

Word Embeddings

Mar 26th, 2019

Applied Deep Learning

YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW

Review

Meaning Representations in Computers

Knowledge-based representation

Corpus-based representation

- ✓ Atomic symbol
- ✓ Neighbors
 - High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning

Meaning Representations in Computers

Knowledge-based representation

Corpus-based representation

- ✓ Atomic symbol
- ✓ Neighbors
 - High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning

Corpus-based representation

Atomic symbols: *one-hot* representation

car
$$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ ...\ 0]$$

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

Idea: words with similar meanings often have similar neighbors

Meaning Representations in Computers

Knowledge-based representation

Corpus-based representation

- ✓ Atomic symbol
- ✓ Neighbors
 - High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning

Window-based Co-occurrence Matrix

Example

- Window length=1
- Left or right context
- ° Corpus:

I love NTU.
I love deep learning.
I enjoy learning.

similarity > 0

Counts	I	love		enjoy	NTU	deep	learning
I	0	2		1	0	0	0
love	2	0		0	1	1	0
enjoy	1	0	Ī	0	0	0	1
NTU	0	1		0	0	0	0
deep	0	1		0	0	0	1
learning	0	0		1	0	1	0

Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity → poor robustness

Idea: low dimensional word vector

Meaning Representations in Computers

Knowledge-based representation

Corpus-based representation

- ✓ Atomic symbol
- ✓ Neighbors
 - High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning

Low-Dimensional Dense Word Vector

Method 1: dimension reduction on the matrix
Singular Value Decomposition (SVD) of co-occurrence matrix X

Low-Dimensional Dense Word Vector

Method 1: dimension reduction on the matrix

Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations

Issues:

- computationally expensive: O(mn²) when n<m for n x m matrix
- difficult to add new words

Idea: directly learn low-dimensional word vectors

syntactic relations

Word Representation

Knowledge-based representation

Corpus-based representation

- ✓ Atomic symbol
- ✓ Neighbors
 - High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning → word embedding

Word Embedding

Method 2: directly learn low-dimensional word vectors

- Learning representations by back-propagation. (Rumelhart et al., 1986)
- A neural probabilistic language model (Bengio et al., 2003)
- NLP (almost) from Scratch (Collobert & Weston, 2008)
- Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)

Word Embedding Benefit

Given an unlabeled training corpus, produce a vector for each word that encodes its semantic information. These vectors are useful because:

- semantic similarity between two words can be calculated as the cosine similarity between their corresponding word vectors
- word vectors as powerful features for various supervised NLP tasks since the vectors contain semantic information

R

(3) propagate any information into them via neural networks and update during training cat sat song the mat

Word2Vec Skip-Gram

Mikolov et al., "Distributed representations of words and phrases and their compositionality," in NIPS, 2013.

Mikolov et al., "Efficient estimation of word representations in vector space," in *ICLR Workshop*, 2013.

Word2Vec – Skip-Gram Model

Goal: predict surrounding words within a window of each word

Objective function: maximize the probability of any context word given the current center word

$$w_1, w_2, \cdots, \underbrace{w_{t-m}, \cdots, w_{t-1}, \underbrace{w_t}}_{w_I} \underbrace{w_{t+1}, \cdots, w_{t+m}}_{w_O}, \cdots, \underbrace{w_{T-1}, w_T}_{context \ window}$$

$$p(w_{O,1}, w_{O,2}, \cdots, w_{O,C} \mid w_I) = \prod_{c=1}^{C} p(w_{O,c} \mid w_I)$$

$$\underset{c=1}{\operatorname{target \ word}} \underbrace{\operatorname{target \ word}}_{target \ word} \underbrace{\operatorname{vol}_{v_{O}} \underbrace{\operatorname{vol}_{O}} \underbrace{\operatorname{vol}_{v_{O}} \underbrace{\operatorname{vol}_{v_{O}} \underbrace{\operatorname{vol}_{v_{O}} \underbrace{\operatorname{vol}_$$

Benefit: faster, easily incorporate a new sentence/document or add a word to vocab

Word2Vec Skip-Gram Illustration

Goal: predict surrounding words within a window of each word

→ Word Embedding Matrix

Weight Matrix Relation

Hidden layer weight matrix = word vector lookup

$$h = x^T W = W_{(k,.)} := v_{w_I}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Each vocabulary entry has two vectors: as a target word and as a context word

Weight Matrix Relation

Output layer weight matrix = weighted sum as final score

Each vocabulary entry has two vectors: as a target word and as a context word

Word2Vec Skip-Gram Illustration

Loss Function

Given a target word (w_I)

$$C(\theta) = -\log p(w_{O,1}, w_{O,2}, \dots, w_{O,C} \mid w_I)$$

$$= -\log \prod_{c=1}^{C} \frac{\exp(s_{j_c})}{\sum_{j'=1}^{V} \exp(s_{j'})}$$

$$= -\sum_{c=1}^{C} s_{j_c} + C\log \sum_{j'=1}^{V} \exp(s_{j'})$$

SGD Update for W'

Given a target word (w_I)

$$\frac{\partial C(\theta)}{\partial w'_{ij}} = \sum_{c=1}^{C} \frac{\partial C(\theta)}{\partial s_{j_c}} \frac{\partial s_{j_c}}{\partial w'_{ij}} = \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i$$

$$\frac{\partial C(\theta)}{\partial C(\theta)} = \sum_{c=1}^{C} \frac{\partial C(\theta)}{\partial s_{j_c}} \frac{\partial s_{j_c}}{\partial w'_{ij}} = \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i$$

 $\frac{\partial S_{j_c}(\sigma)}{\partial S_{j_c}} = y_{j_c} - \underbrace{(t_{j_c})}_{\text{=1, when } w_{j_c} \text{ is within the context window}}_{\text{=0, otherwise}}$

$$w'_{ij}^{(t+1)} = w'_{ij}^{(t)} - \eta \cdot \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i$$

SGD Update for W

$$\frac{\partial C(\theta)}{\partial w_{ki}} = \frac{\partial C(\theta)}{\partial h_i} \frac{\partial h_i}{\partial w_{ki}} = \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{jc} - t_{jc}) \cdot w'_{ij} \cdot x_k$$

$$\frac{\partial C(\theta)}{\partial h_i} = \sum_{j=1}^{V} \frac{\partial C(\theta)}{\partial s_j} \frac{\partial s_j}{\partial h_i} = \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{jc} - t_{jc}) \cdot w'_{ij}$$

$$s_j = v'_{w_j}^T \cdot h$$

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{jc} - t_{jc}) \cdot w'_{ij} \cdot x_j$$

SGD Update

$$w_{ij}^{\prime (t+1)} = w_{ij}^{\prime (t)} - \eta \cdot \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i \ v_{w_j}^{\prime (t+1)} = v_{w_j}^{\prime (t)} - \eta \cdot EI_j \cdot h$$
 $EI_j = \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot v_{w_j}^{\prime (t+1)} = v_{w_j}^{\prime (t)} - \eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot w_{ij}^{\prime} \cdot x_j$
 $v_{w_I}^{\prime (t+1)} = v_{w_I}^{\prime (t)} - \eta \cdot EH^T$
 $EH_i = \sum_{j=1}^{V} EI_j \cdot w_{ij}^{\prime} \cdot x_j$

large vocabularies or large training corpora \rightarrow expensive computations

limit the number of output vectors that must be updated per training instance → hierarchical softmax, sampling

Hierarchical Softmax

Idea: compute the probability of leaf nodes using the paths

Negative Sampling

Idea: only update a sample of output vectors

$$C(\theta) = -\log \sigma(v'_{w_O}^T v_{w_I}) + \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(v'_{w_j}^T v_{w_I})$$

$$v'_{w_j}^{(t+1)} = v'_{w_j}^{(t)} - \eta \cdot EI_j \cdot h$$
 $EI_j = \sigma(v'_{w_j}^T v_{w_I}) - t_j$

$$EI_j = \sigma(v'_{w_j}^T v_{w_I}) - t_j$$

$$v_{w_I}^{(t+1)} = v_{w_I}^{(t)} - \eta \cdot EH^T$$

$$EH = \sum_{w_j \in \{w_O\} \cup \mathcal{W}_{\text{neg}}} EI_j \cdot v'_{w_j}$$

$$w_j \in \{w_O\} \cup \mathcal{W}_{\text{neg}}$$

Negative Sampling

Sampling methods $w_j \in \{w_O\} \cup \mathcal{W}_{\mathrm{neg}}$

- Random sampling
- \circ Distribution sampling: w_j is sampled from P(w)

What is a good P(w)?

Idea: less frequent words sampled more often

Empirical setting: unigram model raised to the power of 3/4

Word	Probability to be sampled for "neg"
is	$0.9^{3/4} = 0.92$
constitution	$0.09^{3/4} = 0.16$
bombastic	$0.01^{3/4} = 0.032$

Word2Vec Skip-Gram Visualization

https://ronxin.github.io/wevi/

Skip-gram training data:

apple | drink^juice, orange | eat^apple, rice | drink^juice, juice | drink^milk, milk | drink^rice, water | drink^milk, juice | orange^apple, juice | apple^drink, milk | rice^drink, drink | milk^water, drink | water^juice, drink | juice^water

Word2Vec Variants

Skip-gram: predicting surrounding words given the target word (Mikolov+, 2013)

better

$$p(w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m} \mid w_t)$$

CBOW (continuous bag-of-words): predicting the target word given the surrounding words (Mikolov+, 2013)

$$p(w_t \mid w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m})$$

LM (Language modeling): predicting the next words given the proceeding contexts (Mikolov+, 2013)

first

$$p(w_{t+1} \mid w_t)$$

Practice the derivation by yourself!!

Word2Vec CBOW

Goal: predicting the target word given the surrounding words

$$p(w_t \mid w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m})$$

Word2Vec LM

Goal: predicting the next words given the proceeding contexts

$$p(w_{t+1} \mid w_t)$$

Comparison

Count-based

- Example
 - LSA, HAL (Lund & Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret & Collobert)
- Pros
 - ✓ Fast training
 - ✓ Efficient usage of statistics
- Cons
 - ✓ Primarily used to capture word similarity
 - ✓ Disproportionate importance given to large counts

Direct prediction

- Example
 - NNLM, HLBL, RNN, Skipgram/CBOW, (Bengio et al; Collobert & Weston; Huang et al; Mnih & Hinton; Mikolov et al; Mnih & Kavukcuoglu)
- Pros
 - ✓ Generate improved performance on other tasks
 - ✓ Capture complex patterns beyond word similarity
- Cons
 - ✓ Benefits mainly from large corpus
 - ✓ Inefficient usage of statistics

Combining the benefits from both worlds → GloVe

Pennington et al., "Glove: Global Vectors for Word Representation," in EMNLP, 2014.

Idea: ratio of co-occurrence probability can encode meaning

 P_{ij} is the probability that word w_j appears in the context of word w_i

$$P_{ij} = P(w_j \mid w_i) = X_{ij}/X_i$$

Relationship between the words w_i and w_j

	x = solid	x = gas	x = water	x = random
$P(x \mid ice)$	large	small	large	small
$P(x \mid \text{stream})$	small	large	large	small
$\frac{P(x \mid \text{ice})}{P(x \mid \text{stream})}$	large	small	~ 1	~ 1

The relationship of w_i and w_j approximates the ratio of their co-occurrence probabilities with various w_k

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

$$F(w_i - w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

$$F((v_{w_i} - v_{w_j})^T v'_{\tilde{w}_k}) = \frac{P_{ik}}{P_{jk}} \qquad F(\cdot) = \exp(\cdot)$$

$$v_{w_i} \cdot v'_{\tilde{w}_k} = v_{w_i}^T v'_{\tilde{w}_k} = \log P(w_k \mid w_i)$$

$$v_{w_{i}} \cdot v'_{\tilde{w}_{j}} = v_{w_{i}}^{T} v'_{\tilde{w}_{j}} = \log P(w_{j} \mid w_{i})$$

$$= \log P_{ij} = \log(X_{ij}) - \log(X_{i})$$

$$v_{w_{i}}^{T} v'_{\tilde{w}_{j}} + b_{i} + \tilde{b}_{j} = \log(X_{ij})$$

$$C(\theta) = \sum_{i,j=1}^{V} f(P_{ij})(v_{w_{i}} \cdot v'_{\tilde{w}_{j}} - \log P_{ij})^{2}$$

$$C(\theta) = \sum_{i,j=1}^{V} f(X_{ij})(v_{w_{i}}^{T} v'_{\tilde{w}_{j}} + b_{i} + \tilde{b}_{j} - \log X_{ij})^{2}$$

fast training, scalable, good performance even with small corpus, and small vectors

Word Vector Evaluation

Intrinsic Evaluation – Word Analogies

Word linear relationship $w_A:w_B=w_C:w_x$

$$x = \arg\max_{x} \frac{(v_{w_B} - v_{w_A} + v_{w_C})^T v_{w_x}}{\|v_{w_B} - v_{w_A} + v_{w_C}\|}$$

Syntactic and Semantic example questions [link]

Issue: what if the information is there but not linear

Intrinsic Evaluation – Word Analogies

Word linear relationship $w_A:w_B=w_C:w_x$

Syntactic and **Semantic** example questions [link]

city---in---state

Chicago: Illinois = Houston: Texas

Chicago: Illinois = Philadelphia: Pennsylvania

Chicago: Illinois = Phoenix: Arizona

Chicago: Illinois = Dallas: Texas

Chicago: Illinois = Jacksonville: Florida

Chicago: Illinois = Indianapolis: Indiana

Chicago: Illinois = Aus8n: Texas

Chicago: Illinois = Detroit: Michigan

Chicago: Illinois = Memphis: Tennessee

Chicago: Illinois = Boston: Massachusetts

capital---country

Abuja : Nigeria = Accra : Ghana

Abuja : Nigeria = Algiers : Algeria

Abuja : Nigeria = Amman : Jordan

Abuja : Nigeria = Ankara : Turkey

Abuja: Nigeria = Antananarivo: Madagascar

Abuja : Nigeria = Apia : Samoa

Abuja : Nigeria = Ashgabat : Turkmenistan

Abuja : Nigeria = Asmara : Eritrea

Abuja : Nigeria = Astana : Kazakhstan

Issue: different cities may have same name

Issue: can change with time

Intrinsic Evaluation – Word Analogies

Word linear relationship $w_A:w_B=w_C:w_x$

Syntactic and Semantic example questions [link]

superlative

bad : worst = big : biggest

bad : worst = bright : brightest

bad : worst = cold : coldest

bad : worst = cool : coolest

bad : worst = dark : darkest

bad : worst = easy : easiest

bad : worst = fast : fastest

bad : worst = good : best

bad : worst = great : greatest

past tense

dancing : danced = decreasing : decreased

dancing : danced = describing : described

dancing: danced = enhancing: enhanced

dancing : danced = falling : fell

dancing : danced = feeding : fed

dancing : danced = flying : flew

dancing: danced = generating: generated

dancing : danced = going : went

dancing : danced = hiding : hid

dancing : danced = hiding : hit

Intrinsic Evaluation – Word Correlation

Comparing word correlation with human-judged scores Human-judged word correlation [link]

Word 1	Word 2	Human-Judged Score		
tiger	cat	7.35		
tiger	tiger	10.00		
book	paper	7.46		
computer	internet	7.58		
plane	car	5.77		
professor	doctor	6.62		
stock	phone	1.62		

Ambiguity: synonym or same word with different POSs

Extrinsic Evaluation – Subsequent Task

Goal: use word vectors in neural net models built for subsequent tasks

Benefit

- Ability to also classify words accurately
 - Ex. countries cluster together a classifying location words should be possible with word vectors
- Incorporate any information into them other tasks
 - Ex. project sentiment into words to find most positive/negative words in corpus

Concluding Remarks

Low dimensional word vector

word2vec

GloVe: combining count-based and direct learning

Word vector evaluation

- Intrinsic: word analogy, word correlation
- Extrinsic: subsequent task