If Content is King，
 Context is Goal！

Review

Meaning Representations in Computers

Knowledge-based representation
Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors

- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 - dimension reduction
- Method 2 - direct learning

Meaning Representations in Computers

Knowledge-based representation
Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors

- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 - dimension reduction
- Method 2 - direct learning

Corpus-based representation

Atomic symbols: one-hot representation

$$
\operatorname{car}\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & \underset{\substack{c \\
\operatorname{car}}}{1} 0 & 0 & \ldots & 0
\end{array}\right]
$$

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

car motorcycle

Idea: words with similar meanings often have similar neighbors

Meaning Representations in Computers

Knowledge-based representation
Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors

- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 - dimension reduction
- Method 2 - direct learning

Window-based Co-occurrence Matrix

Example

- Window length=1
- Left or right context
- Corpus:

I love NTU.
I love deep learning.
I enjoy learning.

Counts	I	love	enjoy	NTU	deep	learning
I	0	2	1	0	0	0
love	2	0	0	1	1	0
enjoy	1	0	0	0	0	1
NTU	0	1	0	0	0	0
deep	0	1	0	0	0	1
learning	0	0	1	0	1	0

Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity \rightarrow poor robustness

Idea: low dimensional word vector

Meaning Representations in Computers

Knowledge-based representation
Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors

- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 - dimension reduction
- Method 2 - direct learning

Low-Dimensional Dense Word Vector

Method 1: dimension reduction on the matrix
Singular Value Decomposition (SVD) of co-occurrence matrix X

Low-Dimensional Dense Word Vector

Method 1: dimension reduction on the matrix
Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations

syntactic relations

Issues:

- computationally expensive: $O\left(\mathrm{mn}^{2}\right)$ when $\mathrm{n}<\mathrm{m}$ for nx m matrix
- difficult to add new words

Idea: directly learn low-dimensional word vectors

Word Representation

Knowledge-based representation
Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors

- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 - dimension reduction
- Method 2 - direct learning \rightarrow word embedding

Word Embedding

Method 2: directly learn low-dimensional word vectors

- Learning representations by back-propagation. (Rumelhart et al., 1986)
- A neural probabilistic language model (Bengio et al., 2003)
- NLP (almost) from Scratch (Collobert \& Weston, 2008)
- Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)

Word Embedding Benefit

Given an unlabeled training corpus, produce a vector for each word that encodes its semantic information. These vectors are useful because:
(1) semantic similarity between two words can be calculated as the cosine similarity between their corresponding word vectors
(2) word vectors as powerful features for various supervised NLP tasks since the vectors contain semantic information
(3) propagate any information into them via neural networks and update during training

Word2Vec Skip-Gram

Mikolov et al., "Distributed representations of words and phrases and their compositionality," in NIPS, 2013.
Mikolov et al., "Efficient estimation of word representations in vector space," in ICLR Workshop, 2013.

Word2Vec - Skip-Gram Model

Goal: predict surrounding words within a window of each word Objective function: maximize the probability of any context word given the current center word

$$
\begin{gathered}
w_{1}, w_{2}, \cdots, \underbrace{w_{t}}_{\left.w_{I-m}, \cdots, w_{t-1}, w_{t}\right) w_{t+1}, \cdots, w_{t+m}}, \cdots, w_{T-1}, w_{T} \\
p\left(w_{O, 1}, w_{O, 2}, \cdots, w_{O, C} \mid w_{I}\right)=\prod_{c=1}^{C} p\left(w_{O, c} \mid w_{I}\right) \\
C(\theta)=-\sum_{w_{I}} \sum_{c=1}^{C} \operatorname{lontext~window~} \\
\text { target word vector } \\
\text { outside target word }
\end{gathered}
$$

Benefit: faster, easily incorporate a new sentence/document or add a word to vocab

Word2Vec Skip-Gram Illustration

Goal: predict surrounding words within a window of each word

Hidden Layer Weight Matrix \rightarrow Word Embedding Matrix $W_{V \times N}$

Weight Matrix Relation

Hidden layer weight matrix = word vector lookup

$$
h=x^{T} W=W_{(k, .)}:=v_{w_{I}}
$$

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right] \times\left[\begin{array}{ccc}
17 & 24 & 1 \\
23 & 5 & 7 \\
4 & 6 & 13 \\
10 & 12 & 19 \\
11 & 18 & 25
\end{array}\right]=\left[\begin{array}{lll}
10 & 12 & 19
\end{array}\right]
$$

Each vocabulary entry has two vectors: as a target word and as a context word

Weight Matrix Relation

Output layer weight matrix $=$ weighted sum as final score

$$
\begin{aligned}
& s_{j}=h v_{w_{j}}^{\prime} \\
& p\left(w_{j}=w_{O, c} \mid w_{I}\right)=y_{j_{c}}=\frac{\exp \left(s_{j_{c}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)} \\
& p\left(w_{j}=w_{O, c} \mid w_{I}\right)=y_{j_{c}}=\frac{\exp \left(s_{j_{c}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)} \\
& \text { 10,000 words }
\end{aligned}
$$

Each vocabulary entry has two vectors: as a target word and as a context word

Word2Vec Skip-Gram Illustration

Loss Function

Given a target word (w_{I})

$$
C(\theta)=-\log p\left(w_{O, 1}, w_{O, 2}, \cdots, w_{O, C} \mid w_{I}\right)
$$

$$
\begin{aligned}
& =-\log \prod_{c=1}^{C} \frac{\exp \left(s_{j_{c}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)} \\
& =-\sum_{c=1}^{C} s_{j_{c}}+C \log \sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)
\end{aligned}
$$

SGD Update for W^{\prime}

Given a target word (w_{I})

$$
\begin{aligned}
& \frac{\partial C(\theta)}{\partial w_{i j}^{\prime}}=\sum_{c=1}^{C} \frac{\partial C(\theta)}{\partial s_{j_{c}}} \frac{\partial s_{j_{c}}}{\partial w_{i j}^{\prime}}=\sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot h_{i} \\
& \partial C(\theta) \\
& =y_{j_{c}}-\underbrace{}_{\substack{t_{j} \\
=1, e \\
j_{c}}} \text { when } w_{j c} \text { is within the context window } \\
& \partial s_{j_{c}}=y_{j c} \quad \begin{array}{c}
j_{c}, \text {, when } w_{j} c \\
=0, \text { otherwise }
\end{array} \\
& w_{i j}^{\prime}(t+1)=w_{i j}^{\prime}(t)-\eta \cdot \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot h_{i}
\end{aligned}
$$

SGD Update for W

$$
\begin{array}{r}
\frac{\partial C(\theta)}{\partial w_{k i}}=\frac{\partial C(\theta)}{\partial h_{i}} \frac{\partial h_{i}}{\partial w_{k i}}=\sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{k} \\
\frac{h=x^{T} W}{\partial h_{i}}=\sum_{j=1}^{V} \frac{\partial C(\theta)}{\partial s_{j}} \frac{\partial s_{j}}{\partial h_{i}}=\sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \\
s_{j}=v_{w_{j}}^{\prime} \cdot h
\end{array}
$$

$$
w_{i j}^{(t+1)}=w_{i j}^{(t)}-\eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{j}
$$

SGD Update

$$
\begin{array}{ll}
w_{i j}^{\prime}(t+1) & =w_{i j}^{\prime}(t)-\eta \cdot \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot h_{i} \\
v_{w_{j}^{\prime}}^{\prime(t+1)}=v_{w_{j}}^{(t)}-\eta \cdot E I_{j} \cdot h & E I_{j}=\sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \\
w_{i j}^{(t+1)}=w_{i j}^{(t)}-\eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{j} \\
v_{w_{I}}^{(t+1)}=v_{w_{I}}^{(t)}-\eta \cdot E H^{T} & E H_{i}=\sum_{j=1}^{V} E I_{j} \cdot w_{i j}^{\prime} \cdot x_{j}
\end{array}
$$

large vocabularies or large training corpora \rightarrow expensive computations
limit the number of output vectors that must be updated per training instance \rightarrow hierarchical softmax, sampling

Hierarchical Softmax

Idea: compute the probability of leaf nodes using the paths

Negative Sampling

Idea: only update a sample of output vectors

$$
\begin{aligned}
& C(\theta)=-\log \sigma\left(v_{w_{O}}^{\prime}{ }^{T} v_{w_{I}}\right)+\sum_{w_{j} \in \mathcal{W}_{\mathrm{neg}}} \log \sigma\left(v_{w_{j}}^{\prime}{ }^{T} v_{w_{I}}\right) \\
& v_{w_{j}}^{\prime}{ }^{(t+1)}=v_{w_{j}}^{\prime}{ }^{(t)}-\eta \cdot E I_{j} \cdot h E I_{j}=\sigma\left(v_{w_{j}}^{\prime} v_{w_{I}}\right)-t_{j} \\
& v_{w_{I}}^{(t+1)}=v_{w_{I}}^{(t)}-\eta \cdot E H^{T} \quad E H=\sum_{w_{j} \in\left\{w_{O}\right\} \cup \mathcal{N}_{\mathrm{neg}}} E I_{j} \cdot v_{w_{j}}^{\prime}
\end{aligned}
$$

$w_{j} \in\left\{w_{O}\right\} \cup \mathcal{W}_{\mathrm{neg}}$

Negative Sampling

Sampling methods $w_{j} \in\left\{w_{O}\right\} \cup \mathcal{W}_{\text {neg }}$

- Random sampling
- Distribution sampling: w_{j} is sampled from $P(w)$

What is a good $P(w)$?
Idea: less frequent words sampled more often
Empirical setting: unigram model raised to the power of 3/4

Word	Probability to be sampled for "neg"
is	$0.9^{3 / 4}=0.92$
constitution	$0.09^{3 / 4}=0.16$
bombastic	$0.01^{3 / 4}=0.032$

Word2Vec Skip-Gram Visualization

https://ronxin.github.io/wevi/

Skip-gram training data: apple|drink^juice,orange|eat^apple,rice|drink^juice,juice|drink^${ }^{\wedge}$ milk, milk|drink^rice,water|drink^milk,juice|orange^apple,juice|apple^drink ,milk|rice^drink,drink|milk^water,drink|water^juice,drink|juice^water

Word2Vec Variants

Skip-gram: predicting surrounding words given the target word (Mikolov+, 2013)

$$
p\left(w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m} \mid w_{t}\right)
$$

CBOW (continuous bag-of-words): predicting the target word given the surrounding words (Mikolov+, 2013)

$$
p\left(w_{t} \mid w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m}\right)
$$

LM (Language modeling): predicting the next words given the proceeding contexts (Mikolov+, 2013)

$$
p\left(w_{t+1} \mid w_{t}\right)
$$

Practice the derivation by yourself!!

Word2Vec CBOW

Goal: predicting the target word given the surrounding words

Word2Vec LM

Goal: predicting the next words given the proceeding contexts

$$
p\left(w_{t+1} \mid w_{t}\right)
$$

Comparison

Count-based

- Example
- LSA, HAL (Lund \& Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret \& Collobert)
- Pros
\checkmark Fast training
\checkmark Efficient usage of statistics
- Cons
\checkmark Primarily used to capture word similarity
\checkmark Disproportionate importance given to large counts

Direct prediction

- Example
- NNLM, HLBL, RNN, Skipgram/CBOW, (Bengio et al; Collobert \& Weston; Huang et al; Mnih \& Hinton; Mikolov et al; Mnih \& Kavukcuoglu)
- Pros
\checkmark Generate improved performance on other tasks
\checkmark Capture complex patterns beyond word similarity
- Cons
\checkmark Benefits mainly from large corpus
\checkmark Inefficient usage of statistics

Combining the benefits from both worlds \rightarrow GloVe

GloVe

Pennington et al., "GloVe: Global Vectors for Word Representation," in EMNLP, 2014.

GloVe

Idea: ratio of co-occurrence probability can encode meaning
$P_{i j}$ is the probability that word w_{j} appears in the context of word w_{i}

$$
P_{i j}=P\left(w_{j} \mid w_{i}\right)=X_{i j} / X_{i}
$$

Relationship between the words w_{i} and w_{j}

	$\boldsymbol{x}=$ solid	$\boldsymbol{x}=$ gas	$\boldsymbol{x}=$ water	$\boldsymbol{x}=$ random
$P(x \mid$ ice $)$	large	small	large	small
$P(x \mid$ stream $)$	small	large	large	small
$\frac{P(x \mid \text { ice })}{P(x \mid \text { stream })}$	large	small	~ 1	~ 1

GloVe

The relationship of w_{i} and w_{j} approximates the ratio of their co-occurrence probabilities with various w_{k}

$$
\begin{aligned}
& F\left(w_{i}, w_{j}, \tilde{w_{k}}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(w_{i}-w_{j}, \tilde{w_{k}}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(\left(v_{w_{i}}-v_{w_{j}}\right)^{T} v_{\tilde{w}_{k}}^{\prime}\right)=\frac{P_{i k}}{P_{j k}} \quad F(\cdot)=\exp (\cdot) \\
& v_{w_{i}} \cdot v_{\tilde{w}_{k}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{k}}^{\prime}=\log P\left(w_{k} \mid w_{i}\right)
\end{aligned}
$$

GloVe

$$
\begin{aligned}
& v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}=\log P\left(w_{j} \mid w_{i}\right) \quad P_{i j}=X_{i j} / X_{i} \\
& =\log P_{i j}=\log \left(X_{i j}\right)-\log \left(X_{i}\right) \\
& v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}=\log \left(X_{i j}\right) \\
& C(\theta)=\sum_{i, j=1}^{V} f\left(P_{i j}\right)\left(v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}-\log P_{i j}\right)^{2} \\
& C(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
\end{aligned}
$$

fast training, scalable, good performance even with small corpus, and small vectors

Word Vector Evaluation

Intrinsic Evaluation - Word Analogies

Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

$$
x=\arg \max _{x} \frac{\left(v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right)^{T} v_{w_{x}}}{\left\|v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right\|}
$$

Syntactic and Semantic example questions [link]

Issue: what if the information is there but not linear

Intrinsic Evaluation - Word Analogies

Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

Syntactic and Semantic example questions [link]

city---in---state
Chicago : Illinois = Houston: Texas
Chicago : Illinois = Philadelphia : Pennsylvania
Chicago : Illinois = Phoenix : Arizona
Chicago : Illinois = Dallas: Texas
Chicago : Illinois = Jacksonville : Florida
Chicago : Illinois = Indianapolis: Indiana
Chicago : Illinois = Aus8n : Texas
Chicago : Illinois = Detroit : Michigan
Chicago : Illinois = Memphis : Tennessee
Chicago : Illinois = Boston : Massachusetts
capital---country
Abuja : Nigeria = Accra : Ghana
Abuja : Nigeria = Algiers: Algeria
Abuja : Nigeria = Amman : Jordan
Abuja : Nigeria = Ankara : Turkey
Abuja : Nigeria = Antananarivo : Madagascar
Abuja : Nigeria = Apia : Samoa
Abuja : Nigeria = Ashgabat : Turkmenistan
Abuja : Nigeria = Asmara : Eritrea
Abuja : Nigeria = Astana : Kazakhstan

Issue: different cities may have same name
Issue: can change with time

Intrinsic Evaluation - Word Analogies

Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

Syntactic and Semantic example questions [link]

superlative
bad : worst = big : biggest
bad : worst = bright : brightest
bad : worst = cold : coldest
bad : worst = cool : coolest
bad : worst = dark : darkest
bad : worst = easy : easiest
bad : worst = fast : fastest
bad : worst = good : best
bad : worst = great : greatest

past tense

dancing : danced = decreasing : decreased dancing : danced = describing : described dancing : danced = enhancing : enhanced
dancing : danced = falling : fell
dancing : danced = feeding : fed
dancing : danced = flying : flew
dancing : danced = generating : generated
dancing : danced = going : went
dancing : danced = hiding : hid
dancing : danced = hiding : hit

Intrinsic Evaluation - Word Correlation

Comparing word correlation with human-judged scores Human-judged word correlation [link]

Word 1	Word 2	Human-Judged Score
tiger	cat	7.35
tiger	tiger	10.00
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62

Ambiguity: synonym or same word with different POSs

Extrinsic Evaluation - Subsequent Task

Goal: use word vectors in neural net models built for subsequent tasks

Benefit

- Ability to also classify words accurately
- Ex. countries cluster together a classifying location words should be possible with word vectors
- Incorporate any information into them other tasks
- Ex. project sentiment into words to find most positive/negative words in corpus

Concluding Remarks

Low dimensional word vector

- word2vec

\circ GloVe: combining count-based and direct learning
Word vector evaluation
- Intrinsic: word analogy, word correlation
- Extrinsic: subsequent task

