Slides credited from Dr. David Silver & Hung-Yi Lee

Reinforcement Learning Approach

Value-based RL
° Estimate the optlmal value function Q (8 (I)

Q (8 a) is maximum value achievable under any pollcy

Policy-based RL
o Search directly for optimal policy 7T

7" is the policy achieving maximum future reward

Model-based RL
cBuild a model of the environment
o Plan (e.g. by lookahead) using model

RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor

Value-Based Approach

LEARNING A CRITIC

Value Function

A value function is a prediction of future reward I
(with action a in state s)

Q-value function gives expected total reward
o from state S and action (} QE:
o under policy 71 G £ Sau
> with discount factor f)/

Q" (s,a) = Elryp1 + 772+ T3+ .. | 5,4

Value functions decompose into a Bellman
equation

Q"(s,a) =Eyy[r +7Q7(s',a’) | 5,

i |t
i
=R
g
|8

Optimal Value Function

An optimal value function is the maximum achievable value
*
Q*(s,a) =maxQ"(s,a) = Q" (s,a)
70

The optimal value function allows us act optimally
' (s) = arg max Q" (s, a)
a
The optimal value informally maximizes over all decisions

* 2
Q*(s,a) = ryp1+ymax ry o+y° max ri3+...
at41 . at+2
= Tty1 T 7 TCILlaXQ (S¢41, A1)
t+1
Optimal values decompose into a Bellman equation

Q" (s,a) = Eg[r + v max Q*(s',ad") | s,d

a

Value Function Approximation

Value functions are represented by a lookup table

Q(s,a) Vs, a
°too0 many states and/or actions to store
>too slow to learn the value of each entry individually

Values can be estimated with function approximation

e e e
~
R

Q-Networks

Q-networks represent value functions with weights w

Q(s,a,w) = Q(s,a)

ogeneralize from seen states to unseen states
o update parameter W for function approximation

e e e
~
R
e

Q-Learning

Goal: estimate optimal Q-values
o Optimal Q-values obey a Bellman equation

Q" (s,a) = ES/[T + 7 max Q" (s, a')] | s, al

a

learning target

o Value iteration algorithms solve the Bellman equation

Qri(s, a) = Eg[r + ymax Qgfs’, a') | s, q

Critic = Value Function

Idea: how good the actor is

State value function: when using actor m, the expected total
reward after seeing observation (state) s

V™ (s) Vs =E[G; | s; = s

larger
V7 (s)

. o, A

) » v smaller 0 i
V7T (s)

A critic does not determine the action
An actor can be found from a critic

Monte-Carlo for Estimating V'™ (s)
Monte-Carlo (MC)

> The critic watches i playing the game
o MC learns directly from complete episodes: no bootstrapping

~ |dea: value = empirical mean return

After seeing s,

until the end of the episode, VT =V (sq)+> G
the cumulated reward is G, ¢

After seeing sy,
until the end of the episode,
the cumulated reward is G,

Issue: long episodes delay learning |

Temporal-Difference for Estimating V'™ (s)

Temporal-difference (TD)
> The critic watches i playing the game
o TD learns directly from incomplete episodes by bootstrapping
o TD updates a guess towards a guess

|Idea: update value toward estimated return

C Sty Aty Tty St41, " "
Vﬂ- _’Vﬂ(st Vﬂ(St) Vﬂ-(SH_l)

— VW(St) — Vﬂ(St_lr_l)‘_’ T

—VVTT(St_Fl

Monte-Carlo (MC) Temporal-Difference (TD)
o Large variance o Small variance

> Unbiased ° Biased

> No Markov property o Markov property

Sg— /7T —>V7T(St)0 Gy St— VT =V (s)

3

ret VT(spp1)= VT «—Stt1

smaller may be
variance biased

C
O O O O O O O O O
0 O () L% O 0 Q
SN f\? ;o (Pf‘ ! AN BN
H ;N p \ N 1 LA
!
V (St)

= V7(s¢) + a(ripr + YV (5141) — V7 (s¢))

Critic = Value Function

State-action value function: when using actor m, the
expected total reward after seeing observation (state) s and
taking action a

Q™ (s,a) Vs,a = E|G; | st = s,a; = al

— Q7 (s, a = left)

_Q(s,a)
¢ scalar f i» QT — Q7(s,a =right)

—> Q" (s,a = fire)

for discrete action only

Q-Learning

Given Q™ (s, a), find a new actor ' “better” than 7
V™ (s) > V™(s) Vs
m'(s) = argmax Q" (s, a)
a

1T interacts with

n' does not have extra parameters the environment
(depending on value function)

not suitable for continuous action T =T TD or MC

Learning

Q" (s,a)

Q-Learning

Goal: estimate optimal Q-values
o Optimal Q-values obey a Bellman equation

Q" (s,a) = ES/[T + 7 max Q" (s, a')] | s, al

a

learning target

o Value iteration algorithms solve the Bellman equation

Qri(s, a) = Eg[r + ymax Qgfs’, a') | s, q

Deep Q-Networks (DQN)

Estimate value functionby TD - - - , 8¢, Q¢, T¢, Se4-1,
i Q7 (st,a¢) QT (St41,7(St+1))
QT — Q" (s, at) 4_i_H
Q= T
t re + QT (St41, T(Se11)) @ -
m(st+1)

Represent value function by deep Q-network with weights w

Q(s,a,w) = Q(s,a)

Objective is to minimize MSE loss by SGD)
L(w) = E{ (r + fyma;xQ(s’, a',w) — Q(s,a,w)) }

Deep Q-Networks (DQN)

Objective is to minimize MSE loss by SGD
2
L(w) = E[(r +ymaxQ(s’,a’,w) — Q(s,a,w)) }

Leading to the following Q-learning gradient

0L(w)
ow

0Q (s, a, 'w)}

B[4yt - Q) 22

Issue: naive Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets
1. Datais sequential

o Successive samples are correlated, non-iid (independent and
identically distributed)

2. Policy changes rapidly with slight changes to Q-values
o Policy may oscillate
o Distribution of data can swing from one extreme to another
3. Scale of rewards and Q-values is unknown
> Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

o Break correlations in data, bring us back to iid setting
o Learn from all past policies
2. Freeze target Q-network
> Avoid oscillation
° Break correlations between Q-network and target
3. Clip rewards or normalize network adaptively to sensible range
o Robust gradients

Stable Solution 1: Experience Replay

To remove correlations, build a dataset from agent’s experience
o Take action at according to e-greedy policy small prob for exploration
o Store transition (St, Aty Tt 8t+1) in replay memory D
>Sample random mini-batch of transitions (s, a, r, s') from D

51,41, 2, 52
!/
52,42, 13,53 — s,a,rs

53,43, 14, 54

Sty Aty Me+155t+1 —7 | Sty @ty Mt+15 St+1

° Optimize MSE between Q-network and Q-learning targets

L(w) =Eg.q.rs~D [(r + Y max Q(s',a',w) — Q(s,a, w))q

Exploration as

Q(s, a,l) = () never explored

Q(Sa a’?) —

Q(S, a3) — () never explored

always sampled

The policy is based on Q-function

a = argmax (s, a)

not good for data collection
- inefficient learning

Exploration algorithms
o Epsilon greedy

I { arg max, Q(s,a),

random,
o Boltzmann sampling

e would decay during learning

with p = (1 —¢)
otherwise

P(a | S) _ eXp(Q(S,G))

D> o exp(Q(s,a))

Replay Buffer

put the experience into buffer | e;p |

: , [exp |
1 interacts with - N
the environment exp |

the experience in the buffer
comes from different i

drop the old one if full

Find a new actor i’ Learning
“better” than 7 0™ (s,a)

Replay Buffer

put the experience into buffer | e;p |

:) exp
T interacts with B
the environment _ exp I»St; At, Tty St41

In each iteration:
1. Sample a batch
2. Update Q-function

Find a new actor i’ Learning

“better” than 1 0™ (s, a) Qi pelley

Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

i QT —> Q™ (s, a) > 1 + Q7 (5041, 7(8¢11))+— QF HH

_ \ fre\gze ’ 4_71-1(8“_1)
—freeze

o Compute Q-learning targets w.r.t. old, fixed parameters w
T+ max Q(s’, a',w”)

° Optimize MSE between Q-network and Q-learning targets ,

L(w) =Eg.qrs~D { (r + 7y max Q(s',d ,w™) — Q(s, a, w)) }

o Periodically update fixed parameters w < w

Stable Solution 3: Reward / Value Range

To avoid oscillations, control the reward / value range
°cDQN clips the rewards to [-1, +1]
" Prevents too large Q-values
" Ensures gradients are well-conditioned

Typical Q-Learning Algorithm

Initialize Q-function Q, target Q-function Q = Q

In each episode
oFor each time step t
o Given state s;, take action a; based on Q (epsilon greedy)
o Obtain reward 7¢, and reach new state sy, 1
o Store (8¢, as, r¢, S¢41) into buffer
o Sample (s;,a;, i, 8;41) from buffer (usually a batch)
> Update the parameters of Q to make Q(s;, a;) = r; + max Q(S?H_l, a)
> Every C steps reset Q) = Q !

~
Deep RL in Atari Games

Y I
P . i
s e, W R
P s - NN \ o
v Y RN

[\ action

N

\

p ~ C
state AR W AN EPT Y
8 L e e g
St o \ > = 2
ﬁ__hi/__ - ,»;;'/[

o

o~
DQN in Atari

Goal: end-to-end learning of values Q(S, a) from pixels

£0) = Egapomn] (r+7max Qs w”) - Qs,a,0))]

o [nput: state is stack of raw pixels from last 4 frames
o Output: Q(s, a) for all joystick/button positions a
o Reward is the score change for that step

32 4x4 filcers 256 hidden units Fully-connected linear
output layer
16 8x8 filters
4x84x84
Stack of 4 previous ‘ Fully-connec ted layer
frames Cenvolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units
DQN Nature Paper [link] [] 30

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

DQN In Atarl

%000 %0001 %009 %00S %00 %00€ %002 %001 %0
| —ﬁ_ __ 1 | 1 1 l 1]
%01[sBuanay s,ewnzauop
%z | lmam_ aleaud
%S | B IBJARID
%9 | B augqsol4
%) spiosaisy
%tk I uewoed s
%vi [Buymog
%ib M| sung sianog
%sz [l B jsenbeag
%ze [[~ ainuap
wzy | venv
wer [lEEE(
wes | prex ey
%25 N B I1SIaH yueg
%29 [spadnusp
wvo I | puewwon saddoun
%29 | som so prezipy
w20 [euoz opeg
|aAg]-uBLLINY MO|aq %69 [N [xueisy
BAOQE JO [3AS]-UBLINY B %9. BT " ‘OY3IH
wes | ves.o
%6 | [~ KexooH 20|
%ze B umoq pue dn
%es L ™ Aquaq Buiysi4
%26 [B oanpug
woor R oid swiL
wzoL [[hemoaiy
wzor IS " Jeisepy n4-Buny
wzv [weyiueiny
%6t D | sepry wesg
%z [~ siepenu asoedg
wzer T | 6uod
swsyr ™ puog sawer
swov’ [T | st
swvzz I 1| oosebuey
wzez [T | souuny peoy
seovz I | wnessy
%2z [fIruy
wo.z Y | sweo siyL sweN
wroz [T | soepy uowaq
ey [Joudos
weiv [| sequing Azeso
wisy [squepy
%e0s [[suelogoy
%865 B Jauung) Jeig
" Inoweaig
%LOLL " Buixog
[llequid 02piA

attains human-level

Self-taught Al software
performance in vides games

FOR TWC

TELEPORTATION

B
&
Z

ANT IN THE

d
L |

DQN Nature Paper [

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

Concluding Remarks

RL is a general purpose framework for decision making
under interactions between agent and environment

A value-based RL measures how good each state and/or

action is via a value function
> Monte-Carlo (MC) v.s. Temporal-Difference (TD)

4o

