Basic Q-Learning Apr 16th, 2019

Applied Deep Learning YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW

Slides credited from Dr. David Silver & Hung-Yi Lee

2 8 i Ecan

SCORE

TIME

35 12.53 PM

.

LAP

SPEED

LO

Reinforcement Learning Approach

- Value-based RL
- \circ Estimate the optimal value function $\,Q^*(s,a)\,$

 $Q^{\ast}(s,a)\,$ is maximum value achievable under any policy

Policy-based RL

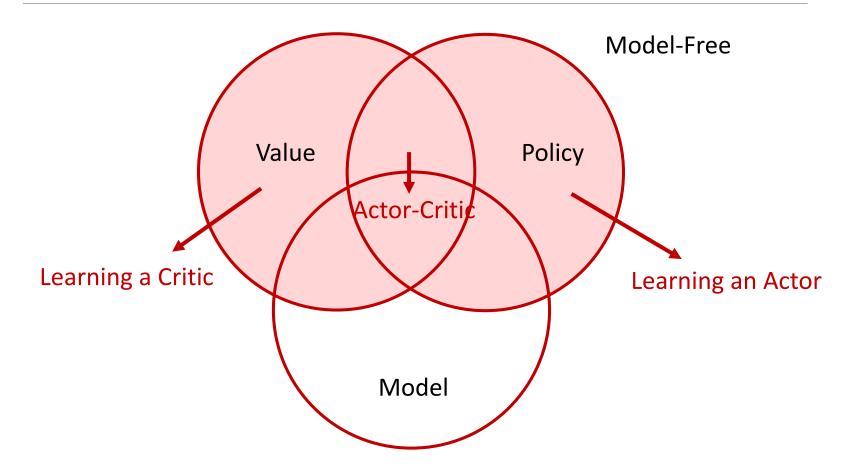
 \circ Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

RL Agent Taxonomy



Value-Based Approach

LEARNING A CRITIC

Value Function

A value function is a prediction of future reward (with action *a* in state *s*)

Q-value function gives expected total reward

- $^\circ$ from state S and action A
- $^{\circ}$ under policy π

 \circ with discount factor γ

$$Q^{\pi}(s, a) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}[r + \gamma Q^{\pi}(s',a') \mid s,a]$$

右

中腹

中腹

Optimal Value Function

An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

The optimal value function allows us act optimally

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

The optimal value informally maximizes over all decisions

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$

= $r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$

Optimal values decompose into a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s',a') \mid s,a]$$

Value Function Approximation

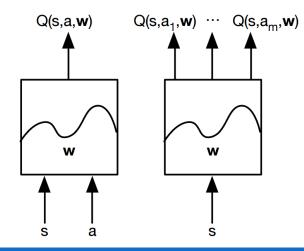
Value functions are represented by a *lookup table*

$$Q(s,a) \ \forall s,a$$

• too many states and/or actions to store

• too slow to learn the value of each entry individually

Values can be estimated with *function approximation*

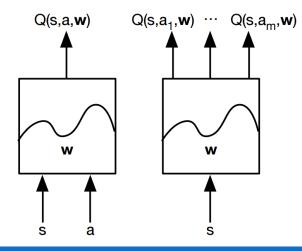


Q-Networks

Q-networks represent value functions with weights \boldsymbol{w}

$$Q(s,a,w) \approx Q^*(s,a)$$

 $^{\rm o}$ generalize from seen states to unseen states $^{\rm o}$ update parameter w for function approximation



Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right] | s, a]$$

learning target

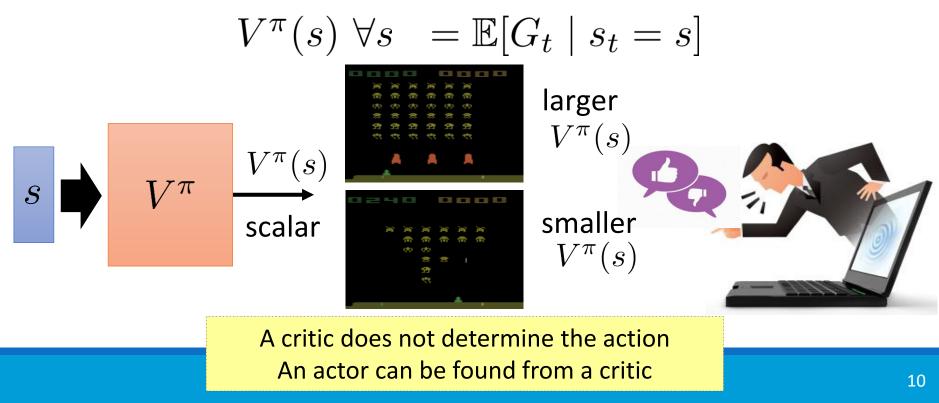
• Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

Critic = Value Function

Idea: how good the actor is

State value function: when using actor π , the *expected total* reward after seeing observation (state) s



Monte-Carlo for Estimating $V^{\pi}(s)$

Monte-Carlo (MC)

- $^{\circ}$ The critic watches π playing the game
- MC learns directly from complete episodes: no bootstrapping

Idea: value = *empirical mean* return

After seeing s_a , until the end of the episode, the cumulated reward is G_a

After seeing s_b , until the end of the episode, the cumulated reward is G_b

$$s_a \rightarrow V^{\pi} \rightarrow V^{\pi}(s_a) \leftrightarrow G_a$$
$$s_b \rightarrow V^{\pi} \rightarrow V^{\pi}(s_b) \leftrightarrow G_b$$

Issue: long episodes delay learning

Temporal-Difference for Estimating $V^{\pi}(s)$

Temporal-difference (TD)

- $^{\circ}$ The critic watches π playing the game
- TD learns directly from *incomplete* episodes by *bootstrapping*
- TD updates a guess towards a guess

Idea: update value toward estimated return

$$s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t}) \qquad \cdots \qquad s_{t}, a_{t}, r_{t}, s_{t+1}, \cdots \\ V^{\pi}(s_{t}) \qquad V^{\pi}(s_{t+1}) \rightarrow V^{\pi}(s_{t}) - V^{\pi}(s_{t+1}) \leftrightarrow r_{t}$$

$$s_{t+1} \rightarrow V^{\pi}(s_{t+1}) \qquad \rightarrow V^{\pi}(s_{t+1$$

Monte-Carlo (MC)

MC v.s. TD

- Large variance
- Unbiased
- No Markov property

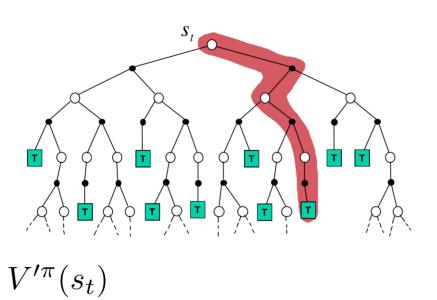
Temporal-Difference (TD)

- Small variance
- Biased
- Markov property

$$s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t}) \Leftrightarrow G_{t} \qquad s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t})$$

$$r_{t} + V^{\pi}(s_{t+1}) \leftarrow V^{\pi} \leftarrow s_{t+1}$$

$$smaller \qquad may be$$
variance biased



$$V'^{\pi}(s_{t}) = V^{\pi}(s_{t}) + \alpha(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_{t}))$$

S_tO

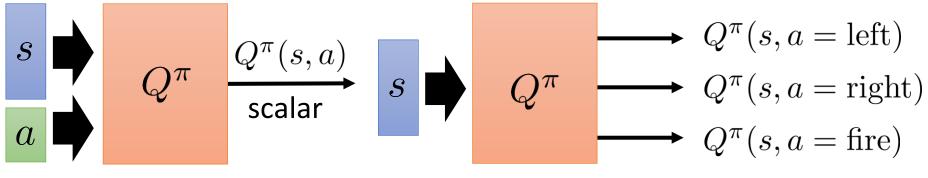
MC v.s. TD

 $= V^{\pi}(s_t) + \alpha(G_t - V^{\pi}(s_t))$

Critic = Value Function

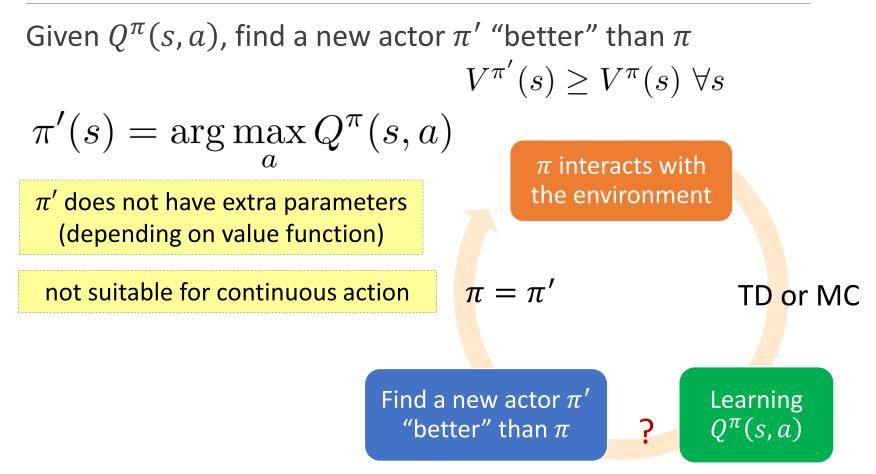
State-action value function: when using actor π , the expected total reward after seeing observation (state) s and taking action a

$$Q^{\pi}(s,a) \; \forall s,a = \mathbb{E}[G_t \mid s_t = s, a_t = a]$$



for discrete action only

Q-Learning



Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

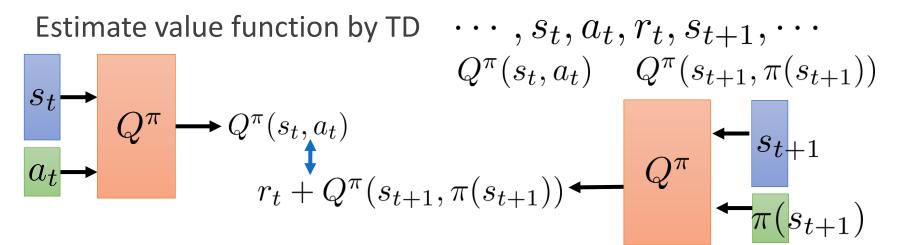
$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right] | s, a]$$

learning target

• Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

Deep Q-Networks (DQN)



Represent value function by deep Q-network with weights w

$$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$$

Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Deep Q-Networks (DQN)

Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\Big[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\Big]$$

Issue: naïve Q-learning oscillates or diverges using NN due to: 1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

- 1. Data is sequential
 - Successive samples are correlated, non-iid (independent and identically distributed)
- Policy changes rapidly with slight changes to Q-values
 Policy may oscillate
 - Distribution of data can swing from one extreme to another
- 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

DQN provides a stable solutions to deep value-based RL

- 1. Use experience replay
 - Break correlations in data, bring us back to iid setting

Learn from all past policies

- 2. Freeze target Q-network
 - Avoid oscillation

Break correlations between Q-network and target

Clip rewards or normalize network adaptively to sensible range
 Robust gradients

Stable Solution 1: Experience Replay

To remove correlations, build a dataset from agent's experience

• Take action at according to ϵ -greedy policy small prob for exploration

 \circ Store transition (s_t, a_t, r_t, s_{t+1}) in replay memory D

 $^{\circ}$ Sample random mini-batch of transitions (s,a,r,s') from D

$$\begin{array}{c|c} & s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ & \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w) - Q(s,a,w) \right)^2 \right]$$

$$s \xleftarrow{a_1} Q(s, a_1) = 0 \text{ never explored}$$

$$s \xleftarrow{a_2} Q(s, a_2) = 1 \text{ always sampled}$$

$$a_3 Q(s, a_3) = 0 \text{ never explored}$$

The policy is based on Q-function

$$a = \arg\max_{a} Q(s, a)$$

not good for data collection → inefficient learning

Exploration algorithms

• Epsilon greedy

$$a = \begin{cases} \arg \max_{a} Q(s, a), \\ random, \end{cases}$$

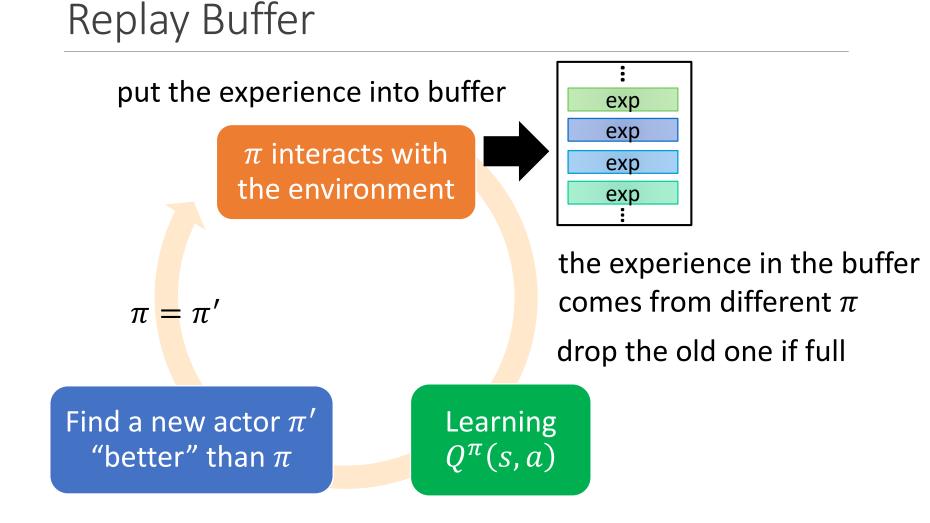
 ε would decay during learning

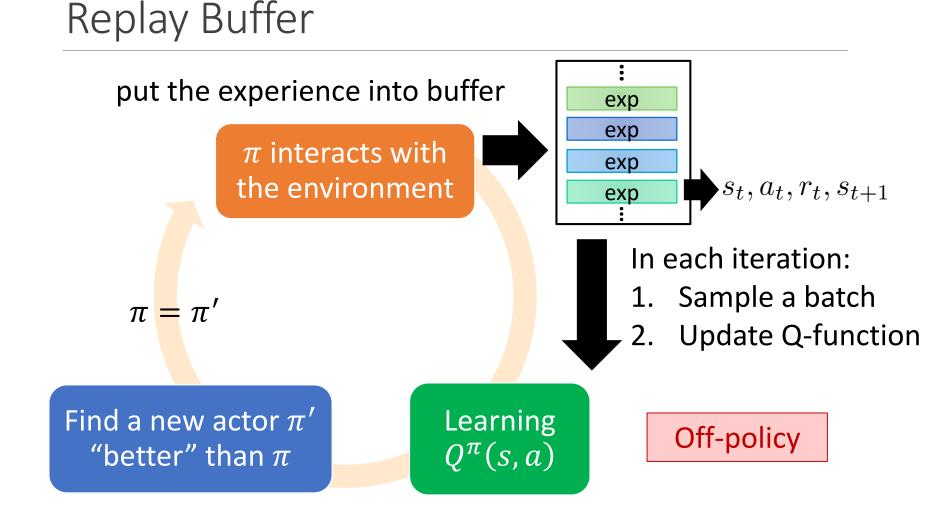
with
$$p = (1 - \epsilon)$$

otherwise

• Boltzmann sampling

$$P(a \mid s) = \frac{\exp(Q(s, a))}{\sum_{a} \exp(Q(s, a))}$$





Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

$$s_{t} \rightarrow Q^{\pi} \rightarrow Q^{\pi}(s_{t}, a_{t}) \leftrightarrow r_{t} + Q^{\pi}(s_{t+1}, \pi(s_{t+1})) \leftarrow Q^{\pi} \leftarrow s_{t+1}$$

$$a_{t} \rightarrow freeze$$

 \circ Compute Q-learning targets w.r.t. old, fixed parameters $w^{-{
m freeze}}$

$$r + \gamma \max_{a'} \hat{Q}(s', a', w^{-})$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} \hat{Q}(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

 \circ Periodically update fixed parameters $w^- \leftarrow w$

Stable Solution 3: Reward / Value Range

To avoid oscillations, control the reward / value range

- DQN clips the rewards to [-1, +1]
 - Prevents too large Q-values
 - Ensures gradients are well-conditioned

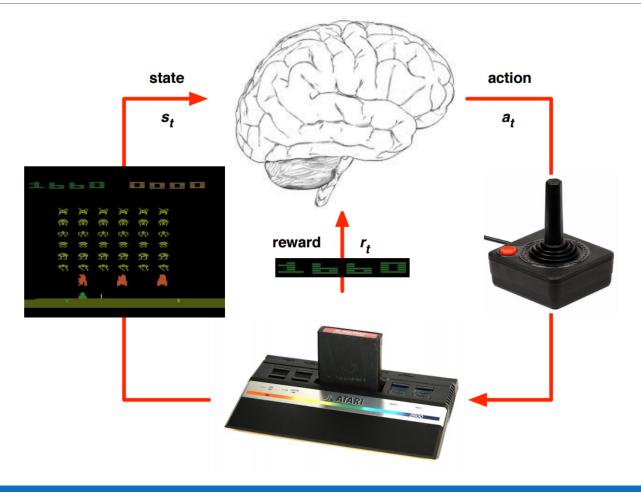
Typical Q-Learning Algorithm

Initialize Q-function Q, target Q-function $\hat{Q} = Q$

In each episode

- For each time step t
 - Given state s_t , take action a_t based on Q (epsilon greedy)
 - \circ Obtain reward r_t , and reach new state s_{t+1}
 - $^{\circ}$ Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - \circ Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - \circ Update the parameters of Q to make $Q(s_i,a_i)pprox r_i+\max \hat{Q}(s_{i+1},a)$
 - $^{\circ}$ Every ${\cal C}$ steps reset $\hat{Q}=Q$

Deep RL in Atari Games

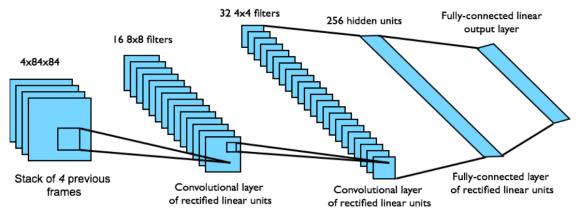


DQN in Atari

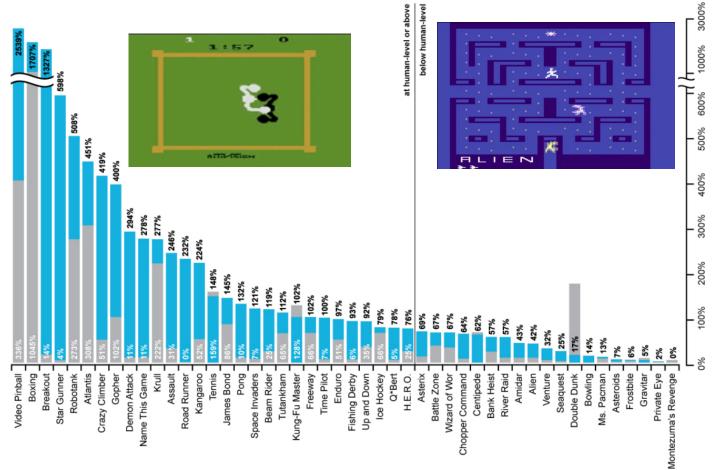
Goal: end-to-end learning of values Q(s, a) from pixels

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

- Input: state is stack of raw pixels from last 4 frames
- Output: Q(s, a) for all joystick/button positions a
- Reward is the score change for that step



DQN in Atari



Concluding Remarks

RL is a general purpose framework for **decision making** under interactions between agent and environment

A value-based RL measures how good each state and/or action is via a value function

Monte-Carlo (MC) v.s. Temporal-Difference (TD)

