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RL Agent Taxonomy
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Model-Based
Agent ’s Representation of the Environment
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A model predicts what the environment will do next
◦P predicts the next state

◦R predicts the next immediate reward



Model-Based Deep RL
Goal: learn a transition model of the environment and plan
based on the transition model
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Objective is to maximize the measured 
goodness of model

Model-based deep RL is challenging, and so far has failed in Atari



Issues for Model-Based Deep RL
Compounding errors
◦ Errors in the transition model compound over the trajectory

◦ A long trajectory may result in totally wrong rewards

Deep networks of value/policy can “plan” implicitly
◦ Each layer of network performs arbitrary computational step

◦ n-layer network can “lookahead” n steps
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Model-Based Deep RL in Go
Monte-Carlo tree search (MCTS)
◦ MCTS simulates future trajectories

◦ Builds large lookahead search tree with millions of positions

◦ State-of-the-art Go programs use MCTS

Convolutional Networks
◦ 12-layer CNN trained to predict expert moves

◦ Raw CNN (looking at 1 position, no search at all) equals performance 
of MoGo with 105 position search tree
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1st strong Go program

https://deepmind.com/alphago/
Silver, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, 2016.



Problems within RL
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Learning and Planning
In sequential decision making
◦ Reinforcement learning
• The environment is initially unknown

• The agent interacts with the environment

• The agent improves its policy

◦ Planning
• A model of the environment is known

• The agent performs computations with its model (w/o any external interaction)

• The agent improves its policy (a.k.a. deliberation, reasoning, introspection, 
pondering, thought, search)
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Atari Example: Reinforcement Learning
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Rules of the game are unknown

Learn directly from interactive game-play 

Pick actions on joystick, see pixels and scores



Atari Example: Planning
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Rules of the game are known

Query emulator based on the perfect model inside agent’s brain
◦ If I take action a from state s: 

• what would the next state be?

• what would the score be?

Plan ahead to find optimal policy e.g. tree search 



Exploration and Exploitation
Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from the 
experience without losing too much reward along the way

Exploration finds more information about the environment

Exploitation exploits known information to maximize reward
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When to try?

It is usually important to explore as well as exploit



RL for Unsupervised Model:
Modularizing Unsupervised Sense 
Embeddings (MUSE)
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Word2Vec Polysemy Issue
Words are polysemy
◦ An apple a day, keeps the doctor away. 

◦ Smartphone companies including apple, …

If words are polysemy, are their embeddings polysemy?
◦ No 

◦ What’s the problem?
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Smartphone companies including             blackberry, and sony will be invited.

Modular Framework
Two key mechanisms
◦ Sense selection given a text context

◦ Sense representation to embed statistical characteristics of sense identity
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Sense Selection Module
Input: a text context ഥ𝐶𝑡 = 𝐶𝑡−𝑚, … , 𝐶𝑡 = 𝑤𝑖 , … , 𝐶𝑡+𝑚

Output: the fitness for each sense 𝑧𝑖1, … , 𝑧𝑖3

Model architecture: Continuous Bag-of-Words (CBOW) for efficiency

Sense selection
◦ Policy-based

◦ Value-based (Q-value)
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Sense Selection Module

…𝐶𝑡 = 𝑤𝑖𝐶𝑡−1

𝑞(𝑧𝑖1| ഥ𝐶𝑡) 𝑞(𝑧𝑖2| ഥ𝐶𝑡) 𝑞(𝑧𝑖3| ഥ𝐶𝑡)

Sense selection for target word 𝐶𝑡

matrix 𝑄𝑖

matrix 𝑃

… 𝐶𝑡+1
including apple blackberrycompanies and



Sense Representation Module
Input: sense collocation 𝑧𝑖𝑘 , 𝑧𝑗𝑙

Output: collocation likelihood estimation

Model architecture: skip-gram architecture

Sense representation learning

17

𝑧𝑖1

Sense Representation Module

…𝑃(𝑧𝑗2|𝑧𝑖1) 𝑃(𝑧𝑢𝑣|𝑧𝑖1)

matrix 𝑈

matrix 𝑉



A Summary of MUSE

18

Corpus: { Smartphone companies including apple blackberry, and sony will be invited.}
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Sense selection for collocated word 𝐶𝑡′

Sense Selection Module

…𝐶𝑡′ = 𝑤𝑗𝐶𝑡′−1

𝑞(𝑧𝑗1|𝐶𝑡′) 𝑞(𝑧𝑗2|𝐶𝑡′) 𝑞(𝑧𝑗3|𝐶𝑡′)

matrix 𝑄𝑗

matrix 𝑃

… 𝐶𝑡′+1
apple andincluding sonyblackberry

𝑧𝑖1

Sense Representation Module

…𝑃(𝑧𝑗2|𝑧𝑖1) 𝑃(𝑧𝑢𝑣|𝑧𝑖1)

negative sampling

matrix 𝑉

matrix 𝑈

Sense Selection Module

…𝐶𝑡 = 𝑤𝑖𝐶𝑡−1

𝑞(𝑧𝑖1| ഥ𝐶𝑡) 𝑞(𝑧𝑖2| ഥ𝐶𝑡) 𝑞(𝑧𝑖3| ഥ𝐶𝑡)

Sense selection for target word 𝐶𝑡

matrix 𝑄𝑖

matrix 𝑃

… 𝐶𝑡+1
including apple blackberrycompanies and

The first purely sense-level embedding learning with efficient sense selection.



Context … braves finish the 
season in tie with the 
los angeles dodgers …

… his later years proudly 
wore tie with the chinese
characters for …

k-NN scoreless otl shootout 6-
6 hingis 3-3 7-7 0-0 

pants trousers shirt 
juventus blazer socks 
anfield

Figure

Qualitative Analysis
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Qualitative Analysis
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Context … of the mulberry or the 
blackberry and minos
sent him to …

… of the large number of 
blackberry users in the us 
federal …

k-NN cranberries maple 
vaccinium apricot apple

smartphones sap 
microsoft ipv6 
smartphone

Figure



Demonstration
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OpenAI Universe
Software platform for measuring and training an AI's general 
intelligence via the OpenAI gym environment
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https://universe.openai.com/
https://gym.openai.com/


Concluding Remarks
RL is a general purpose framework for decision making 
under interactions between agent and environment

An RL agent may include one or more of these components

RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = AI
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Value Policy

Learning 
a Critic Actor-Critic

Learning 
an Actor

◦ Value function: how good is each state 
and/or action

◦ Policy: agent’s behavior function

◦ Model: agent’s representation of the 
environment


