


BERT: Bidirectional Encoder
Representations from Transformers

|Idea: contextualized word representations o

> Learn word vectors using long contexts using Probabilities
Transformer instead of LSTM
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BERT #1 — Masked Language Model

Idea: language understanding is bidirectional while LM only uses
left or right context
° This is not a generation task
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BERT #2 — Next Sentence Prediction

Idea: modeling relationship between sentences
° QA, NLI etc. are based on understanding inter-sentence relationship

Input = (cLs] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

Input = (crs) the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = notnext
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BERT #2 — Next Sentence Prediction

Idea: modeling relationship between sentences

Predict likelihood
that sentence B
belongs after
sentence A
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Input embeddings contain
> Word-level token embeddings
> Sentence-level segment embeddings
° Position embeddings

Input [CLS] my || dog is ( cute | [SEP] he | likes ” play W ##ing W [SEP]

Token
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BERT — Training

Training data: Wikipedia + BookCorpus
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ldea: simply learn a classifier/tagger built on the top layer for each

target task

ﬁsp
= .

Mask LM Mask LM
< *

LeJn]) -

L e 7 ) - L)

BERT
Falel. (EllE=lE]- &
R e —— -
(=) ()] . (o)

o

I_'_l I_I_I
Masked Sentence B

Masked Sentence A
*
Unlabeled Sentence A and B Pair

—

Class
Label
—
BERT
[ L& ] [ [ ][ ][]

[ (=) (G
\_H\_'_|

Sentence 1 Sentence 2

Start/End Span

LI
[CLS] Tok 1 Tok 2
\
|

Class
Label

DEAEN

BERT

] = | = |

E

Tok N

Hil

Single Sentence

0] B-PER

BERT
fle]- [allEml=]- (=]
—

C C

Question Paragraph

&O

S & s
C I T, I T
BERT
B
i g B g B

[CLS] Tok 1 Tok 2

[

H;2

Tok N

Single Sentence

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.




BERT Overview

1 - Semi-supervised training on large amounts 2 - Supervised training on a specific task with a

of text (books, wikipedia..etc). labeled dataset.
The model is trained on a certain task that enables it to grasp Supervised Learning Step
patterns in language. By the end of the training process, e —
BERT has language-processing abilities capable of empowering ”~
many models we later need to build and train in a supervised way. 1 75%  Spam
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BERT Fine-Tuning Results

Effect of Pre-training Task

B BERT-Base B No Next Sent = Left-to-Right & No Next Sent
B Left-to-Right & No Next Sent + BiLSTM
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BERT Results on SQUAD 2.0

Rank Model EM F1

Human Performance 86.831 89.452
Stanford University
(Rajpurkar & Jia et al. '18)

1 BERT + DAE + AoA (ensemble) 87.147 89.474
Joint Laboratory of HIT and iFLYTEK Research

2 BERT + ConvLSTM + MTL + Verifier (ensemble) 86.730 89.286

Layer 6 Al
3 BERT + N-Gram Masking + Synthetic Self- 86.673 89.147
Mar 05, 2019 Training (ensemble)

Google Al Language
https:/github.com/google-research/bert

4 BERT + DAE + AoA (single model) 85.884 88.621
Joint Laboratory of HIT and iFLYTEK Research

Jan 15, 2019 Microsoft Research Asia

5 BERT + MMFT + ADA (ensemble) 85.082 87.615
5 BERT + ConvLSTM + MTL + Verifier (single 84.924 88.204
model)
Layer &6 Al
5 BERT + N-Gram Masking + Synthetic Self- 85.150 87.715
Training (single model)

Google Al Language
https:/github.com/google-research/bert
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BERT Results on NER

Model Description CONLL 2003 F1
TagLM (Peters+, 2017) LSTM BiLM in BLSTM Tagger 91.93
ELMo (Peters+, 2018) ELMo in BLSTM 92.22
BERT-Base (Devlin+, 2019) Transformer bidi LM + fine tune 92.4
CVT Clark Cross-view training + multitask learn 92.61
BERT-Large (Devlin+, 2019)  Transformer bidi LM + fine tune 92.8
Flair Character-level language model 93.09
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BERT Results with Different Model Sizes

Improving performance by increasing model size

= MNLI (400k) = MRPC (3.6 k)
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BERT for Contextualized Word Embeddings

Idea: use pre-trained BERT to get contextualized word embeddings and
feed them into the task-specific models

Generate Contexualized Embeddings
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I [CLS] Help  Prince Mayuko
l BERT

http://jalammar.github.io/illustrated-bert/

The output of each encoder layer along
each token’s path can be used as a
feature representing that token.
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But which one should we use?




BERT Embeddings Results on NER

What is the best contextualized embedding for “Help” in that context?
For named-entity recognition task CoNLL-2003 NER
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Concluding Remarks

Contextualized embeddings learned from masked LM via  Output
ropabiiities

Transformers provide informative cues for transfer learning

BERT — a general approach for learning contextual

representations from Transformers and benefiting r )

language understanding e
orwarn
o Pre-trained BERT: https://github.com/google-research/bert
Supervised Learning Step NX

Semi-supervised Learning Step -~ - - = = T __ = ’_’Mm}
——————— N l m (87 Spam Multi-Head
i "\t Spam Attention

Encoding

Input

I Dataset:

|
' | —tr
I Model:  S—
EER]] | | Model: | \ J
\(Erset;;a;fd BERT Positional A
| | | D
5 |
' |
I

Embedding
Spam T
Objective: Predict the maskgd word I Dataset: DGR oo
(langauge modeling) }
\ Dear Mr. Atreides, please find attached Not Spam | n pUtS



https://github.com/google-research/bert

