV, 2017]

Direct Transformation
— Cycle GAN

as close as possible

Cycle consistency

14 LR Py
< TR ,

Lack of information e
for reconstruction [

’ Input image
belongs to
domain Y or not

Domain Y



Direct Transformation

— Cycle GAN

as close as possible

scalar: belongs to
domain Y or not

scalar: belongs to«
domain X or not
«w»*

|
g 3 » GY—)X » j

as close as possible




For multiple domains,

considering starGAN
[Yunjey Choi, arXiv, 2017]

[Taeksoo Kim, et

Reconstruction error
s llv — Ga(Gr (v, 2" ), 2)|

uuuuu et Ztern
G P -
g X Y N A X | Y X v
CyCIe GAN l F l . ¥ £ ¥ cycle-consistency
D D cycle-consistency_. _____ \ *.\_. loss
X Y | loss | _»®
(a) | ®) ' @

[Jun-Yan Zhu, et al., ICCV, 2017]



Issue of Cycle Consistency

* CycleGAN: a Master of Steganography

[Casey Chu, et al., NIPS workshop, 2017]

The information is hidden.



Unsupervised
Conditional Generation

* Approach 1: Direct Transformation

For texture or
color change

Domain X

* Approach 2: Projection to Common Space

&-} ENy —>I—> DEy

Encoder of Face Decoder of Domain Y
domain X  Attribute domainY

Larger change, only keep the semantics



Projection to Common Space

Target

image

Domain X

Lo

Face
Attribute

Do

mainY

image




Projection to Common Space
Training

Minimizing reconstruction error

Domain X Do‘main Y



Projection to Common Space
Training

Minimizing reconstruction error

» image

Discriminator
of X domain

DE,

Lo

image » ENY ’

1 Minimizing reconstruction error

Discriminator
of Y domain

1

Because we train two auto-encoders separately ...

The images with the same attribute may not project
to the same position in the latent space.



Projection to Common Space
Training

iy sk
NIIERR JLHECRS

ENy
Sharing the parameters of encoders and decoders

Couple GAN{[Ming-u Liy, et al., NIPS, 2016]
UNIT[Ming-Yu Liu, et al., NIPS, 2017]



Projection to Common Space
Training

Minimizing reconstruction error

DEy ‘
W .-. EN ’ * DE . AN

Domain
Discriminator

Discriminator
of X domain

0,

Discriminator
of Y domain

ENy and ENy fool the
domain discriminator

=» From ENy or ENy

The domain discriminator forces the output of ENy and
ENY have the same distribution. [Guillaume Lample, et al., NIPS, 2017]



Projection to Common Space
Training

Minimizing reconstruction error

Discriminator
of X domain

DE

DE,

0,

Discriminator
of Y domain

Cycle Consistency:

Used in ComboGAN [Asha Anoosheh, et al., arXiv, 017]



Projection to Common Space
Training

To the same
latent space

Discriminator
of X domain

' DEX » image »DX

image *EM DEY image »DY
T \ Discriminator

of Y domain

Semantic Consistency:

Used in DTN [vaniv Taigman, et al., ICLR, 2017] ahd
XGAN [Amélie Royer, et al., arXiv, 2017]
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Basic Components

@ You cannot control
g A
rd 1 r N

Video Get 20 scores when
Game killing a monster
The rule
Go

of GO




Neural network as Actor

* Input of neural network: the observation of machine
represented as a vector or a matrix

e Output neural network : each action corresponds to a
neuron in output layer

Take the action

NN as actor based on the

\

Ll eft 07 probability.

* » » T right 0.2\ Score of an
: action
4+ fire 0.1

pixels )




Actor, Environment, Reward

Trajectory

T = {Sl' aq,S2,A2,***, ST, aT}



Reinforcement Learning v.s. GAN

S1 aq So a,

\ \
\ \
S1 aq 52 ap S3
> “Black box”
} | You cannot use
g1 T backpropagation.

Actor — Generator Fixed R(l) zT: t
T) = T't
t=1

Reward Function — Discriminator



Imitation Learning

S1 aq So a-,
e (e

v ¥ v
S1 aq So a, S3

reward function is not available

o We have demonstration of the expert.
Self driving: record

human drivers - N |
. . X Each 7 is a trajectory
Robot: grab the {t1, 10, , Ty} of the expert.

arm of robot N



Inverse Reinforcement Learning

demonstration

of the expert

Environment e

. {flrfzr"'rfN}
¥/
Reward '
- * Relnforce.ment ‘
Function Learning

L » Using the reward function to find the optimal actor.

» Modeling reward can be easier. Simple reward
function can lead to complex policy.




The expert is always
the best.

N N
z R(%,) > z R(T)
n=1 n=1

&/
» (2,85, tn} — Obtain
— I-» Reward Function R

Reward
Actor {t4,7T0,, TN} Function R

\

Find an actor based
4 0N reward function R

Framework of IRL

— Generator

Reward function

— Discriminator _ ,
By Reinforcement learning



High score for real,
low score for generated

\/
D

\

Find a G whose output
obtains large score from D

Larger reward for 7,,,
Lower rewa rd fort

Reward
Functlon

Find a Actor obtains

—
Actor large reward
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Text Style Transfer

Not Paired

It is good. It is bad.
It’s a good day. < > It’s a bad day.
| love you. | don’t love you.

positive negative



Cycle GAN

as close as possible

scalar: belongs to scalar: belongs to
domain X or not - domain Y or not
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as close as possible




Cycle GAN

as close as possible

1

It is bad.

negative

| love you.

positive

1

» GX—>Y -

g Ov-x g

It is good.

pomﬂve

| hate you.

negative

g Ov-x Lag

It is bad.

negative

negative sentence? «E‘ E positive sentence?

» GX—>Y »

| love you.
positive

as close as possible

1




Discrete Issue

Seq2seq model
hidden layer

with discrete output
It is bad.

negative

- It is good.

poanve

E positive sentence?
large network
Backpropagation 9‘




Three Categories of Solutions

’ Gumbel-softmax

\J
e [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

I

e [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMINLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,

2017]

“Reinforcement Learning”

N

* [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William

Fedus, et al., ICLR, 2018]




Cycle GAN

Discrete?

Word embedding

[Lee, et al.,

as close as possible

ICASSP, 2018]
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negative sentence? «E‘ E positive sentence?
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Thinks Yau-Shian Wang for providing the results.

Cycle GAN

- Negative sentence to positive sentence:
it's a crappy day — it's a great day
| wish you could be here - you could be here
it's not a good idea — it's good idea
| miss you — | love you
| don't love you — i love you
| can't do that — | can do that
| feel so sad — | happy
it's a bad day — it's a good day
it's a dummy day — it's a great day
sorry for doing such a horrible thing — thanks for doing a
great thing
my doggy is sick - my doggy is my doggy
my little doggy is sick — my little doggy is my little doggy
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Cycle GAN @ o~

Negative sentence to positive sentence:

B, IR, SHEANET AR > A HPDREE BERE , fEARET AR
FAMEE BT 17, EAERY! -> FAMEREE 17, HANHY !

$TT 17805 ~ SR ENE SRR > IBIge ~, IZBEE ~ 5=
2 FIRIE

B TRAVES > AL TREES
BB T, SEZHUERA HEEK T > BB T, B OHYERA tHEh



Projection to Common Space

Decoder hidden layer as discriminator input

[Shen, et al., NIPS, 2017]

Positive
Sentence » ENy ’

Negative » EN, ’

Sentence

ENy and ENy fool the
domain discriminator

[Zhao, et al., ICML 2018]
[Fu, et al., AAAI, 2018]

/ Discriminator
of X domain

Positive
DE »
X Sentence D X

o
) DE,

Negative » D
Y

Sentence
Discriminator
of Y domain

Domain

Discriminator oM ENy or ENy



Unsupervised
Conditional Generation

Image Style Transfer

Not Paired

)

Vincent van Gogh'’s

paintings
Text Style Transfer

Not Paired
document |. é summary

This is unsupervised abstractive summarization.




Abstractive Summarization

* Now machine can do abstractive summary by
seg2seq (write summaries in its own words)

summary 1

N summary 2

summary |
(in its own words) w i Bl summary 3
seqg2seq “ A
Supervised: We need lots of Training Data

labelled training data.



Unsupervised Abstractive
Summarization

* Now machine can do abstractive summary by
seg2seq (write summaries in its own words)

summary 1 D
e
summary 2 H e
7 \ l( S G TuvE s
= B :
o AN o
seq2seq —

Domain X Domain Y




Unsupervised Abstractive Summarization

Human written summaries » 1.,.@ » Real or not
EF Discriminator
& mm‘%.

word
seguence

EraB—

Seqg2seq

document



Unsupervised Abstractive Summarization

Human written summaries » %Q » Real or not

n Et Discriminator

Il

word

document sequence document
|r 5 . 2 |r
E"? o | g
4 I ‘ J I 4. ry
Seqg2seq Seqg2seq

minimize the reconstruction error




Unsupervised Abstractive >
Summarization Only need a lot &=

of documents to #
train the model &—2#

This is a seq2seq2seq auto-encoder.

Using a sequence of words as latent representation.

not readable ...

word
document sequence document




Unsupervised Abstractive
Summarization REINFORCE algorithm to

deal with the discrete issue

» %g » Real or not
ﬂ E '% Discriminator

Human written summaries

Let Discriminator considers
my output as real

I

document sequence document
wb} Summary? ,% .

Seq2seq SquSeq



Experimental results

English Gigaword (Document title as summary)

Supervised 33.2 14.2 30.5
Trivial 21.9 7.7 20.5

Unsupervised
(matched data)

Unsupervised
(no matched data)

28.1 10.0 25.4

27.2 9.1 24.1

 Matched data: using the title of English Gigaword to train
Discriminator

* No matched data: using the title of CNN/Diary Mail to
train Discriminator



Using
matched data

Semi-supervised Learning

34
33
32
31
30
29
28
27

26 unsupervised
25

ROUGE-1

\ semi-supervised

0 10k 500k
Number of document-summary pairs used

--\WGAN -®-Reinforce —Supervised

e e N~

Approaches to deal with the discrete issue. 3.8M pairs are used.



Summarization

* Document:;FA K Fl| oK Bl
& e, 5 L1058

* Summary:.

 Human: B A Kl goEid13
* Unsupervised:}t

=gl

. Bl FEE RIS E R R
Unsupervised Abstractive

& [ LB M hess
WK o 5RES B st < Y MY EE g &

113 A BH 5 7 J/ [z SALEE TS
YN SE i A A T TR

* Document: " 2 (BRI PRI se e B 87 > KBE]— L4
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* Summary:

K, EH R 3

Jﬁt A AR E & A RIS

FIERS4E Hanik

N ans

* Human:— UL = F L FREG ARSI
* Unsupervised: B Z & B L B & R 1Y

e RN A
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Unsupervised Abstractive

Summa

rization

* Document: {5 [E I AG 27 H ¥, Bl e 7Y a R TE AL
H A e AT H A e g bl LI 2 B B 20 7, 226 H f b
£/PEA60 AFEAE,10025 AKHE ...

* Summary:

e Human:EIE7K £ %R 60 AFET™

* Unsupervised:EJJE 1 7/KZ EE2URM

—a

* Document: 25 e S AE T BT Ry ST N BRI 1R

LR, N BRI TE ~ AR ...

TE R E
* Summary:.
* Human:

EACHE SRR A S E e i
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Unsupervised
Conditional Generation

Image Style Transfer

Not Paired

)

photos Vincent van Gogh'’s
paintings

Speech Style Transfer

PO TR TRV T Not Paired
a:;# SETTTRG > MMM

TPV WWWMM

Speaker A Speaker B

This is unsupervised voice conversion.




Voice Conversion




Voice Conversion

* The same sentence has different impact when it is said by
different people.

Do you want to
study a PhD?

@
Student

Do you want to

et el »  study a PhD?
(Aragaki Yui) e

(o
‘J% Student




In the past

Speaker A Speaker B

How are you? e M%«WW How are you?
Good morning N g WWMHM\N‘ Good morning

With GAN  Speaker A Speaker B

AREY %«WW How are you?
B RE WW‘WWMN Good morning

Speakers A and B are talking about completely different things.




Cycle GAN

as close as possible

scalar: belongs to scalar: belongs to
domain X or not - domain Y or not

. " » Gyox » j‘ »

as close as possible




X: Speaker A, Y: Speaker B

CyC ‘ e GA N [Takuhiro Kaneko, et. al, arXiv,
2017][Fuming Fang, et. al, ICASSP,

fOI" Voice Conversion 2018][Yang Gao, et. al, ICASSP, 2018]

as close as possible

-MW-» ««»»MW

scalar: belongs to
domain Y or not

S ectrogram

Hi

scalar: belongs to

as close as possible 1




Projection to Common Space

EN, 7o
EN, Le




Projection to Common Space

Encoder

e All the speakers share the
same encoder.

* The model can deal with the
speakers never seen during training.



Projection to Common Space

Use a vector (one-hot) to All the speakers also share
represent speaker identity. the same decoder.

Encoder

Decoder

The encoder fools the
discriminator.

Discriminator = \Which speakers?

We hope that encoder can extract the phonetic information while
removing the speaker information.



Projection to Common Space

Training phonetic information Which

Mm—’ Encoder —*

How are you?
A

\\\

Discriminator —»

g

speakers?

a@a o
O

A

Decoder —» MW

reconstructed

]

Testing

B Hello

—> Encoder —

A is reading the

\sentence of B

Decoder —» W&WW
Ao/

Hello



5, M«WW—» Encoder

How are you?

20 1

10 1

-10 4

-20 4

-30 4

Different colors:
different words

Which

Discriminator —
speakers?

\
\,‘ Does it contain phonetic

information?

-20 1

-40 4

~60 -

Different colors:
different speakers
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Issues

Training : Which

Discriminator —
speakers?
WWWﬁ Encoder —
How are you? “
“, Decoder —s MW

« e A ~ reconstructed
The Same Speakers * A ©
. Low Quality
Testing N

A is reading the

% — Encoder —» sentence of B
B Hello \ o
. Decoder — MWWW
i@a ‘/

Hello

P
Different Speakers «
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2nd Stage Training

Cheat discriminator
Help speaker classifier

—> Encoder —
Hello \

& A

B ‘
Decoder —» MM H m
‘/ Hello
T e — @ .t
------ A No learning

Different Spea kers'

target???

\ 4

o real or generated? «——— Discriminator
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[Chou et al., INTERSPEECH, 2018]

Experimental Results

e Subjective evaluations(20 speakers in VCTK)

0.455 0.435

Naturalness Similarity Naturalness Similarity

B “Two stages” is better B “Projection” is better
B “One stage” is better B “Cycle GAN” is better

Indistinguishable Indistinguishable




Demo

Ais reading the
MW%M*M — Encoder — sentence of B

B Hello
Source Speaker Decoder —
Target =1 @ /
Speaker O

Source: .
Target: .
Source to Target: B

Thanks Ju-chieh Chou for providing the results.
https://jjery2243542.github.io/voice_conversion_demo/



Target Speaker I:I

Source Speaker Source to Target
(Never seen during training!)

(] e <]
EII\/Ie EI

Thanks Ju-chieh Chou for providing the results.
https://jjery2243542.github.io/voice_conversion_demo/



Unsupervised
Conditional Generation

. Not Paired ) (PN YOO OV Not Paired |
It is good. Itis bad. R %*M MM 4
It’s a good day. <:> It’s a bad day. . 4 <:> T PN PV IO
| love you. | don’t love you. %-W%— TS TRYS WWW
positive negative Speaker A Speaker B
Audio

PN VI VRVOY TV Not Paired

MMW! A Mvw * ‘uw*
%mﬂwnq»m. ke < > || Text

This is unsupervised speech recognition.




https://devopedia.org/images/article/102/9180.1532710057.png

Supervised Speech Recognition

Loud and clear
Speech-recognition word-error rate, selected benchmarks, % Log scale
100

Switchboard — Switchboard cellular

O—0 Meeting speech

Broadcast

speech IBM, Switchboard

The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems

T I I T T T I T T T T T I T I T I T T I

1993 96 98 2000 02 04 06 08 10 12 14 16

Sources: Microsoft; research papers

(I believe you have seen similar figures before.)

* Supervised learning needs lots of annotated speech.
 However, most of the languages are low resourced.



http://www.parenting.com/article/teach-baby-to-talk

Speech Recognition in the Future

Whete're vo,,, "
: 12K ™ O
& auisny x_,_’ean €55

Learning human language with
very little supervision



[Liu, et al., INTERSPEECH, 2018]
[Chen, et al., arXiv, 2018]

Unsupervised Speech Recognition

* Machine learns to recognize speech from unparallel
speech and text.

Q A o } ?/ ,’: “\‘ |
audio collection ot o

(without text annotation) (not parallel to audio)

This idea was too crazy to be realized in the past.
However, it becomes possible with GAN recently.



Acoustic Token Discovery

Acoustic tokens can be discovered from audio collection
without text annotation.

Acoustic tokens: chunks of acoustically similar audio segments

with token IDs [Zhang & Glass, ASRU 09]
[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]



Acoustic Token Discovery

! Token 3  Token 2 Token 1
Token 2 Token 3 Token 1

Token 1 Tokeﬁ 3

Acoustic tokens can be discovered from audio collection
without text annotation.

Acoustic tokens: chunks of acoustically similar audio segments

with token IDs [Zhang & Glass, ASRU 09]
[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]



[Wang, et al., ICASSP, 2018]

Acoustic Token Discovery

Z

]

Phonetic-level acoustic tokens are obtained by
segmental sequence-to-sequence autoencoder.




Unsupervised Speech Recognition

bl P, P, Ps3 AY LAHV Y UW

GUHD BAY

L P; P P, m—)
HH AW AAR Y UW
g Y P1 P3 Ps Ps _

AY M FAY N
~wil-owdomp o, p, o p, | Cvele
1 5 3
GAN TAY W AA N
Phone-level Acoustic Phoneme sequences

Pattern Discovery from Text

[Liu, et al., INTERSPEECH,
2018]

[Chen, et al., arXiv, 2018]




Matched
Approaches (all 4000) 000/1000)

FER | PER | FER | PER
(I) Supervised (labeled)

(a) RNN Transducer |23] - 17.7 - -
(b) standard HMMs - 21.5 - -
(¢) Phoneme classifier 27.0 | 28.9 - -

(IT) Unsupervised (with oracle boundaries)

(d) Relationship mapping GAN [22] | 40.5 | 40.2 | 43.6 | 434

(e) Segmental Emperical-ODM [23] | 33.3 | 32.5 | 40.0 | 40.1

(f) Proposed: GAN 27.6 | 285 | 327 | 343

(ITT) Completely unsupervised (no label at all)

(g) Segmental Emperical-ODM [23] - 36.5 - 41.6

eration 1 (h) GAN 48.3 | 48.6 | 50.3 | 50.0

= (1) GAN/HMM - 30.7 - 39.5

é teration 2 (1) GAN 41.0 | 41.0 | 443 | 443

S (k) GAN/HMM - 27.0 - 35.5

Rl toration 3 (1) GAN 39.7 | 384 | 45.0 [ 4472
(m) GANHMM | - [ 260 | - | 33.]




Accuracy

35
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TRAPs lattice rese.  AUBITL
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v The progress of supervised learning TN -

MLP/ CRF

Unsupervised learning today (2019) is as good as
supervised learning 30 years ago.

Deep B elief|
Metworks |

Eoltzmann
Machines

| *  Milestones in phone recognition aceuracy using the TIMIT database

| [ | | [ | | | |

1330

1992 1994 1994 1993 2000 2002 2004 2004 2008
Date (22 vears)

The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigao, F., 2011.
Speech Technologies, Vol 1, pp. 285--302.

2010

2012



Concluding Remarks

Part |I: General Introduction of Generative
Adversarial Network (GAN)

Part II: Applications to Natural Language
Processing
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To Learn More ...

You can learn more from the YouTube Channel
https://www.youtube.com/playlist?list=PLIV_el3uVTsMd2G9ZjcpJn1YfnMIwVOBf

(in Mandarin)



