

Recurrent Neural Network

Applied Deep Learning

YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Language Modeling

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

Example task: determinate whether a sequence is grammatical or makes more sense

recognize speech
or
wreck a nice beach

If P(recognize speech)
> P(wreck a nice beach)

Output = "recognize speech"

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

N-Gram Language Modeling

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

N-gram language model

 \circ Probability is conditioned on a window of (n-1) previous words

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

Estimate the probability based on the training data

$$P(\text{beach}|\text{nice}) = \frac{C(\text{nice beach})}{C(\text{nice})} \leftarrow \frac{C(\text{ount of "nice beach" in the training data})}{C(\text{ount of "nice" in the training data}}$$

Issue: some sequences may not appear in the training data

N-Gram Language Modeling

Training data:

- The dog ran
- The cat jumped

```
P(jumped | dog) = 0.0001
P(ran | cat) = 0.0001
```

give some small probability→ smoothing

- The probability is not accurate.
- The phenomenon happens because we cannot collect all the possible text in the world as training data.

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

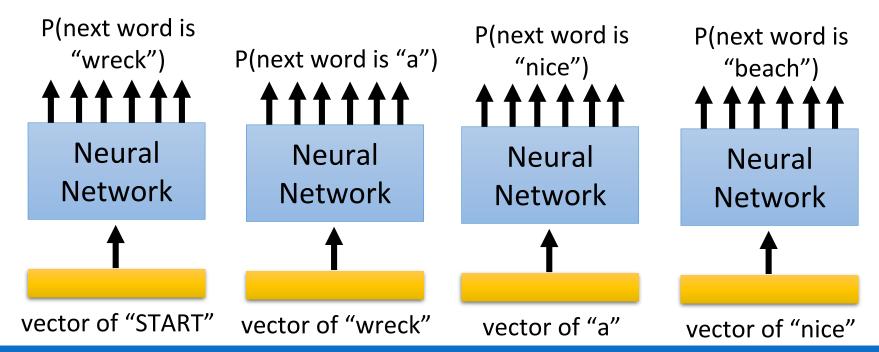
- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Neural Language Modeling

Idea: estimate $P(w_i \mid w_{i-(n-1)}, \cdots, w_{i-1})$ not from count, but from the NN prediction

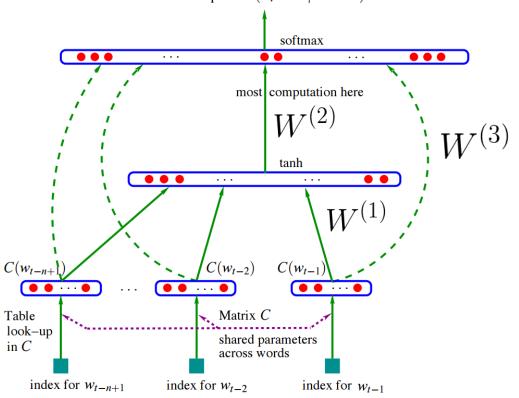
P("wreck a nice beach") = P(wreck|START)P(a|wreck)P(nice|a)P(beach|nice)



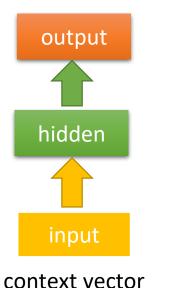
Neural Language Modeling

$$\hat{y} = \operatorname{softmax}(W^{(2)}\sigma(W^{(1)}x + b^{(1)}) + W^{(3)}x + b^{(3)})$$

$$i-\text{th output} = P(w_t = i \mid context)$$

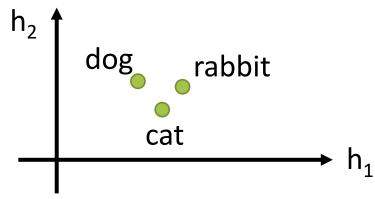


Probability distribution of the next word



Neural Language Modeling

The input layer (or hidden layer) of the related words are close



 If P(jump|dog) is large, P(jump|cat) increase accordingly (even there is not "... cat jump ..." in the data)

Smoothing is automatically done

Issue: fixed context window for conditioning

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

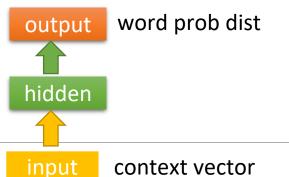
- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

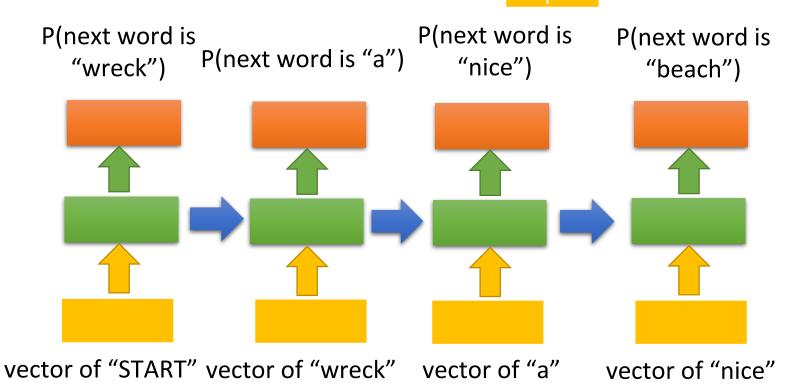
- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Recurrent Neural Network

Idea: condition the neural network on <u>all previous words</u> and tie the weights at each time step

Assumption: temporal information matters





Idea: pass the information from the previous hidden layer to leverage all contexts

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

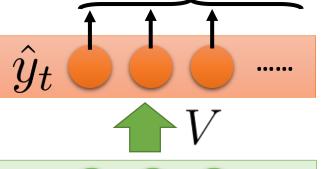
RNNLM Formulation

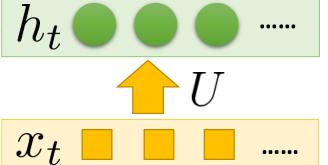
At each time step,

$$h_t = \sigma(Wh_{t-1} + Ux_t)$$
$$\hat{y}_t = \operatorname{softmax}(Vh_t)$$

$$P(x_{t+1} = w_j \mid x_1, \cdots, x_t) = \hat{y}_{t,j}$$

probability of the next word





vector of the current word

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

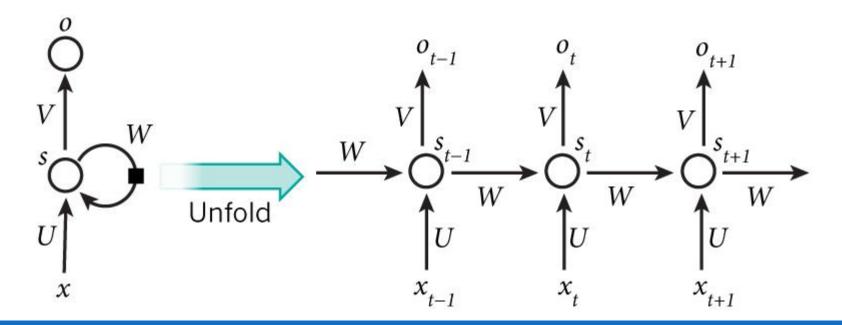
Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

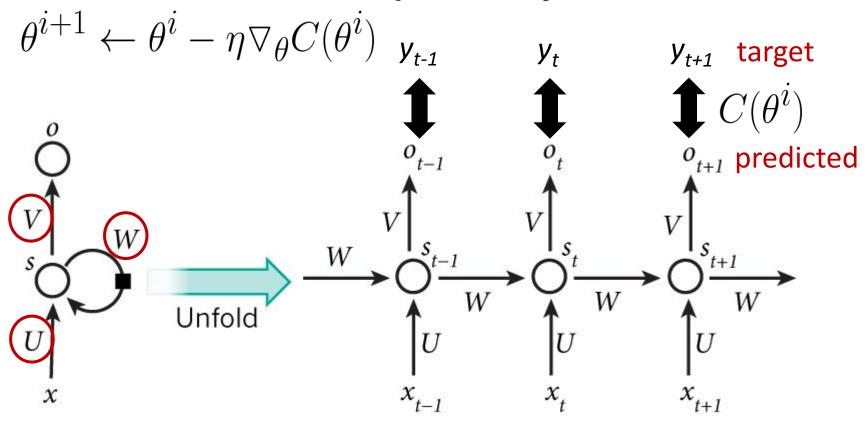
Recurrent Neural Network Definition

$$s_t = \sigma(W s_{t-1} + U x_t)$$
 $\sigma(\cdot)$: tanh, ReLU $o_t = \operatorname{softmax}(V s_t)$



Model Training

All model parameters $heta=\{U,V,W\}$ can be updated by



Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

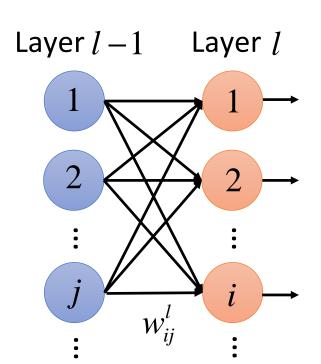
Recurrent Neural Network

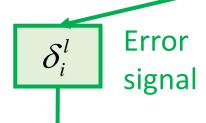
- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Backpropagation

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$





Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \odot \nabla C(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \odot (W^{L})^{T} \delta^{L}$$

$$\vdots$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\cdot$$

$$\begin{cases} a_j^{l-1} & l > 1 \\ x_j & l = 1 \end{cases}$$

Forward Pass

$$z^{1} = W^{1}x + b^{1}$$

$$a^{1} = \sigma(z^{1})$$

$$\vdots$$

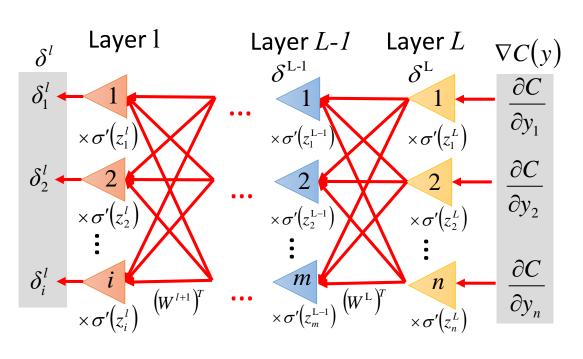
$$z^{l} = W^{l}a^{l-1} + b^{l}$$

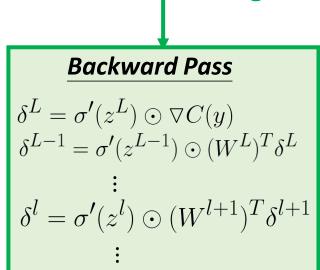
$$a^{l} = \sigma(z^{l})$$

$$\vdots$$

Backpropagation

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

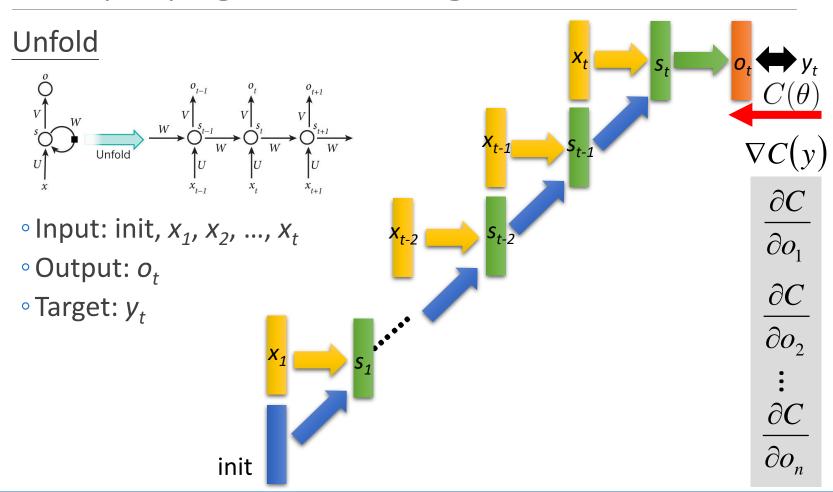


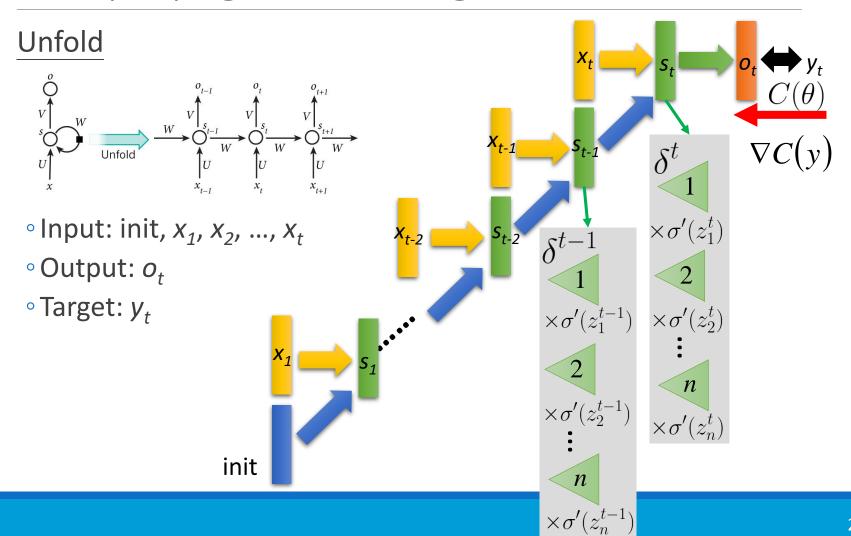


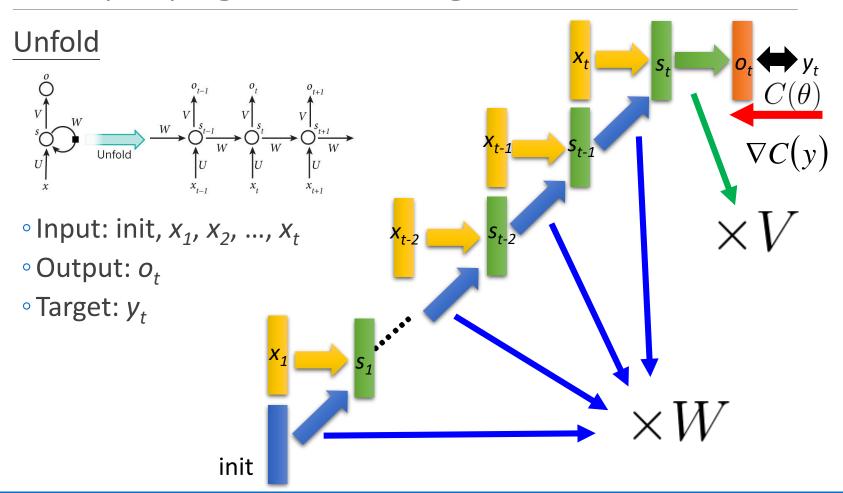
 δ_i^l

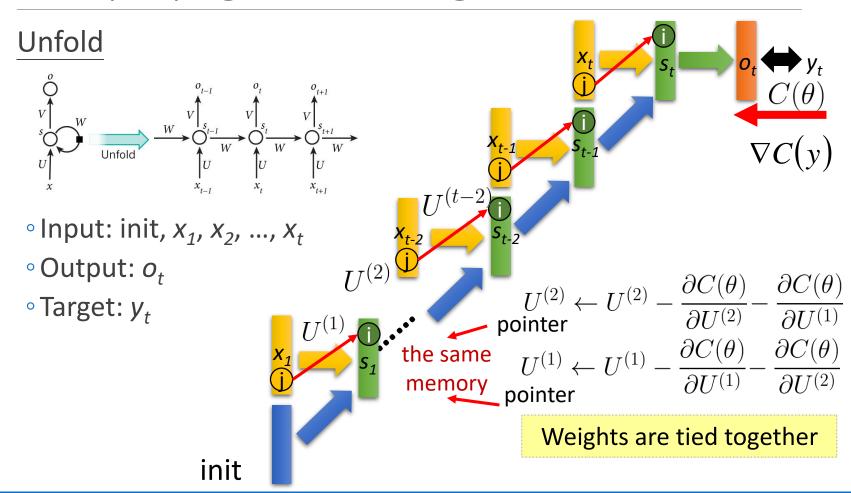
Error

signal

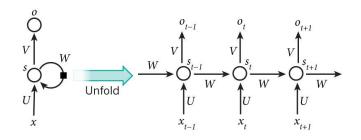








Unfold

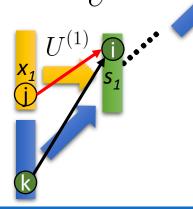


init

• Input: init, *x*₁, *x*₂, ..., *x*_t

 \circ Output: o_t

∘ Target: *y*_t



$$W^{(2)} \leftarrow W^{(2)} - \frac{\partial C(\theta)}{\partial W^{(2)}} - \frac{\partial C(\theta)}{\partial W^{(1)}}$$
$$W^{(1)} \leftarrow W^{(1)} - \frac{\partial C(\theta)}{\partial W^{(1)}} - \frac{\partial C(\theta)}{\partial W^{(2)}}$$

Weights are tied together

Forward Pass:

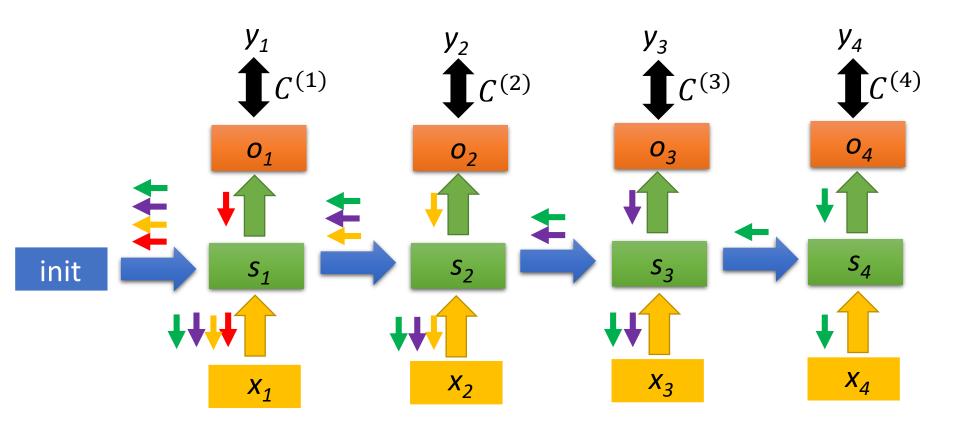
Compute s₁, s₂, s₃, s₄

BPTT

Backward Pass:

 \rightarrow For $C^{(4)} \rightarrow$ For $C^{(3)}$

 \rightarrow For $C^{(2)}$ \rightarrow For $C^{(1)}$



Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

RNN Training Issue

The gradient is a product of Jacobian matrices, each associated with a step in the forward computation

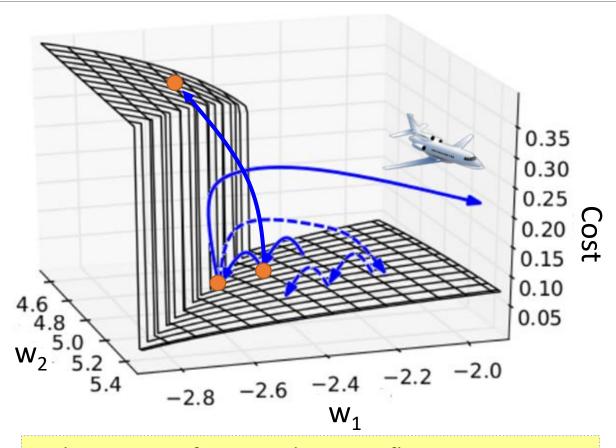
Multiply the same matrix at each time step during backprop

$$\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$$

The gradient becomes very small or very large quickly

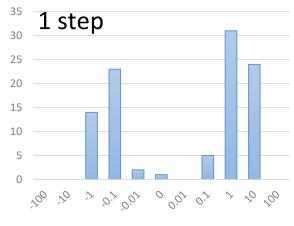
vanishing or exploding gradient

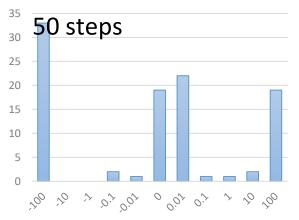
Rough Error Surface



The error surface is either very flat or very steep

Vanishing/Exploding Gradient Example



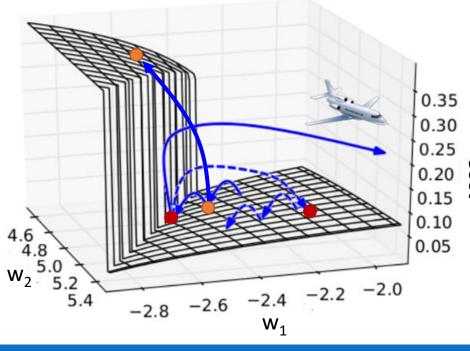


Possible Solutions

Recurrent Neural Network

Exploding Gradient: Clipping

clipped gradient



Idea: control the gradient value to avoid exploding

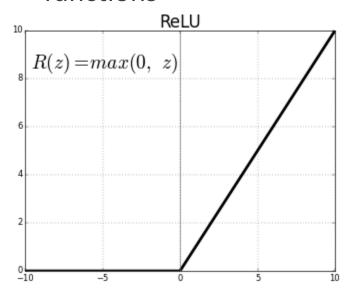
Parameter setting: values from half to ten times the average can still yield convergence

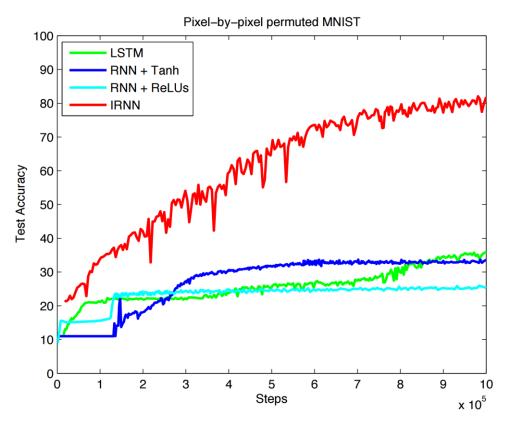
Cost

Vanishing Gradient: Initialization + ReLU

IRNN

- \circ initialize all W as identity matrix I
- use ReLU for activation functions

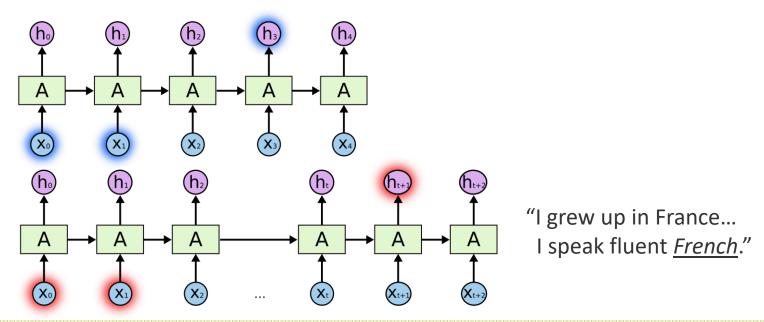




Vanishing Gradient: Gating Mechanism

RNN models temporal sequence information

• can handle "long-term dependencies" in theory



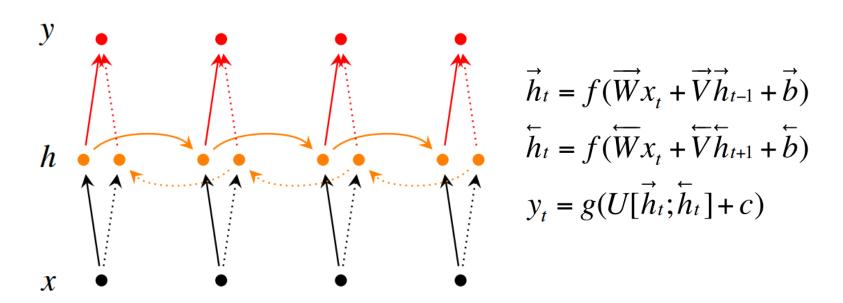
Issue: RNN cannot handle such "long-term dependencies" in practice due to vanishing gradient

→ apply the gating mechanism to directly encode the long-distance information

Extension

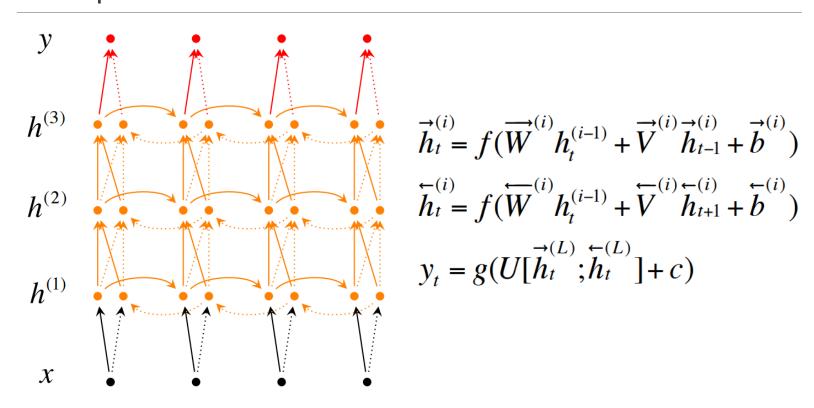
Recurrent Neural Network

Bidirectional RNN



 $h = \begin{bmatrix} \vec{h}; \vec{h} \end{bmatrix}$ represents (summarizes) the past and future around a single token

Deep Bidirectional RNN



Each memory layer passes an intermediate representation to the next

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Input Domain – Sequence Modeling

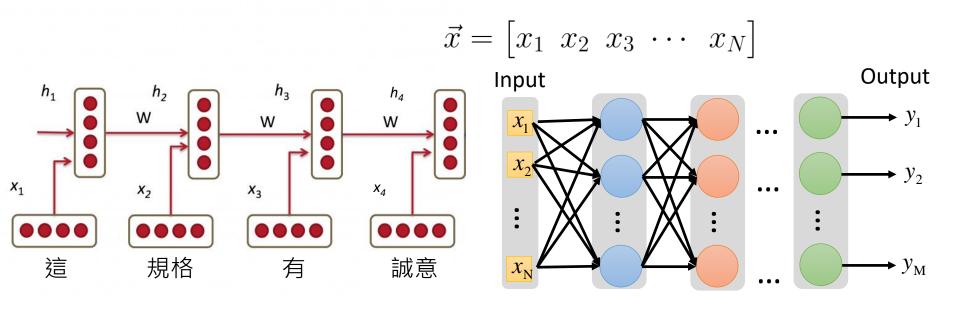
Idea: aggregate the meaning from all words into a vector

Method: *N*-dim Basic combination: average, sum 這 • Neural combination: $[0.2 \ 0.6 \ 0.3 \ \cdots \ 0.4]$ (this) ✓ Recursive neural network (RvNN) 規格 $[0.9 \ 0.8 \ 0.1 \ \cdots \ 0.1]$ ✓ Recurrent neural network (RNN) (specification) ✓ Convolutional neural network (CNN) 有 $[0.1 \ 0.3 \ 0.1 \ \cdots \ 0.7]$ (have) 誠意 $[0.5 \ 0.0 \ 0.6 \ \cdots \ 0.4]$ (sincerity)

How to compute $\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_N \end{bmatrix}$

Sentiment Analysis

Encode the sequential input into a vector using RNN



RNN considers temporal information to learn sentence vectors as the input of classification tasks

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

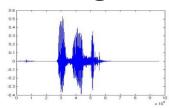
Output Domain – Sequence Prediction

POS Tagging

"推薦我台大後門的餐廳"

→ 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



→ "大家好"

Machine Translation

"How are you doing today?" → "你好嗎?"

The output can be viewed as a sequence of classification

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

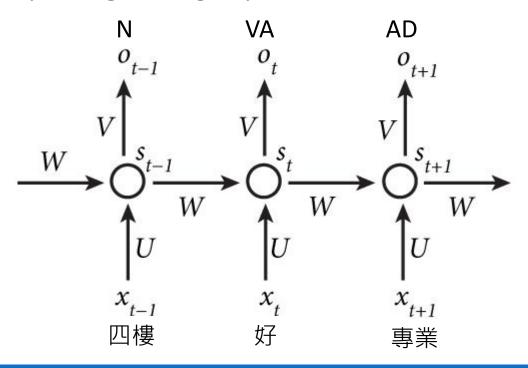
- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

POS Tagging

Tag a word at each timestamp

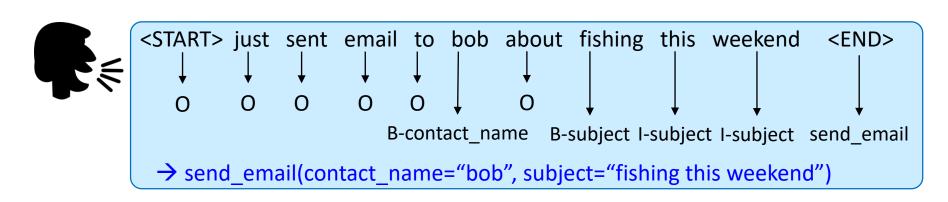
- Input: word sequence
- Output: corresponding POS tag sequence



Natural Language Understanding (NLU)

Tag a word at each timestamp

- Input: word sequence
- Output: IOB-format slot tag and intent tag



Temporal orders for input and output are the same

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

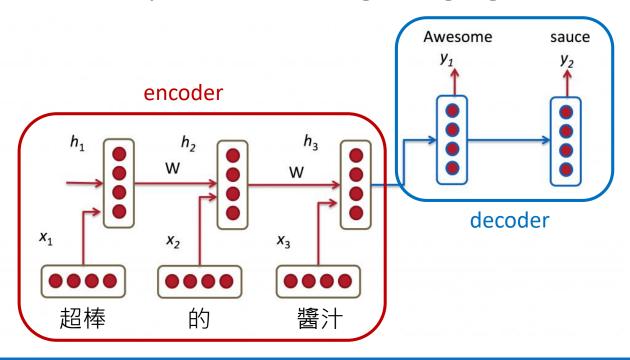
- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

- Sequential Input
- Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Machine Translation

Cascade two RNNs, one for encoding and one for decoding

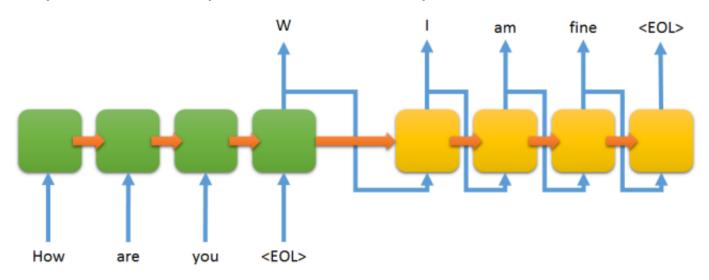
- Input: word sequences in the source language
- Output: word sequences in the target language



Chit-Chat Dialogue Modeling

Cascade two RNNs, one for encoding and one for decoding

- Input: word sequences in the question
- Output: word sequences in the response



Temporal ordering for input and output may be different

Sci-Fi Short Film - SUNSPRING

Concluding Remarks

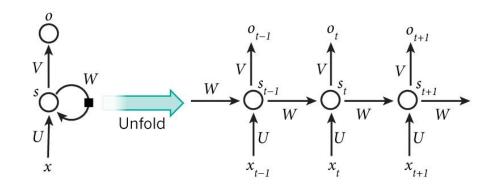
Language Modeling

• RNNLM

Recurrent Neural Networks

Definition

$$s_t = \sigma(W s_{t-1} + U x_t)$$
$$o_t = \operatorname{softmax}(V s_t)$$



- Backpropagation through Time (BPTT)
- Vanishing/Exploding Gradient

- Sequential Input: Sequence-Level Embedding
- Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)