
Slides credited from Dr. David Silver & Hung-Yi Lee 1

Reinforcement Learning Approach
Value-based RL
◦ Estimate the optimal value function

Policy-based RL
◦ Search directly for optimal policy

Model-based RL
◦ Build a model of the environment

◦ Plan (e.g. by lookahead) using model

2

is the policy achieving maximum future reward

is maximum value achievable under any policy

RL Agent Taxonomy

3

Model-Free

Model

Value Policy

Learning a Critic

Actor-Critic

Learning an Actor

Value-Based Approach
LEARNING A CRITIC

4

Value Function
A value function is a prediction of future reward
(with action a in state s)

Q-value function gives expected total reward
◦ from state and action

◦ under policy

◦ with discount factor

Value functions decompose into a Bellman
equation

5

Optimal Value Function
An optimal value function is the maximum achievable value

The optimal value function allows us act optimally

The optimal value informally maximizes over all decisions

Optimal values decompose into a Bellman equation

6

Value Function Approximation
Value functions are represented by a lookup table

◦ too many states and/or actions to store

◦ too slow to learn the value of each entry individually

Values can be estimated with function approximation

7

Q-Networks
Q-networks represent value functions with weights

◦ generalize from seen states to unseen states

◦ update parameter for function approximation

8

Q-Learning
Goal: estimate optimal Q-values
◦ Optimal Q-values obey a Bellman equation

◦ Value iteration algorithms solve the Bellman equation

9

learning target

Critic = Value Function
Idea: how good the actor is

State value function: when using actor 𝜋, the expected total
reward after seeing observation (state) s

A critic does not determine the action
An actor can be found from a critic

scalar

larger

smaller

10

Monte-Carlo for Estimating
Monte-Carlo (MC)
◦ The critic watches 𝜋 playing the game

◦ MC learns directly from complete episodes: no bootstrapping

11

After seeing 𝑠𝑎,
until the end of the episode,
the cumulated reward is 𝐺𝑎

After seeing 𝑠𝑏,
until the end of the episode,
the cumulated reward is 𝐺𝑏

Idea: value = empirical mean return

Issue: long episodes delay learning

Temporal-Difference for Estimating
Temporal-difference (TD)
◦ The critic watches 𝜋 playing the game

◦ TD learns directly from incomplete episodes by bootstrapping

◦ TD updates a guess towards a guess

12

-

Idea: update value toward estimated return

MC v.s. TD
Monte-Carlo (MC)
◦ Large variance

◦ Unbiased

◦ No Markov property

Temporal-Difference (TD)
◦ Small variance

◦ Biased

◦ Markov property

13

smaller
variance

may be
biased

…

MC v.s. TD

14

Critic = Value Function
State-action value function: when using actor 𝜋, the
expected total reward after seeing observation (state) 𝑠 and
taking action 𝑎

scalar

for discrete action only

15

Q-Learning
Given 𝑄𝜋 𝑠, 𝑎 , find a new actor 𝜋′ “better” than 𝜋

16

𝜋 interacts with
the environment

Learning
𝑄𝜋 𝑠, 𝑎

Find a new actor 𝜋′

“better” than 𝜋

TD or MC

?

𝜋 = 𝜋′

𝜋′ does not have extra parameters
(depending on value function)

not suitable for continuous action

Q-Learning
Goal: estimate optimal Q-values
◦ Optimal Q-values obey a Bellman equation

◦ Value iteration algorithms solve the Bellman equation

17

learning target

Deep Q-Networks (DQN)
Estimate value function by TD

Represent value function by deep Q-network with weights

Objective is to minimize MSE loss by SGD

18

Deep Q-Networks (DQN)
Objective is to minimize MSE loss by SGD

Leading to the following Q-learning gradient

19

Issue: naïve Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL
Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential

◦ Successive samples are correlated, non-iid (independent and
identically distributed)

2. Policy changes rapidly with slight changes to Q-values
◦ Policy may oscillate

◦ Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown
◦ Naive Q-learning gradients can be unstable when backpropagated

20

Stable Solutions for DQN

21

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

◦ Break correlations in data, bring us back to iid setting

◦ Learn from all past policies

2. Freeze target Q-network
◦ Avoid oscillation

◦ Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
◦ Robust gradients

Stable Solution 1: Experience Replay
To remove correlations, build a dataset from agent’s experience
◦ Take action at according to 𝜖-greedy policy

◦ Store transition in replay memory D

◦ Sample random mini-batch of transitions from D

◦ Optimize MSE between Q-network and Q-learning targets

22

small prob for exploration

Exploration
The policy is based on Q-function

Exploration algorithms
◦ Epsilon greedy

◦ Boltzmann sampling

not good for data collection
→ inefficient learning

𝑠

𝑎1

𝑎2

𝑎3

always sampled

never explored

never explored

𝜀 would decay during learning

23

𝜋 interacts with
the environment

Learning
𝑄𝜋 𝑠, 𝑎

Find a new actor 𝜋′

“better” than 𝜋

Replay Buffer

…
…

exp

exp

exp

exp

put the experience into buffer

the experience in the buffer
comes from different 𝜋

drop the old one if full
𝜋 = 𝜋′

24

𝜋 interacts with
the environment

Learning
𝑄𝜋 𝑠, 𝑎

Find a new actor 𝜋′

“better” than 𝜋

Replay Buffer

put the experience into buffer

𝜋 = 𝜋′

In each iteration:
1. Sample a batch
2. Update Q-function

…
…

exp

exp

exp

exp

Off-policy

25

Stable Solution 2: Fixed Target Q-Network
To avoid oscillations, fix parameters used in Q-learning target

◦ Compute Q-learning targets w.r.t. old, fixed parameters

◦ Optimize MSE between Q-network and Q-learning targets

◦ Periodically update fixed parameters

26

freeze

freeze

Stable Solution 3: Reward / Value Range
To avoid oscillations, control the reward / value range
◦DQN clips the rewards to [−1, +1]
▪Prevents too large Q-values

▪Ensures gradients are well-conditioned

27

Typical Q-Learning Algorithm

Initialize Q-function 𝑄, target Q-function ෠𝑄 = 𝑄

In each episode
◦ For each time step 𝑡

◦ Given state 𝑠𝑡, take action 𝑎𝑡 based on 𝑄 (epsilon greedy)

◦ Obtain reward 𝑟𝑡, and reach new state 𝑠𝑡+1
◦ Store into buffer

◦ Sample from buffer (usually a batch)

◦ Update the parameters of 𝑄 to make

◦ Every 𝐶 steps reset

28

Deep RL in Atari Games

29

DQN in Atari
Goal: end-to-end learning of values Q(s, a) from pixels

◦ Input: state is stack of raw pixels from last 4 frames

◦ Output: Q(s, a) for all joystick/button positions a

◦ Reward is the score change for that step

30DQN Nature Paper [link] [code]

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

DQN in Atari

31DQN Nature Paper [link] [code]

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

Concluding Remarks
RL is a general purpose framework for decision making
under interactions between agent and environment

A value-based RL measures how good each state and/or
action is via a value function
◦ Monte-Carlo (MC) v.s. Temporal-Difference (TD)

32

