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Reinforcement Learning Approach

Value-based RL
o Estimate the optlmal value function Q (8 (I)

Q (8 a) is maximum value achievable under any pollcy

Policy-based RL
o Search directly for optimal policy 7T

7" is the policy achieving maximum future reward

Model-based RL
cBuild a model of the environment
o Plan (e.g. by lookahead) using model



RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor




Policy-Based Approach

LEARNING AN ACTOR




Policy

A policy is the agent’s behavior

A policy maps from state to action
> Deterministic policy: a = 7T(S)
> Stochastic policy: w(a) = P(a | s)




Policy Networks

Represent policy by a network with parameters

a=m(a|s,0) a=m(s0)

stochastic policy deterministic policy

Objective is to maximize total discounted reward by SGD

O0) =E[r1 +yre +y°rs+ - | w(-,0)]



On-Policy v.s. Off-Policy

On-policy: The agent learned and the agent interacting with
the environment is the same

Off-policy: The agent learned and the agent interacting with
the environment is different




Goodness of Actor

An episode is considered as a trajectory T

°© T = {Sl,GJl?T‘l,SQ,CLQ,TQ, tre ,ST,CLT,TT}

°Reward: R(7) =S, ' 'r,

P(r|0) =

p(s1)p(ar | s1,0)p(r1,s2 | s1,a1)p(az | s2,0)p(ra, s3 | s2,a2) -

T

= p(s1) Hp(at | st,0)p(Te, Set1 | ¢, at)

o

not related to your actor

control by your actor

Actor
St » 7T9

left
— 0.1

right
— (.2

fire
— 0.7

pla; = fire | s¢,0) = 0.7



Goodness of Actor

An episode is considered as a trajectory T
° T =1{81,a1,71,82,02,72, "+ ,ST,4T,TT}
o . _ T t—1

Reward: R(7)=>,_, " 'r

We define R(6) as the expected value of reward
o |f you use an actor to play game, each 1 has P(T|8) to be sampled

R(6) = ZR P(r|0)~ ZR

* Use 1y to play the game N times, obtain {t!,72,---, 7"}
* Sampling T from P(7|0) N times

sum over all possible trajectory




Deep Policy Networks

Represent policy by deep network with weights

Objective is to maximize total discounted reward by SGD

R(O) = E|r1 +yra + 5+« | (-, 0)]

Update the model parameters iteratively

6" = arg max R(6)

0"+ 6+ nVR()



Policy Gradient R(0) = >, R(7)P(7 | 0)

Gradient assent to maximize the expected reward VP( | 0)
VR(0) = 3 R@VP(r|0) = 3 RTIP(r|6) Per 1)

do not have to be differentiable
can even be a black box

—ZR P(t | 0)Vlog P(T | 0)

dlog f(x) _ 1_df
dx f(z) dx

use 1y to play the game N times, obtain {t}, %, -, "V}

N
]‘ n n
~~ D R(r)Viog P(r" | 6)

n=1



Policy Gradient Vlog P(r | 0)

An episode trajectory 7' = {s1,a1,71, 82,092,720, , ST,a7,TT}
P(t]0) = p(s1) H (at | s¢,0)p(Te, St41 | 8¢, at)
log P(7 | 0)
T
— logp(sl) Zlogp(a’t ‘ St 9) + logp(rta St+1 | St a’t)
t=1

T
V log P(T ] 9) — Z V]ng(at | S¢, 9) iriT;creedtrotherms not
t=1



Policy Gradient

Gradient assent for iteratively updating the parameters
0" < 60 +nVR(H)

N
VR(6) ~ % Z R(t™)V log P(r" | 6)

N T
= ZZVIOgP(a? | 515 0)

n=1t=1
n : n : n
°|f T machine takes a; when seeing s;

R(™) >0 ‘ Tuning @ to increase p(ay | s}')
R(T”) <0 ‘ Tuning 0 to decreasep(a? | 8?)

—

Important: use cumulative reward R(z™) of the whole trajectory t™

- instead of immediate reward r/* “



Policy Gradient

Given actor parameter 6
i (sf,ap)  R(TY) 7% (sf,af)  R(7%)
(s3.a3) R(T") (s3.a3) R(T?)
data collection model update

0 «— 0 +nVR(0)

1 N T,
R(0) =+ D_ > R(")Viogp(a; | s}',6)

n=1 t=1

—




0 «— 0 +nVR(6

)
;| NI
FZZR )Vlogp(ay | si',0)

Implementation s
Treat it as a classification problem
> left 1 a
n : » fire <« 0
St
1 N T, 1 N T,
=303 logp(af | 57) ) > > Viegp(d | )

—
S
I
'—l
~
I
[—l

n t

1 TF, PyTorch ...
N

1
N 2 2 R logp(al | 5})

n t=1

.

ME
M'ﬂ

R(T )Vlogp(ay' | si)

H

t=1

3
I
=



Improvement: Adding Baseline

VR(0) = (R(r")C D)V logp(a} | s7',0)
it is probability
Ideally - I I
not
sampled
Sampling -

Issue: the probability of the actions not sampled will decrease




Actor-Critic Approach

LEARNING AN ACTOR & A CRITIC

- 0000000000000 0000000000000




Actor-Critic (Value-Based + Policy-Based)

Estimate value function Q™ (s, a), V™(s)

Update policy based on the value function evaluation

m'(s) = argmax Q™ (s, a)
a

7T interacts with

the environment

1T is a actual function that
maximizes the value

may works for continuous action mT=T TD or MC

Update actor from :
m — 1 based on - Learnln%
0™ (s,a), V*(s) Q™(s,a),V™(s)




T interacts with
the environment
T=m TD or MC
_ 11 Update actor Learning
Advantage Actor-Critic
Learning the policy (actor) using the value evaluated by critic

0™ +— 0™ + nVR(H™)

N T
1 mn
VR(OT) = N E E Vlogp(a,? | 53, 07) baseline is added

n=1 t=1

evaluated by critic

Advantage function: 73" — (V™ (s') — V™ (s} ,))

the reward r* we truly obtain expected reward 7{* we obtain
when taking action al’ if we use actor 7t

o Positive advantage function <> increasing the prob. of action af*
> Negative advantage function <= decreasing the prob. of action a}'



Advantage Actor-Critic

Tips
°The parameters of actor m(s) and critic V™(s) can be shared

—> |eft

—» right

—» fire

I

Network —V7™(s)

oUse output entropy as regularization for (s)
olLarger entropy is preferred — exploration



Asynchronous Advantage Actor-Critic (A3C)

Async hronous Global Network
. A1 +nAd
1. Copy global parameters Policy ris) | V(o) |
2. Sampling some data
] Network
3. Compute gradients
4. Update global models AO 'nput(s)u
(other workers also update models) 91
w o = o
AD @ : B —
Worker 1 Worker 2 Worker 3 Worker n
} } } }
Environment 1 Environment 2 Environment3 ... Environmentn

Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” in JMLR, 2016.



Pathwise Derivative Policy Gradient

Original actor-critic tells that a given action is good or bad

Pathwise derivative policy gradient tells that which action is
good




Pathwise Derivative Policy Gradient

7'(s) = argmax Q™ (s, a) 4@ an actor’s output
a

Gradient ascent: Fixed

0™ «— 0™ + nVR(H™)
T — 7
QW _'QW(Sa CL)
i— Actor —» (1 a —>
T

N J
Y

This is a large network

Silver et al., “Deterministic Policy Gradient Algorithms”, ICML, 2014.

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning”, ICLR, 2016.



Deep Deterministic Policy Gradient (DDPG)

jos
o Critic estimates value the environment - Buffer
of current policy by add noise
DQN —> exploration
°Act0r updates policy EEICE % Learnlng l

improves Q

Critic provides loss : 97r — 97 + nVR(H”)
function for actor

T — 7

Actor —» @ —::
s T i




DDPG Algorithm

Initialize critic network 89 and actor network 87

Initialize target critic network 62" = 9? and target actor network o = g™
Initialize replay buffer R

In each iteration

> Use (s) + noise to interact with the environment, collect a set of
{st,as, 11, St41}, put them in R

> Sample N examples {s,, a,, 73, Sp+1} from R
> Update critic Q to minimize Y _(9n, — Q(Sn, an))
Un = Tn + Q'(Sn+1, ™ (Sn+1)) using target networks

2

> Update actor 7 to maximize . Q(Sp, 7(sy,))
> Update target networks: qu’ — mh™ + (1 . m)@vr’ the target networks

09" — me? + (1— m)QQI update slower

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels
o Input: state is stack of raw pixels from last 4 frames
o Qutput: two separate CNNs for Qand

32 4t fikers 256 hidden units

16 BxB filers

4xB4xB4 Q( s.a)
m [T 0
Stack of 4 previous Fully-connecte d layer
frames Cenvalutional layer Convelutional layer of rectified linear units
of rectified linear units of rectified linear units
32 4x4 filkers 256 hidden units Fully-connected linear
output layer
16 BxB filters
4xB4xBA JT(S)

A

—

Stack of 4 previous Fully-connecte d layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear unics of rectified linear units.

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



Concluding Remarks

RL is a general purpose framework for decision making
under interactions between agent and environment

Policy gradient
o|earns a policy that maps from state to action

Actor-critic
o estimates value function Q™ (s,a), V™ (s)
o updates policy based on the value function evaluation



