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Vanishing Gradient Problem
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Recurrent Neural Network Definition

St — O'(WSt_l + U.’L‘t)

O — softmax(Vst)
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Vanishing Gradient: Gating Mechanism

RNN: keeps temporal sequence information
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| speak fluent French.”
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“Issue: in theory, RNNs can handle such “long-term dependencies,” but they cannot in practice
=2 use gates to directly encode the long-distance information |

@i? “I grew up in France...
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Long Short-Term Memory

Addressing Vanishing Gradient Problem
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Long Short-Term Memory (LSTM)

LSTMs are explicitly designed to avoid the long-term
dependency problem
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Long Short-Term Memory (LSTM)
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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runs straight down the chain with
minor linear interactions

- easy for information to flow
along it unchanged

Gates are a way to optionally let
information through

- composed of a sigmoid and a
pointwise multiplication operation
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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forget gate (a sigmoid layer): decides
what information we’re going to
throw away from the cell state

fi fi=0Wg-lhi—1,2¢] + by)

hi—1 e 1: “completely keep this”
* 0: “completely get rid of this”

Lt
Example: The cell state might include the gender of the present subject, so that the correct

pronouns can be used. When seeing a new subject, we want to forget the old subject’s gender.
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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LSTM

input gate (a sigmoid layer): decides
what new information we’re going
to store in the cell state

iv =0 (Wi-lhi—1, 2] + b;)
ét :taIlh(WC'[ht_l,CUt] + bc)

Vanilla RNN

Example: We want to add the new subject’s gender to the cell state for replacing the old one.
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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where we actually drop the information about the
old subject’s gender and add the new information
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cell state update: forgets the things
we decided to forget earlier and add
the new candidate values, scaled by
how much we decided to update
each state value

Ct:ft*ct—l‘F’it*ét

 f,: decides which to forget
* i:decide which to update



http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Long Short-Term Memory (LSTM)
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LSTM hy

output gate (a sigmoid layer):
decides what new information we’re
going to output

or =0 (Wy [hi—1,2] + bo)
= oy * tanh (C})
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Example: It might output whether the subject is singular or plural, so that we know what form
a verb should be conjugated into if that’s what follows next.
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Variants on LSTM

Addressing Vanishing Gradient Problem
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LSTM with Peephole Connections
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LSTM with Peephole Conncetions © ©

Idea: allow gate layers to look at the
cell state

ft — O'(Wf‘[ct—laht—laxt] + bf)
it =0 (W;-[Cy—1,he—1,2¢] + b;)

Ot = U(WO'[Ct,ht_l,SCﬁ] + bo)
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ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

LSTM with Coupled Forget/Input Gates
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LSTM with Coupled Forget/Input Gates

Idea: instead of separately deciding
what to forget and what we should
add new information to, we make
those decisions together

Ct:ft*ct—1+(1_ft)*ét

We only forget when we’re going to
input something in its place, and
vice versa.



ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

Gated Recurrent Unit

Addressing Vanishing Gradient Problem
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Gated Recurrent Unit (GRU)
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Idea: combine the forget and input
gates into a single “update gate”; merge
the cell state and hidden state

update gate: z; = o (W, - [hy—1,x¢])
reset gate: 7¢ = o (W, - [hi—1,24])

Bt = tanh (W - [ry % hy_1, x4])

~r,=0: ignore previous memory and only
- stores the new word information



http://arxiv.org/pdf/1406.1078v3.pdf

Concluding Remarks

Gating mechanism for vanishing gradient problem

Gated RNN
°Long Short-Term Memory (LSTM) GTQ ® ()
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o Gated Recurrent Unit (GRU)
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