Transformer Apr 9th, 2019

Applied Deep Learning YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW

Slides credited from Manning, Vaswani & Huang

Representations of Variable Length Data

Input: word sequence, image pixels, audio signal, click logs

Property: continuity, temporal, importance distribution

Example

- Basic combination: average, sum
- Neural combination: network architectures should consider input domain properties
 - CNN (convolutional neural network)
 - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

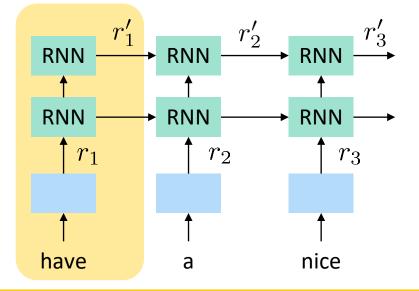
Recurrent Neural Networks

Learning variable-length representations

• Fit for sentences and sequences of values

Sequential computation makes parallelization difficult

No explicit modeling of long and short range dependencies

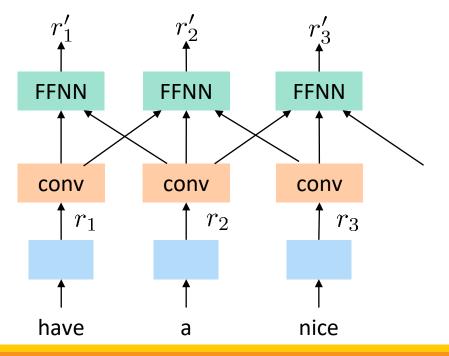


Convolutional Neural Networks

Easy to parallelize

Exploit local dependencies

Long-distance dependencies require many layers



Attention

Encoder-decoder model is important in NMT

RNNs need attention mechanism to handle long dependencies

Attention allows us to access any state

Using attention to replace recurrence architectures

Dot-Product Attention

Input: a query q and a set of key-value (k-v) pairs to an output

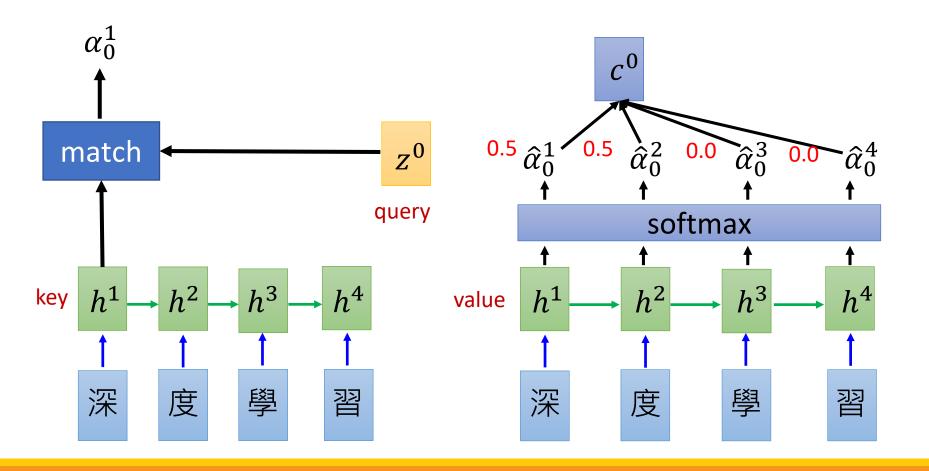
Output: weighted sum of values

Inner product of query and corresponding key

$$A(q, K, V) = \sum_{i} \underbrace{\frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)}}_{i} v_i$$

- Query q is a d_k -dim vector
- $^{\circ}$ Key k is a d_k -dim vector
- Value v is a d_v -dim vector

Machine Translation with Attention



Dot-Product Attention in Matrix

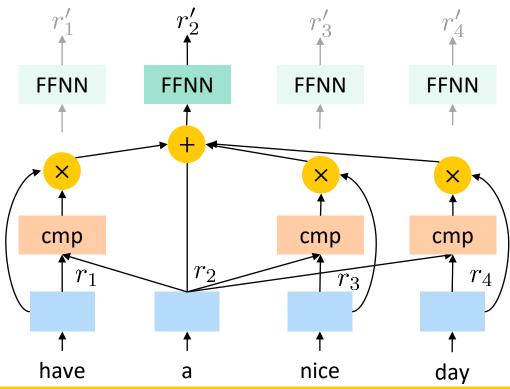
Input: *multiple* queries q and a set of key-value (k-v) pairs to an output Output: a set of weighted sum of values

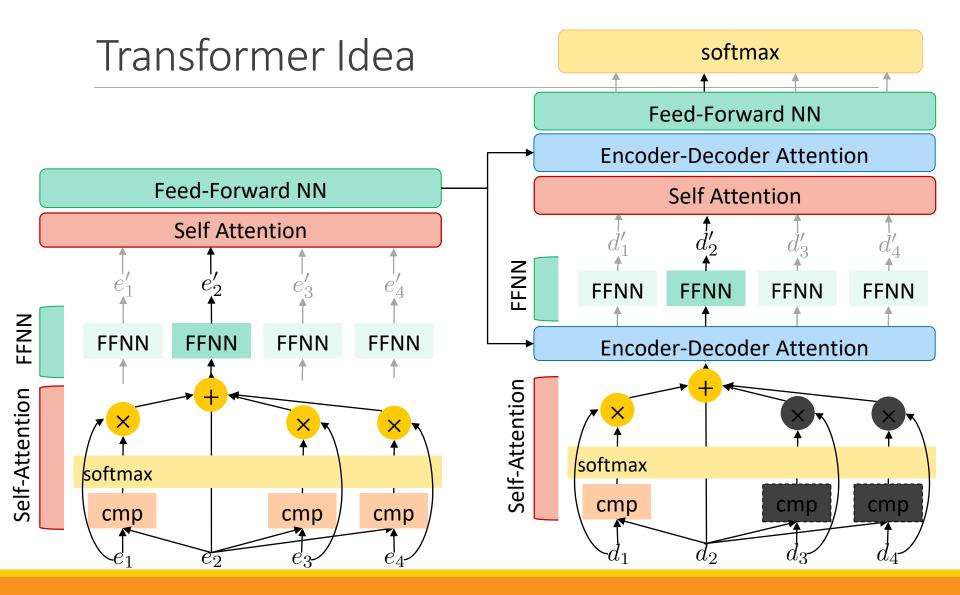
Self-Attention

Self-Attention

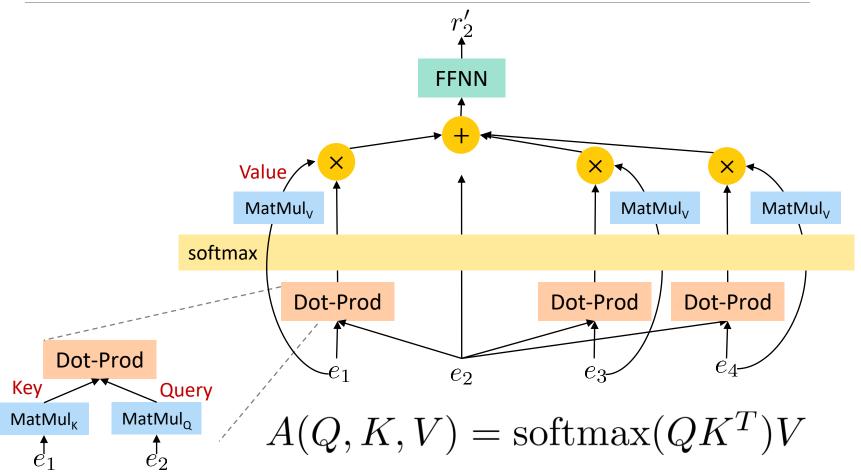
Constant "path length" between two positions

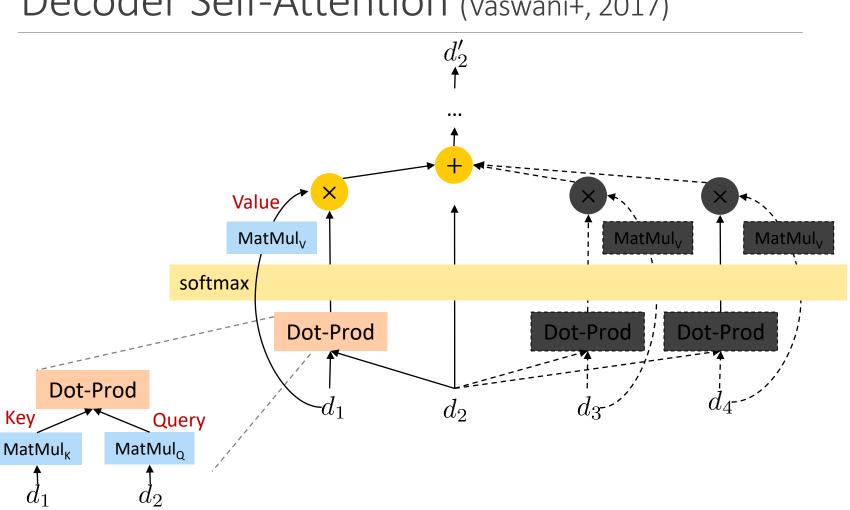
Easy to parallelize





Encoder Self-Attention (Vaswani+, 2017)

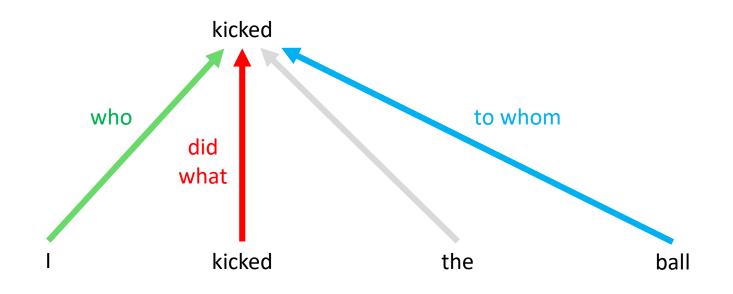




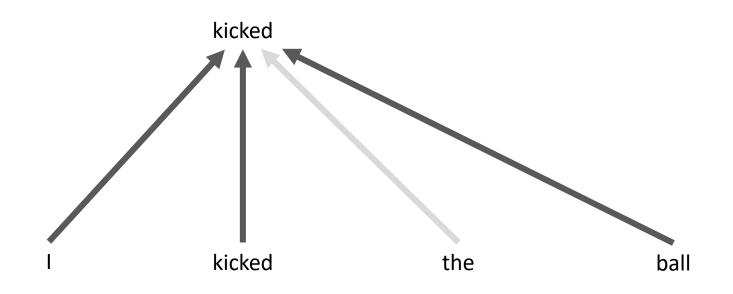
Decoder Self-Attention (Vaswani+, 2017)

Multi-Head Attention

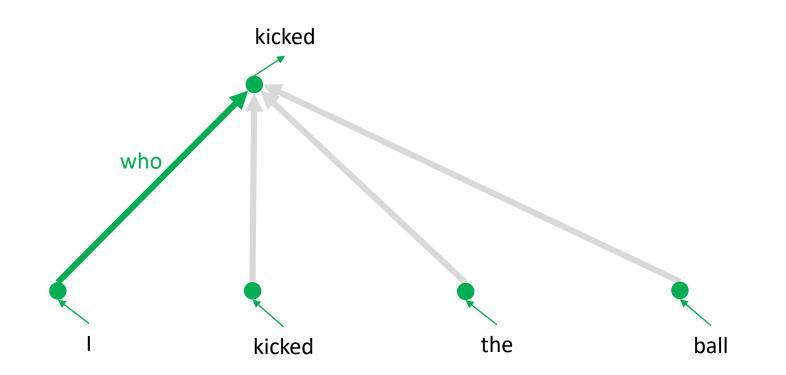
Convolutions



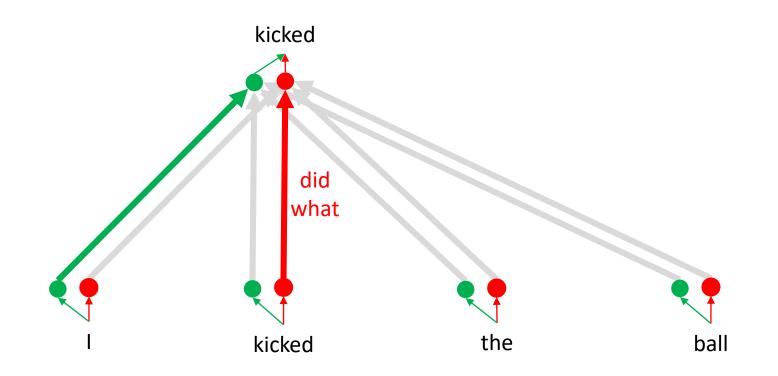
Self-Attention



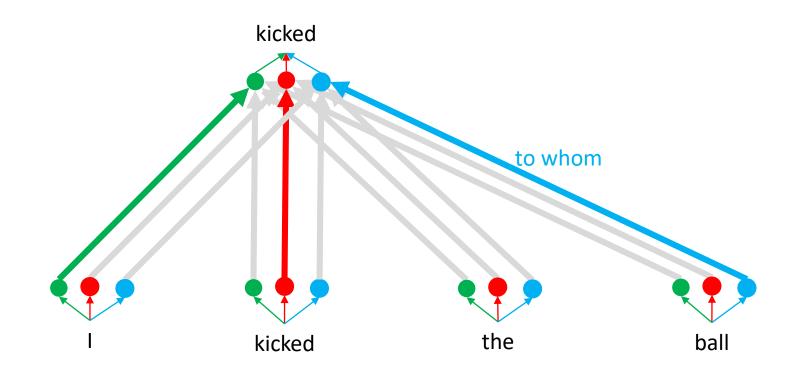
Attention Head: who



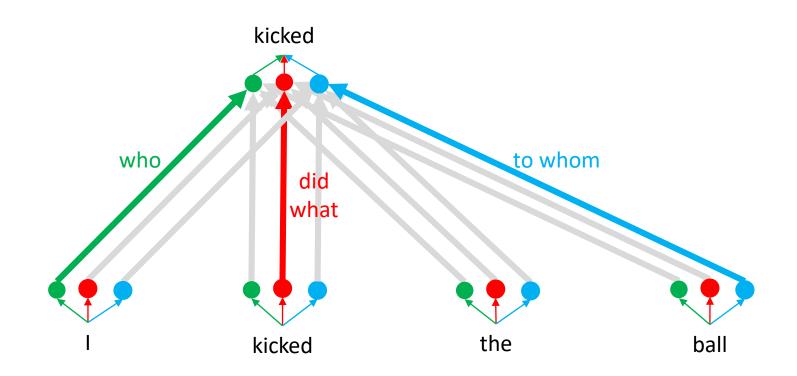
Attention Head: did what



Attention Head: to whom

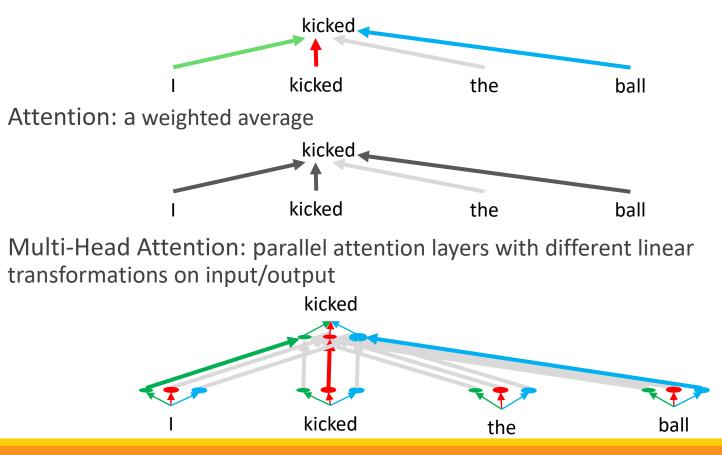


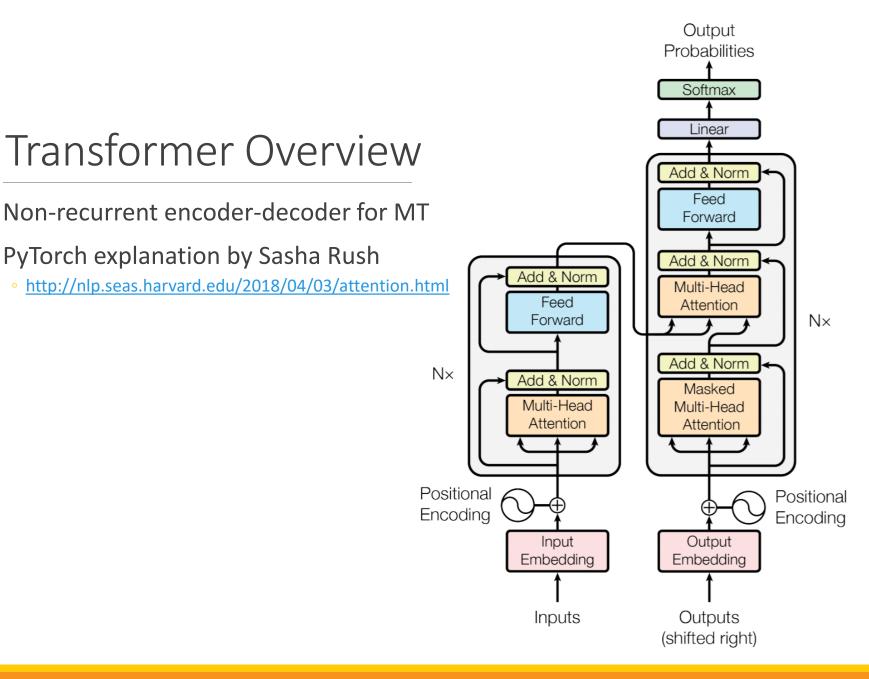
Multi-Head Attention

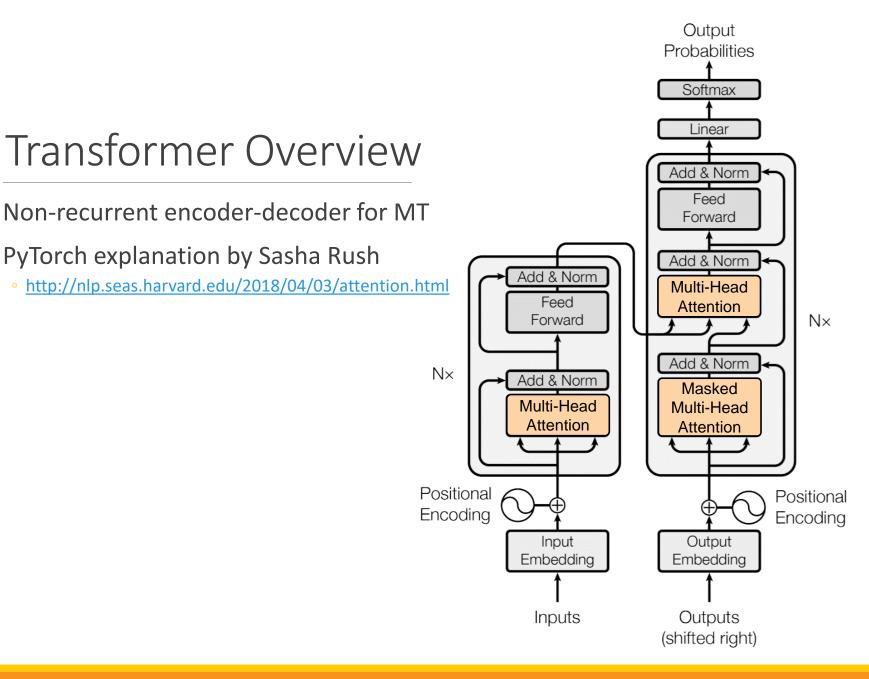


Comparison

Convolution: different linear transformations by relative positions







Multi-Head Attention

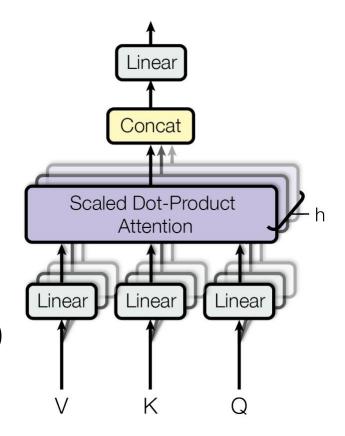
Idea: allow words to interact with one another

Model

- Map V, K, Q to lower dimensional spaces
- Apply attention, concatenate outputs
- Linear transformation

 $MultiHead(Q, K, V) = Concat(head_1, \cdots, head_h)W^O$

 $\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$



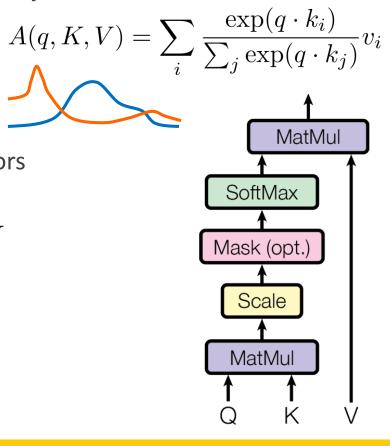
Scaled Dot-Product Attention

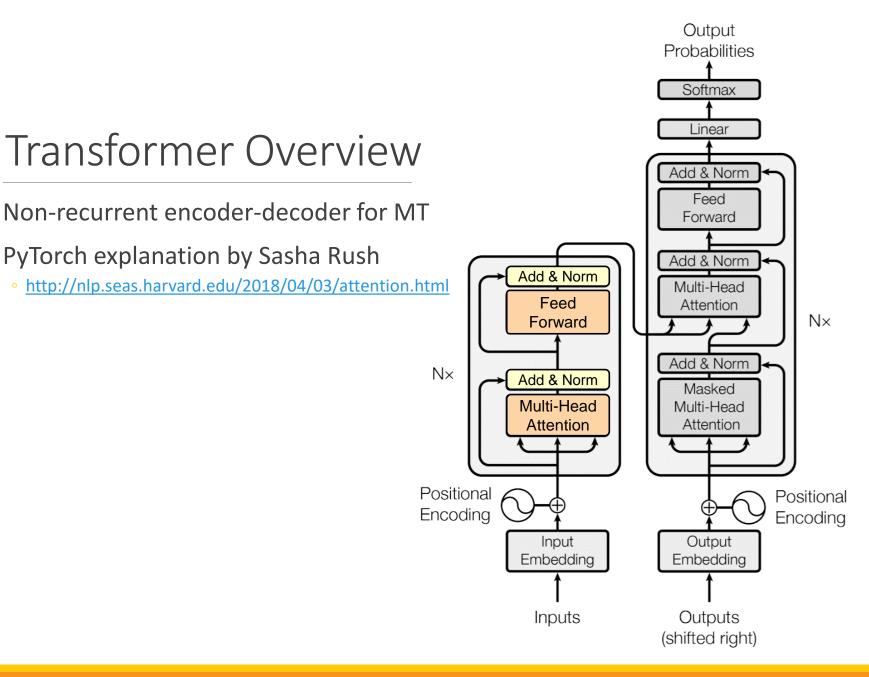
Problem: when d_k gets large, the variance of $q^T k$ increases

- \rightarrow some values inside softmax get large
- ightarrow the softmax gets very peaked
- ightarrow hence its gradient gets smaller

Solution: scale by length of query/key vectors

$$A(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$





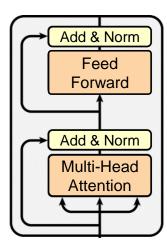
Transformer Encoder Block

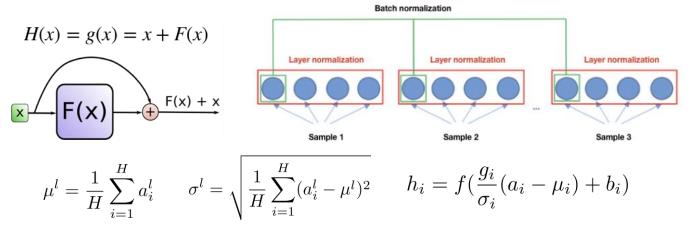
Each block has

- multi-head attention
- 2-layer feed-forward NN (w/ ReLU)

Both parts contain

- Residual connection & layer normalization (LayerNorm)
 - LayerNorm(x + sublayer(x))
 - Change input to have 0 mean and 1 variance per layer & per training point





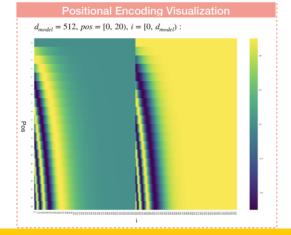
Encoder Input

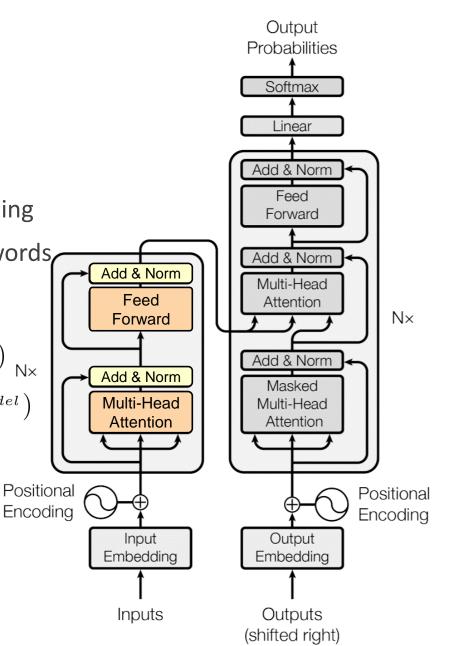
Problem: temporal information is missing

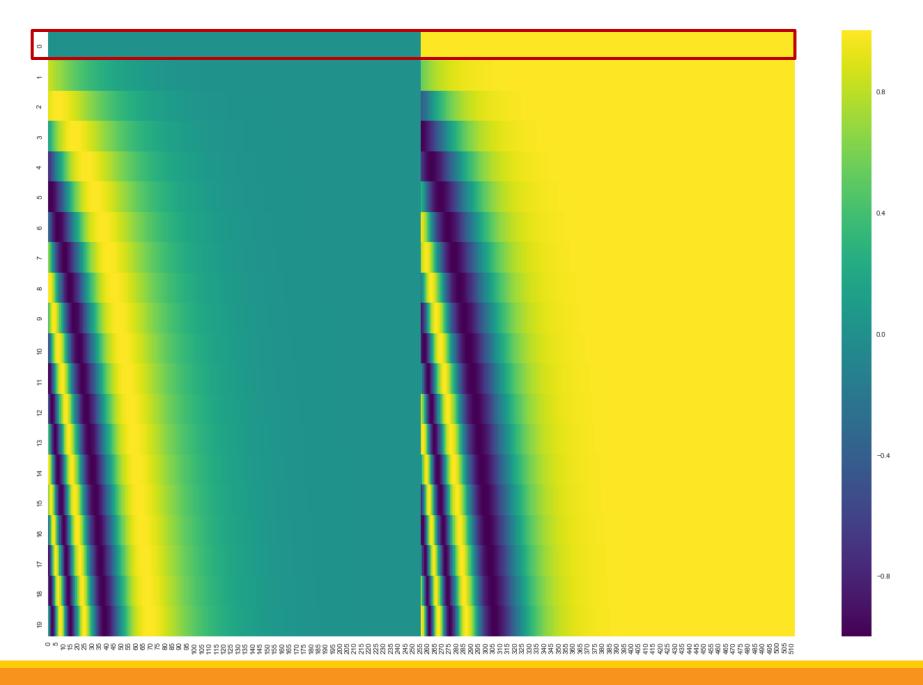
Solution: **positional encoding** allows words at different locations to have different embeddings with fixed dimensions

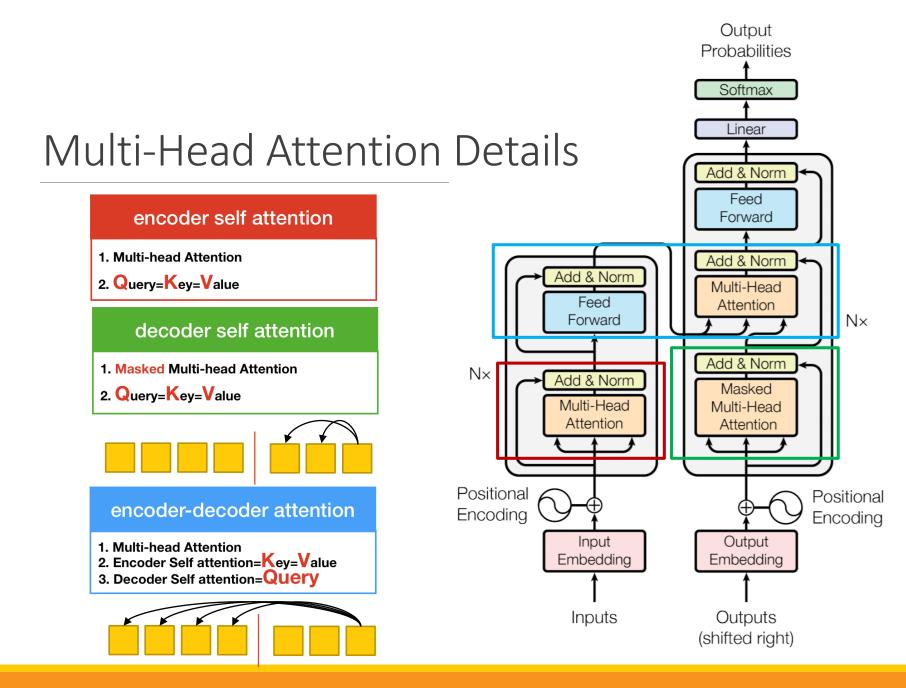
$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})_{N}$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$









https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4

Training Tips

Byte-pair encodings

Checkpoint averaging

ADAM optimizer with learning rate changes

Dropout during training at every layer just before adding residual

Label smoothing

Auto-regressive decoding with beam search and length penalties

MT Experiments

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

Parsing Experiments

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

