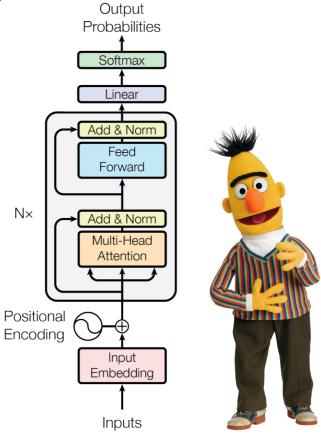


BERT: Bidirectional Encoder Representations from Transformers

Idea: contextualized word representations

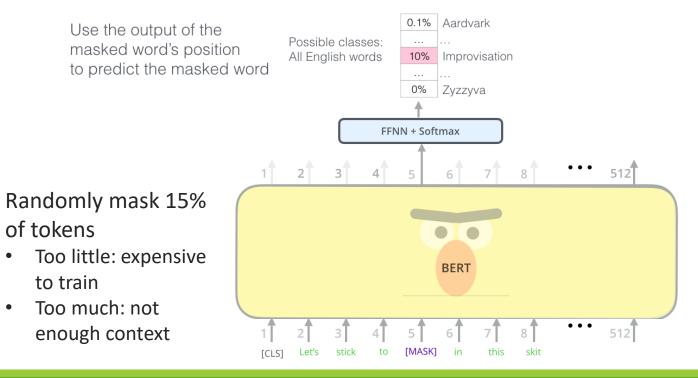
 Learn word vectors using <u>long contexts</u> using <u>Transformer</u> instead of LSTM

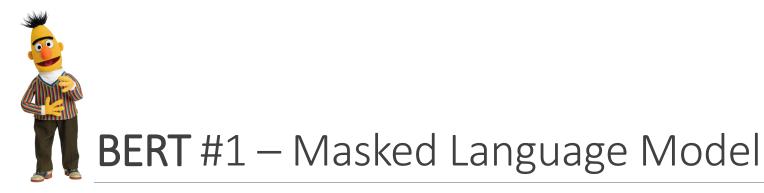


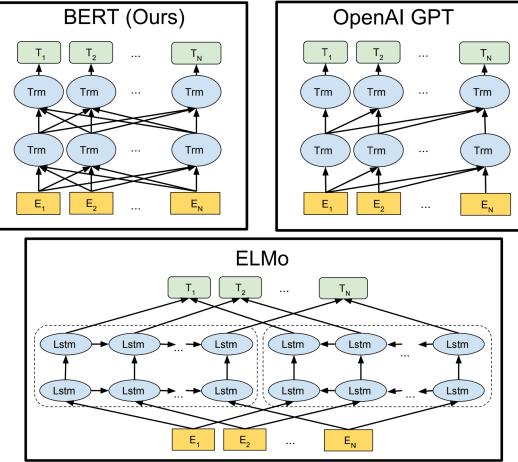
BERT #1 – Masked Language Model

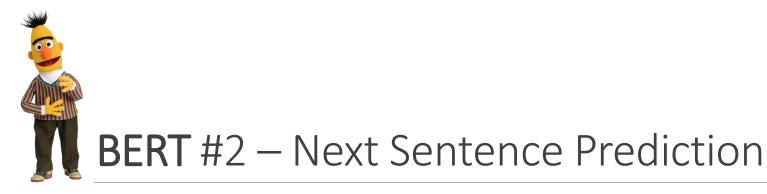
Idea: language understanding is bidirectional while LM only uses *left* or *right* context

• This is not a generation task





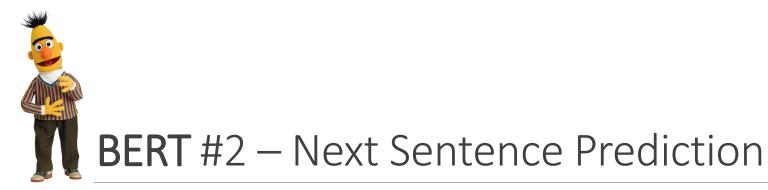




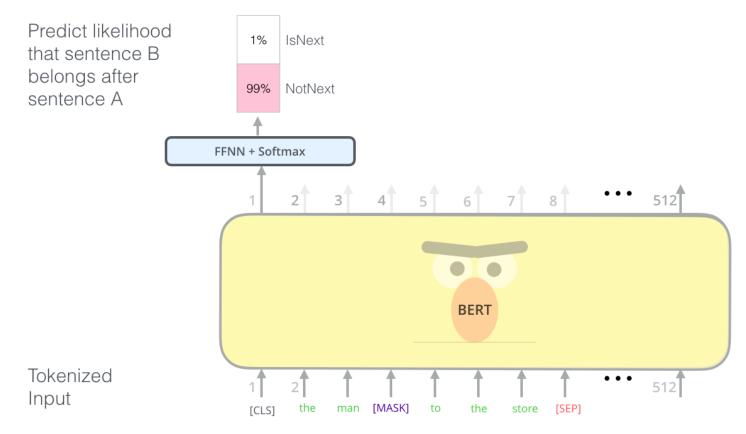
Idea: modeling *relationship* between sentences • QA, NLI etc. are based on understanding inter-sentence relationship

Input = [CLS] the man went to [MASK] store [SEP]
 he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
 penguin [MASK] are flight ##less birds [SEP]

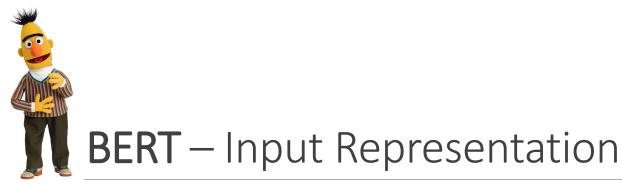
Label = NotNext



Idea: modeling *relationship* between sentences

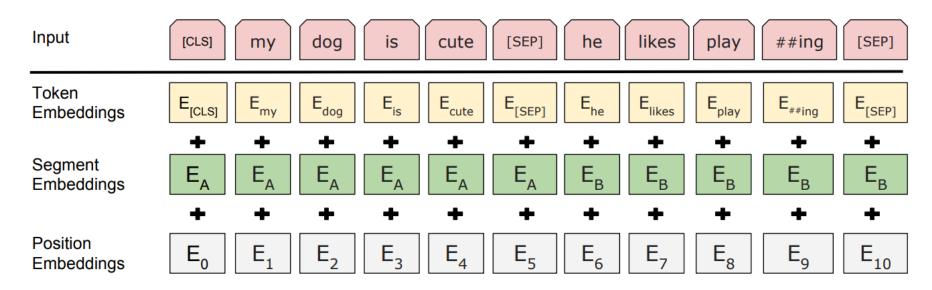


http://jalammar.github.io/illustrated-bert/



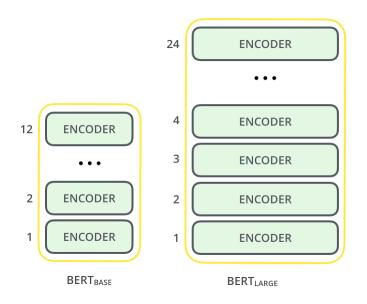
Input embeddings contain

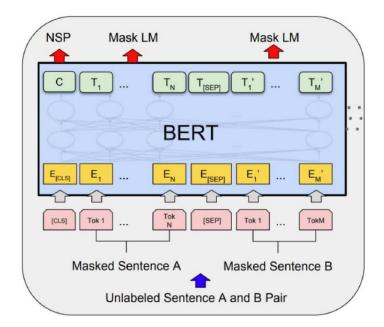
- Word-level token embeddings
- Sentence-level segment embeddings
- Position embeddings



Training data: Wikipedia + BookCorpus

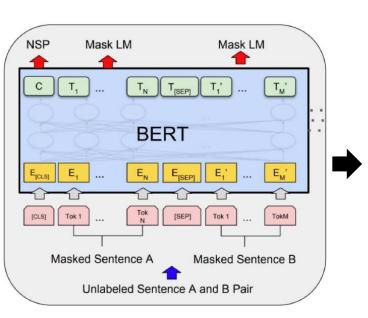
- 2 BERT models
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head

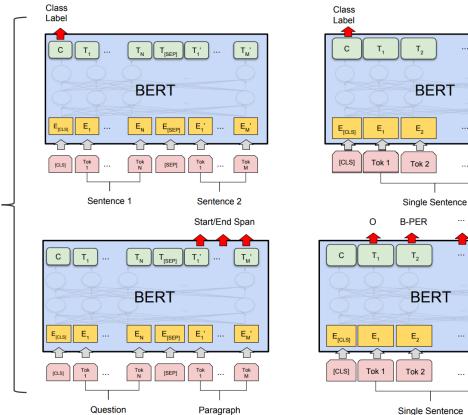




BERT for Fine-Tuning Understanding Tasks

Idea: simply learn a classifier/tagger built on the top layer for each target task Class Class





E_N

Tok N

E_N

Tok N

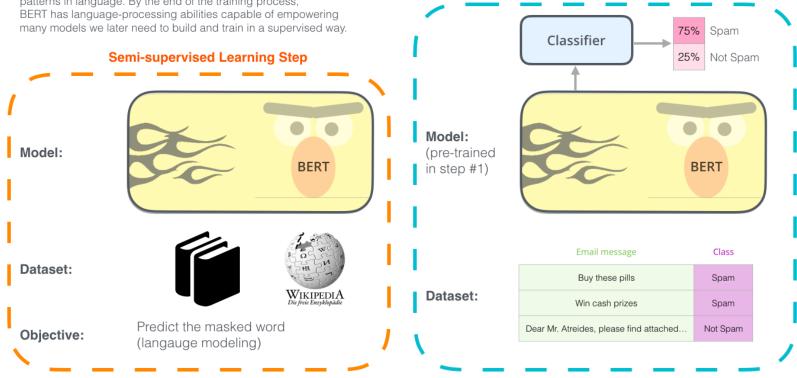
BERT Overview

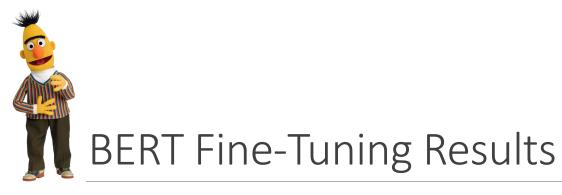
1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process,

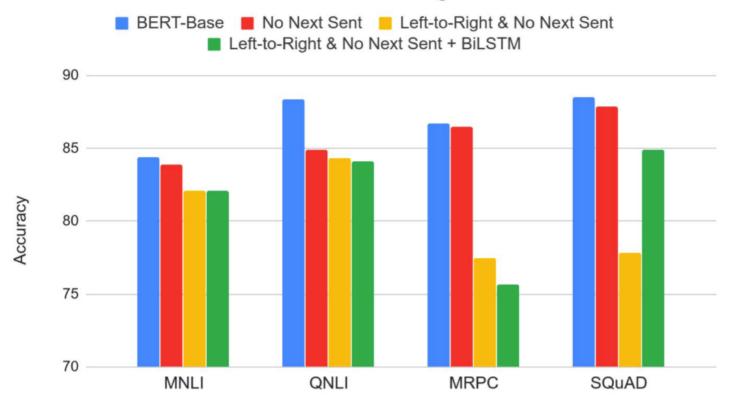
2 - Supervised training on a specific task with a labeled dataset.

Supervised Learning Step



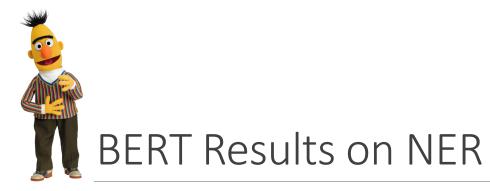


Effect of Pre-training Task

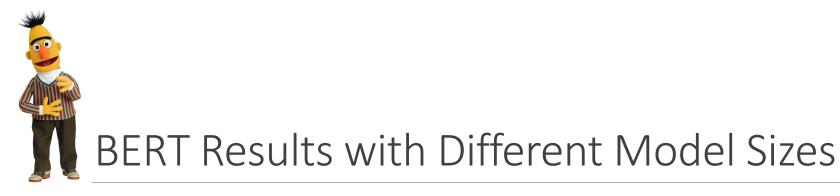


BERT Results on SQuAD 2.0

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474
2 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286
3 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147
4 Mar 16, 2019	BERT + DAE + AoA (single model) Joint Laboratory of HIT and iFLYTEK Research	85.884	88.621
5 Jan 15, 2019	BERT + MMFT + ADA (ensemble) Microsoft Research Asia	85.082	87.615
5 Mar 13, 2019	BERT + ConvLSTM + MTL + Verifier (single model) Layer 6 Al	84.924	88.204
5 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (single model) Google Al Language https://github.com/google-research/bert	85.150	87.715



Model	Description	CONLL 2003 F1
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22
BERT-Base (Devlin+, 2019)	Transformer bidi LM + fine tune	92.4
CVT Clark	Cross-view training + multitask learn	92.61
BERT-Large (Devlin+, 2019)	Transformer bidi LM + fine tune	92.8
Flair	Character-level language model	93.09

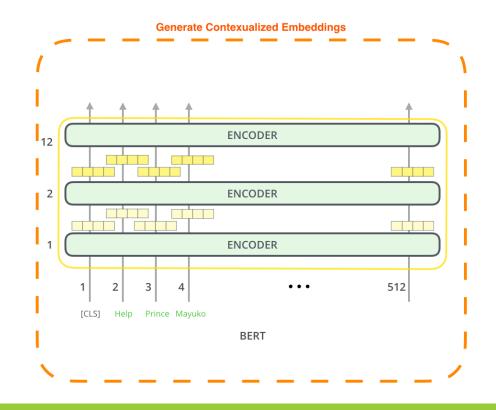


Improving performance by increasing model size

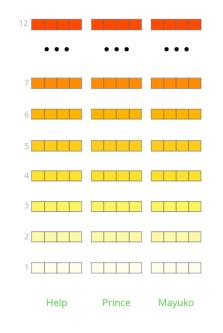


BERT for Contextualized Word Embeddings

Idea: use pre-trained BERT to get contextualized word embeddings and feed them into the task-specific models



The output of each encoder layer along each token's path can be used as a feature representing that token.



But which one should we use?

BERT Embeddings Results on NER

What is the best contextualized embedding for "Help" in that context?

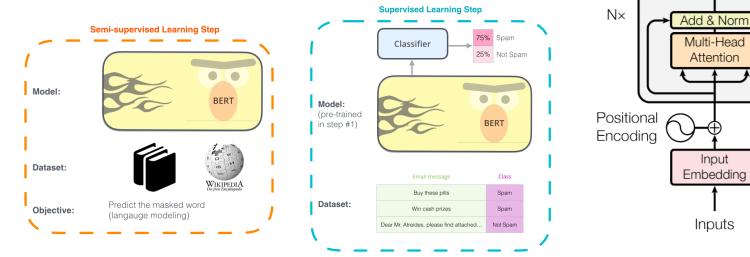
T of hamed-entity fee	ognition task CoNLL-2003 NER	Dev F1 Score
12	First Layer Embedding	91.0
•••	Last Hidden Layer	94.9
7	Sum All 12 Layers	95.5
3	Second-to-Last Hidden Layer	95.6
	Sum Last Four Hidden	95.9
Help	Concat Last ⁹ Four Hidden	10 11 12 96.1 fine-tune = 96.4

Concluding Remarks

Contextualized embeddings learned from masked LM via Transformers provide informative cues for **transfer learning**

BERT – a general approach for learning contextual representations from Transformers and benefiting language understanding

Pre-trained BERT: <u>https://github.com/google-research/bert</u>



Output Probabilities

Softmax

Linear

Add & Norm

Feed Forward