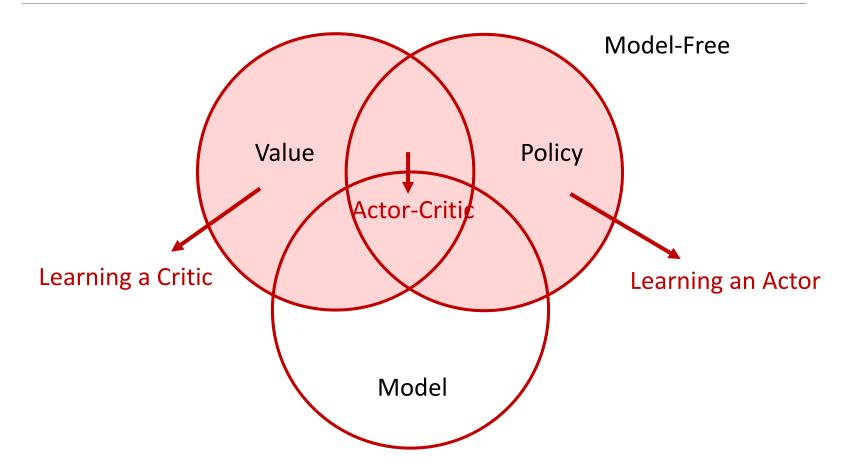


RL Agent Taxonomy



Model-Based

Agent's Representation of the Environment

Model

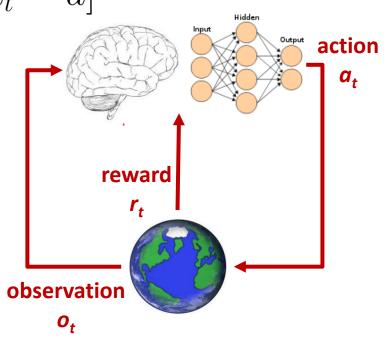
A model predicts what the environment will do next

• P predicts the next state

$$P_{ss'}^{a} = \mathbb{P}[s_{t+1} = s' \mid s_t = s, a_t = a]$$

• R predicts the next immediate reward

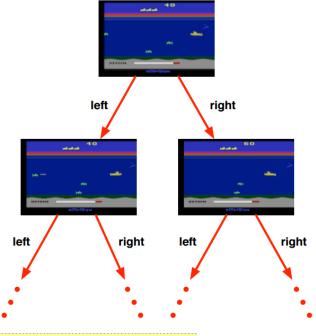
$$R_s^a = \mathbb{E}[r_{t+1} \mid s_t = s, a_t = a]$$



Goal: learn a transition model of the environment and plan based on the transition model

$$p(r, s' \mid s, a)$$

Objective is to maximize the measured goodness of model



Model-based deep RL is challenging, and so far has failed in Atari

Issues for Model-Based Deep RL

Compounding errors

Errors in the transition model compound over the trajectory

A long trajectory may result in totally wrong rewards

Deep networks of value/policy can "plan" implicitly

Each layer of network performs arbitrary computational step

• n-layer network can "lookahead" n steps

Model-Based Deep RL in Go

Monte-Carlo tree search (MCTS)

- MCTS simulates future trajectories
- Builds large lookahead search tree with millions of positions
- State-of-the-art Go programs use MCTS

Convolutional Networks

- 12-layer CNN trained to predict expert moves
 - Raw CNN (looking at 1 position, no search at all) equals performance of MoGo with 105 position search tree

1st strong Go program

7

Problems within RL

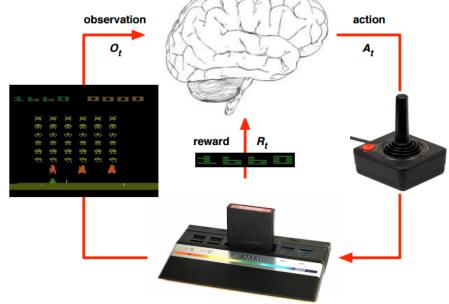
Learning and Planning

In sequential decision making

- Reinforcement learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning
 - A model of the environment is known
 - The agent performs computations with its model (w/o any external interaction)
 - The agent improves its policy (a.k.a. deliberation, reasoning, introspection, pondering, thought, search)

Atari Example: Reinforcement Learning

Rules of the game are unknown Learn directly from interactive game-play Pick actions on joystick, see pixels and scores

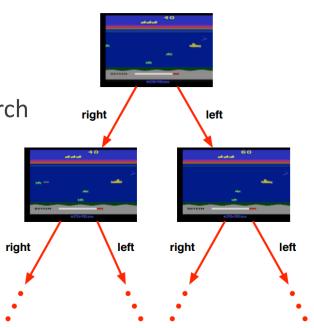


Atari Example: Planning

Rules of the game are known

Query emulator based on the perfect model inside agent's brain

- If I take action a from state s:
 - what would the next state be?
 - what would the score be?



Exploration and Exploitation

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from the experience without losing too much reward along the way

When to try?

Exploration finds more information about the environment

Exploitation exploits known information to maximize reward

It is usually important to explore as well as exploit

RL for Unsupervised Model: Modularizing Unsupervised Sense Embeddings (MUSE)

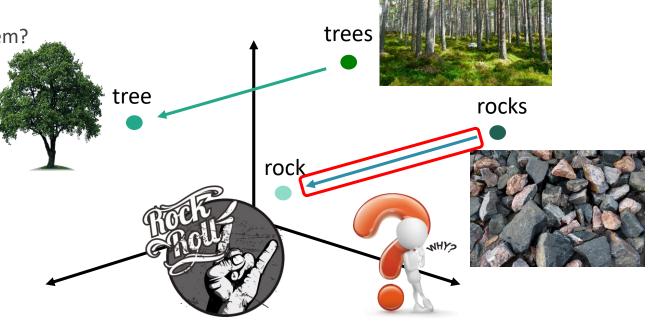
Word2Vec Polysemy Issue

Words are polysemy

- An apple a day, keeps the doctor away.
- Smartphone companies including apple, ...

If words are polysemy, are their embeddings polysemy?

- No Θ
- What's the problem?

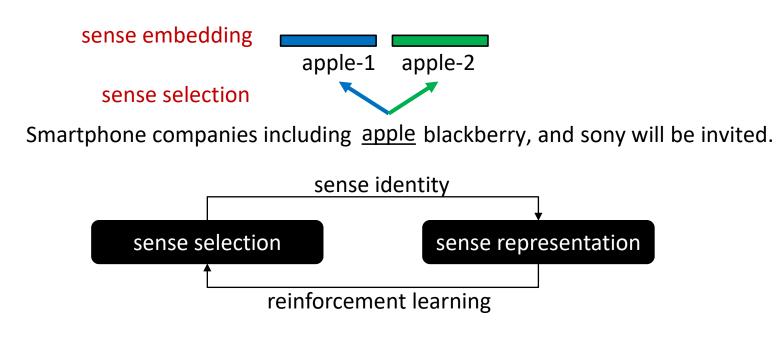


Modular Framework

Two key mechanisms

• Sense selection given a text context

• Sense representation to embed statistical characteristics of sense identity

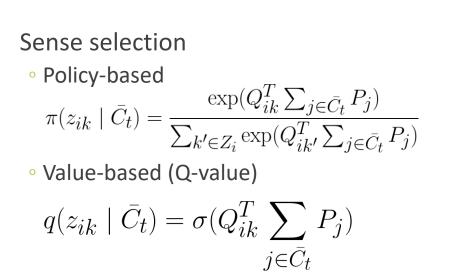


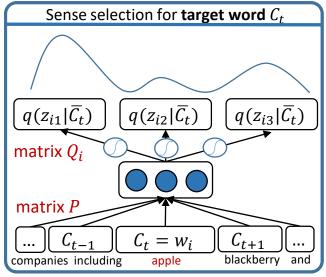
Sense Selection Module

Input: a text context $\overline{C}_t = [C_{t-m}, \dots, C_t = w_i, \dots, C_{t+m}]$

Output: the fitness for each sense z_{i1}, \ldots, z_{i3}

Model architecture: Continuous Bag-of-Words (CBOW) for efficiency





Sense Selection Module

Sense Representation Module

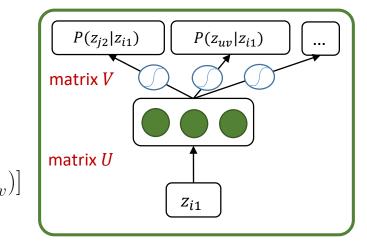
Input: sense collocation z_{ik} , z_{jl}

Output: collocation likelihood estimation

Model architecture: skip-gram architecture

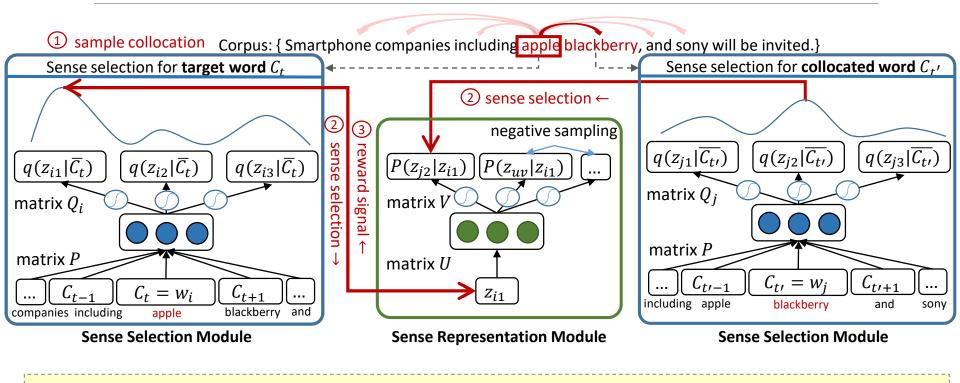
Sense representation learning

$$\log \bar{\mathcal{L}}(z_{jl} \mid z_{ik}) = \log \sigma(U_{z_{ik}}^T V_{z_{jl}}) + \sum_{v=1}^M \mathbb{E}_{z_{uv} \sim p_{neg}(z)} [\log \sigma(-U_{z_{ik}}^T V_{z_{uv}})]$$



Sense Representation Module

A Summary of MUSE



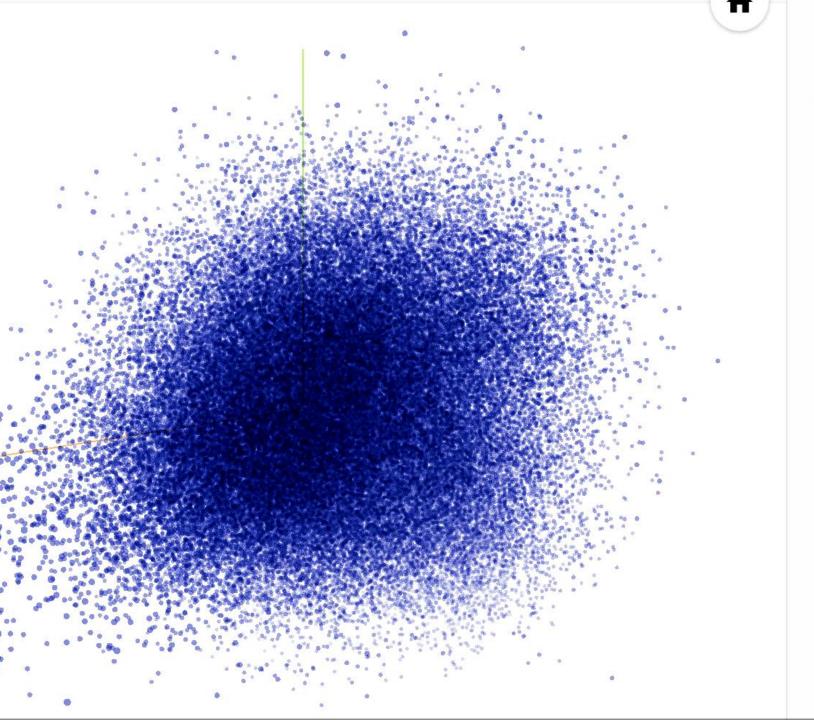
The first purely sense-level embedding learning with efficient sense selection.

Qualitative Analysis

Context	braves finish the season in tie with the los angeles dodgers	his later years proudly wore tie with the chinese characters for
k-NN	scoreless otl shootout 6- 6 hingis 3-3 7-7 0-0	pants trousers shirt juventus blazer socks anfield
Figure	ASTROS 8 NATIONALS	

Qualitative Analysis

Context	of the mulberry or the blackberry and minos sent him to	of the large number of blackberry users in the us federal
k-NN	cranberries maple vaccinium apricot apple	smartphones sap microsoft ipv6 smartphone
Figure		



Search

OpenAl Universe

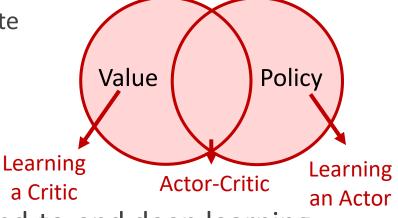
Software platform for measuring and training an Al's general intelligence via the <u>OpenAl gym</u> environment

Concluding Remarks

RL is a general purpose framework for **decision making** under interactions between agent and environment

An RL agent may include one or more of these components

- Value function: how good is each state and/or action
- Policy: agent's behavior function
- Model: agent's representation of the environment



RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = AI