

Slides credited from Dr. David Silver & Hung-Yi Lee

Reinforcement Learning Approach

- Value-based RL
- \circ Estimate the optimal value function $\,Q^*(s,a)\,$

 $Q^{\ast}(s,a)\,$ is maximum value achievable under any policy

Policy-based RL

 $_\circ$ Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

RL Agent Taxonomy

Policy-Based Approach

LEARNING AN ACTOR

Policy

A policy is the agent's behavior

A policy maps from state to action

- $\,{}^{\scriptscriptstyle o}\, {\rm Deterministic}$ policy: $a=\pi(s)$
- \circ Stochastic policy: $\pi(a) = P(a \mid s)$

Policy Networks

Represent policy by a network with parameters $\, heta$

$$a = \pi(a \mid s, \theta)$$
 $a = \pi(s, \theta)$

stochastic policy

deterministic policy

Objective is to maximize total discounted reward by SGD

$$O(\theta) = \mathbf{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \theta)]$$

On-Policy v.s. Off-Policy

On-policy: The agent learned and the agent interacting with the environment is the same

Off-policy: The agent learned and the agent interacting with the environment is different

Goodness of Actor

An episode is considered as a trajectory τ • $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$ • Reward: $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$ $P(\tau \mid \theta) =$ $p(s_1)p(a_1 \mid s_1, \theta)p(r_1, s_2 \mid s_1, a_1)p(a_2 \mid s_2, \theta)p(r_2, s_3 \mid s_2, a_2)\cdots$ 'I'left → 0.1 $= p(s_1) \prod p(a_t \mid s_t, \theta) p(r_t, s_{t+1} \mid s_t, a_t)$ Actor right t=1 S_{t} **→** 0.2 fire control by your actor not related to your actor $p(a_t = \text{fire} \mid s_t, \theta) = 0.7$

Goodness of Actor

An episode is considered as a trajectory au

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

• Reward:
$$R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$$

We define $\mathcal{R}(\theta)$ as the *expected value* of reward

 \circ If you use an actor to play game, each τ has $P(\tau|\theta)$ to be sampled

$$\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

• Use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

• Sampling τ from $P(\tau|\theta)$ N times

sum over all possible trajectory

Deep Policy Networks

Represent policy by deep network with weights Objective is to maximize total discounted reward by SGD $\mathcal{R}(\theta) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots \mid \pi(\cdot, \theta)\right]$

Update the model parameters iteratively

$$\theta^* = \arg \max_{\theta} \mathcal{R}(\theta)$$
$$\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$$

Policy Gradient $\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta)$

Gradient assent to maximize the expected reward

$$\nabla \mathcal{R}(\theta) = \sum_{\tau} R(\tau) \nabla P(\tau \mid \theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \frac{\nabla P(\tau \mid \theta)}{P(\tau \mid \theta)}$$
do not have to be differentiable
can even be a black box

$$= \sum_{\tau} R(\tau) P(\tau \mid \theta) \nabla \log P(\tau \mid \theta) \frac{d \log f(x)}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$
use π_{θ} to play the game N times, obtain $\{\tau^{1}, \tau^{2}, \cdots, \tau^{N}\}$
 $\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P(\tau^{n} \mid \theta)$

Policy Gradient
$$\nabla \log P(\tau \mid \theta)$$

An episode trajectory $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 $P(\tau \mid \theta) = p(s_1) \prod_{t=1}^{T} p(a_t \mid s_t, \theta) p(r_t, s_{t+1} \mid s_t, a_t)$
 $\log P(\tau \mid \theta)$
 $= \log p(s_1) \sum_{t=1}^{T} \log p(a_t \mid s_t, \theta) + \log p(r_t, s_{t+1} \mid s_t, a_t)$
 $\nabla \log P(\tau \mid \theta) = \sum_{t=1}^{T} \nabla \log p(a_t \mid s_t, \theta)$ ignore the terms not related to θ

Policy Gradient

Gradient assent for iteratively updating the parameters $\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$ $\nabla \mathcal{R}(\theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n \mid \theta)$ n=1 $= \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta)$ \circ If τ^n machine takes a_t^n when seeing s_t^n $R(\tau^n) > 0$ **multiply** Tuning θ to increase $p(a_t^n \mid s_t^n)$ $R(\tau^n) < 0$ **multiply** Tuning θ to decrease $p(a_t^n \mid s_t^n)$

Important: use *cumulative* reward $R(\tau^n)$ of the whole trajectory τ^n instead of *immediate* reward r_t^n

Policy Gradient

$$\begin{array}{l} \theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta) \\ \nabla \mathcal{R}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta) \end{array}$$

Treat it as a classification problem

Improvement: Adding Baseline

Actor-Critic Approach

LEARNING AN ACTOR & A CRITIC

Actor-Critic (Value-Based + Policy-Based)

Estimate value function $Q^{\pi}(s, a), V^{\pi}(s)$

Update policy based on the value function evaluation π

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$\pi \text{ interacts with the environment}$$

$$\pi \text{ is a actual function that maximizes the value}$$

$$\pi = \pi' \qquad \text{TD or MC}$$

$$\begin{array}{c} \text{Update actor from} \\ \pi \to \pi' \text{ based on} \\ Q^{\pi}(s, a), V^{\pi}(s) \end{array}$$

$$\pi \text{ interacts with the environment}$$

$$\pi = \pi' \qquad \text{TD or MC}$$
Advantage Actor-Critic Update actor Update actor Learning $V^{\pi}(s)$

Learning the policy (actor) using the value evaluated by critic

$$\begin{split} \theta^{\pi'} &\leftarrow \theta^{\pi} + \eta \nabla \mathcal{R}(\theta^{\pi}) \\ \nabla \mathcal{R}(\theta^{\pi}) &= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \mathcal{R}(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta^{\pi}) \text{ baseline is added} \\ &\text{evaluated by critic} \end{split}$$
Advantage function: $r_t^n - \left(V^{\pi}(s_t^n) - V^{\pi}(s_{t+1}^n)\right)$
the reward r_t^n we truly obtain expected reward r_t^n we obtain if we use actor π

- Positive advantage function \leftrightarrow increasing the prob. of action a_t^n
- Negative advantage function \leftrightarrow decreasing the prob. of action a_t^n

Advantage Actor-Critic

Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared

• Use output entropy as regularization for $\pi(s)$ • Larger entropy is preferred \rightarrow exploration

Asynchronous Advantage Actor-Critic (A3C)

Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning," in JMLR, 2016.

Pathwise Derivative Policy Gradient

Original actor-critic tells that a given action is good or bad Pathwise derivative policy gradient tells that which action is good

Pathwise Derivative Policy Gradient

$$\pi'(s) = rg\max_a Q^\pi(s,a)$$
 \blacklozenge an actor's output

Silver et al., "Deterministic Policy Gradient Algorithms", ICML, 2014. Lillicrap et al., "Continuous Control with Deep Reinforcement Learning", ICLR, 2016.

Deep Deterministic Policy Gradient (DDPG)

Lillicrap et al., "Continuous Control with Deep Reinforcement Learning," ICLR, 2016.

DDPG Algorithm

Initialize critic network θ^Q and actor network θ^π

Initialize target critic network $\theta^{Q'} = \theta^Q$ and target actor network $\theta^{\pi'} = \theta^{\pi}$ Initialize replay buffer R

In each iteration

- Use $\pi(s)$ + noise to interact with the environment, collect a set of $\{s_t, a_t, r_t, s_{t+1}\}$, put them in R
- Sample N examples $\{s_n, a_n, r_n, s_{n+1}\}$ from R
- \circ Update critic ${\it Q}$ to minimize $\sum_n (\hat{y}_n Q(s_n,a_n))^2$

 $\hat{y}_n = r_n + Q'(s_{n+1}, \pi'(s_{n+1}))$ using target networks

- \circ Update actor π to maximize $\sum_n Q(s_n,\pi(s_n))$
- $^{\circ}$ Update target networks: $\theta^{\pi'} \leftarrow m\theta^{\pi} + (1-m)\theta^{\pi'}$ the target networks $\theta^{Q'} \leftarrow m\theta^Q + (1-m)\theta^{Q'}$ update slower

DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels

- Input: state is stack of raw pixels from last 4 frames
- $^{\rm o}$ Output: two separate CNNs for Q and π

Concluding Remarks

RL is a general purpose framework for **decision making** under interactions between agent and environment

Policy gradient

learns a policy that maps from state to action

Actor-critic

- \circ estimates value function $Q^{\pi}(s, a), V^{\pi}(s)$
- $^{\circ}$ updates policy based on the value function evaluation π