

(M J{WY: ,: !

Outline

Language Modeling

o> N-gram Language Model

o Feed-Forward Neural Language Model

o Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network

o Definition

° Training via Backpropagation through Time (BPTT)
° Training Issue

Applications
o Sequential Input

o Sequential Output
o Aligned Sequential Pairs (Tagging)
> Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

(M J{WY: ,: !

Outline

Language Modeling

o

(¢]

(¢]

(M J{WY: ,: !

Language Modeling

Goal: estimate the probability of a word sequence

P(’UJl,"' awm)

Example task: determinate whether a sequence is grammatical or
makes more sense

If P(recognize speech)

recognize speech > P(wreck a nice beach)
| ulh » or Output =
wreck a nice beach “recognize speech”

(M J{WY: ,: !

Outline

Language Modeling
o N-gram Language Model

(¢]

(¢]

(M J{WY: ,: !

N-Gram Language Modeling

Goal: estimate the probability of a word sequence

P(’UJl,"' awm)

N-gram language model
o Probability is conditioned on a window of (n 1) previous words

P(wla" , W HP’LU@|’(U1, © L, Wi— 1 prz‘wz (n—1)» '7wi—1)

o Estimate the probablllty based on the tramlng data

C(nice beach)‘— Count of “nice beach” in the training data

P(beach|nice) =

C(nice) <= Count of “nice” in the training data

Issue: some sequences may not appear in the training data

(M J{WY: ,: !

N-Gram Language Modeling

Training data:
°cThe dogran
° The cat jumped

P(jumped | dog) =\G\ 0.0001 | give some small probability
P(ran | cat) =\ 0.0001 - smoothing

» The probability is not accurate.

» The phenomenon happens because we cannot collect all the
possible text in the world as training data.

(M J{WY: ,: !

Outline
Language Modeling

o

o Feed-Forward Neural Language Model

(¢]

(M J{WY: _' !

Neural Language Modeling

Idea: estimate P(w; | wi—pm-1), - ,wi—1) not from count, but
from the NN prediction

P(“wreck a nice beach”) = P(wreck |START)P(a|wreck)P(nice|a)P(beach|nice)

P(next word is P(next word is P(next word is
“wreck”) P(next word is “a”) “nice” “beach”)
Neural Neural Neural Neural

Network Network Network Network
vector of “START” vector of “wreck” vector of “a” vector of “nice”

(M J{WY: ,: !

Neural Language Modeling
§ = softmax(W @ o(WVz + bD) + WOz + p®)

i-th output = P(w;, = i| context)

softmax _ PrObab”lty diStribution
> . _ses) of the next word
most| computation here \\
2) \
W (3
W

shared parameters
across words

context vector

index for wy_pq1 index for w;_» index for w;_;

Bengio et al., “A Neural Probabilistic Language Model,” in JMLR, 2003.

(M J{WY: ,: !

Neural Language Modeling

The input layer (or hidden layer) of the related words are close

dog rabbit
®

@
cat

>h1

°|If P(jump|dog) is large, P(jump|cat) increase accordingly (even
there is not “... cat jump ...” in the data)

Smoothing is automatically done

Issue: fixed context window for conditioning

(M J{WY: ,: !

Outline
Language Modeling

o

(¢]

> Recurrent Neural Network Language Model (RNNLM)

(M J{WY: ,: !

Recurrent Neural Network

|Idea: condition the neural network on all previous words and
tie the weights at each time step

Assumption: temporal information matters

(M J{WY: ,: :

RNN Language Modelin

W word prob dist

context vector

P(next word is P(next wordis P(next word is

l(”

“wreck”) P(next word is “nice” “beach”)

el o 2
e 2t 2

vector of “START” vector of “wreck” vector of “a” vector of “nice”

Idea: pass the information from the previous hidden layer to leverage all contexts

(M J{WY: ,: !

Outline

o
(¢]

(¢]

Recurrent Neural Network

(e]

(e]

(¢]

(M J{WY: ,: :

RNNLM Formulation
At each time step,
h, — O'(Wh 4 U) probability of the next word
t — t—1 t
1y = softmax(V hy)

Fal

P(ZUH_l — W | 0 P ?‘/Et) = Yt,j

vector of the current word

(M J{WY: ,: !

Outline

o
(¢]

(¢]

Recurrent Neural Network
o Definition

(e]

(¢]

(M J{WY: ,: !

Recurrent Neural Network Definition

St = J(Wst—l —— Ugjt) J(-):tanh, RelLU
O = softmax(VSt)

0

O %1 . Ots1

<
<
—
w
=,
1%
<
1%

25

X X X X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

(M J{WY: ,: !

Model Training
All model parameters § = {U, V. W} can be updated by

141 1 1
0" «— 0 — WQO(Q) Vi Y, V., target

; 1 1 tow
6

% 0,., predicted

|
50:5@ :>—>Ot"—>CT)t—>OL>

Unfold T W

t_

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

(M J{WY: ,: !

Outline

o
(¢]

(¢]

Recurrent Neural Network

(e]

° Training via Backpropagation through Time (BPTT)

(¢]

QuLas ,: !

Backpropagation

Layer| -1 Layer |

5l _ UI(ZZ) 0 (Wl+l)T5l+l

Backward Pass Forward Pass
b =o'zl e ve(y) Jd—wle 4+l
5L—1 — /o L—1 @ WL T5L
a.(z) O () CLl _ O'(Zl)

(M J{WY: ,: !

oc(9)
Backpropagation dw,
5 Layer 1 Laye_r L-1 layerlL ve(y)

5L1 5L

Backward Pass

ol =o' (21 @ vC(y)
5L—1 — O,I(zL—l) @ (WL)T(sL

5l _ O',(Zl) o (Wl+1)T5l—|—l

CuLas ,: !

Backpropagation through Time (BPTT)

Unfold |
o |f_“ -pl«nt
A e B D Osé’!
UI Unfold TU W TU v TU v VC(y)
oC
°|lnput: init, X, X,, ..., X, E
> Qutput: o, 1
oTarget: y, @
00,

6C

(M J{WY: ,: !

Backpropagation through Time (BPTT)

Unfold
o o o
q N
O:) ﬁ >0 W:OW:OW:
1 bbb

°|lnput: init, X, X,, ..., X,

> Qutput: o,

oTarget: y,

CuLas ,: !

Backpropagation through Time (BPTT)

Unfold I,:
S e % By
Z(T) 9 w ‘V(T)SH ‘ZT)S: “g‘gm
UT ﬁ 'TUW'TUW'TUW' _"/
°|lnput: init, X, X,, ..., X, _ _/l
> Qutput: o,
oTarget: y, |i

init I

CuLas ,: !

Backpropagation through Time (BPTT)

Unfold
VT VT VT VT
A~ W S S St
8 ﬁ S T TR T
UT TU TU TU

°|lnput: init, X, X,, ..., X,

cQutput: o (2)
- Target: y | y , v ey - S0 T
"7t U(l) * 7 — pointer oU)

. oU)
D " the same Ul) _ oC(8) oC(0)

memor :
LY pointer

Weights are tied together

(M J{WY: ,: !

Backpropagation through Time (BPTT)

Unfold
o o o
q N
O:) ﬁ >0 W:OW:OW:
1 bbb

°|lnput: init, X, X,, ..., X,

> Qutput: o,

oTarget: y,

Weights are tied together

init

Compute s;, S,, S3, Sy weeee
3 =>ForCY =»For ¢
BPTT Backward Pass: For C@ =For C(D

Y1 Yo Y3 Va4

tc(ﬂ tcm tcm tcm)
- Lo, 0
t +

-

t
B = [= =

u ﬁ Wi W

(M J{WY: ,: !

Outline

o
(¢]

(¢]

Recurrent Neural Network

(e]

(e]

> Training Issue

(M J{WY: ,: !

RNN Training Issue

The gradient is a product of Jacobian matrices, each
associated with a step in the forward computation

Multiply the same matrix at each time step during backprop

6l _ O',(ZZ) @[(WZ+1)T]§Z+1

The gradient becomes very small or very large quickly
— vanishing or exploding gradient

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

(M J{WY: ,: !

Rough Error Surface

7 e L o35

x '0.30
\ '0.25

== '0.20
'0.15
'0.10
'0.05

150D

»
%)

-2.0

<
N
VN

24 =—2.2

4 a6
Wy

The error surface is either very flat or very steep

]

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [

]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

QuLas ,: !

Vanishing/Exploding Gradient Example

35 35

35
. 1step . 2 steps . 5 steps
25 25 25
20 20 20
15 15 15
10 H 10 H 10 H H
5 5
O . 0 H==i - .=l HHHH
:\90 DN 0\, Q QQ\, > S Q\, Q 0'\, ARSI \90 NN 0'\, Q Q\, > Y
35 35 35
., 10 steps ,, 20 steps “ steps
25 25 25
20 20 20
15 15 15
10 H H 10 H H 10
5 5
H HH HHHH 0 HEHH E:i 0 - —
DN Q'\,QQ'\,Q'\,'\,.\/ KRB QN,QQ'\,Q'\,'\,\, :\,Qol\,ofxxg'\,og'\,gx'\,\,

Possible Solutions

Recurren t Neural Network

- 0000000000000 0000000000000

(M J{WY: ,: !

Exploding Gradient: Clipping

clipped gradient
TTTIIILIE &

'0.35
'0.30
0.25
0.20
0.15
0.10
0.05

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [

1s0D

Idea: control the gradient value to
avoid exploding

Algorithm 1 Pseudo-code for norm clipping
g+ G5
if |[g|| > threshold then

g, — threshoidg

l&ll
end if

Parameter setting: values from half to
ten times the average can still yield

convergence

]

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

(M J{WY: ,: :

Vanishing Gradient: Initialization + RelLU

I R N N Pixel-by-pixel permuted MNIST
oinitialize all W as identity |[—wsw |
matrix / ZZ AN RolUs
ouse RelLU for activation | -
functions ol
. ReLU

50

Test Accuracy

R(z) =max(0, z)

40

Le et al., “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units,” arXiv, 2016. [

https://arxiv.org/abs/1504.00941

(M J{WY: ,: !

Vanishing Gradient: Gating Mechanism

RNN models temporal sequence information
o can handle “long-term dependencies” in theory

& ® (?9

r 1t 1 !

A » A — A » A — A

& & o

® O h) @P &

T T T T T “I grew up in France...
A=A A A LA A | speak fluent French.”

Issue: RNN cannot handle such “long-term dependencies” in practice due to vanishing gradient
> apply the gating mechanism to directly encode the long-distance information ?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(M J{WY: ,: !

Extension

Recurrent Neural Network

- 0000000000000 0000000000000

(uLas ,:.
Bidirectional RNN
/“ /‘ /“ /‘ o= x4 Vhos +5)
h o/;,—\N “o0 Y8 X 7zt=f(Wxt+VZ;+l+E)
N AT N A A -
‘_:': '_.-': \;‘ \ v, =8WUlh:;h:i]+c)

h = [l_{, E] represents (summarizes) the past and future around a single token

(M J{WY: ,: !

Deep Bidirectional RNN

hi= fOV B4V hia+b)

(i) (i-1) —() (@) <)
h: = f(W h +V hw+b)

—(L) «(L)

= g(U[hr ;ht]+ C)

N

Each memory layer passes an intermediate representation to the next

(M J{WY: ,: !

Outline

(¢]
(¢]

(¢]

Applications

(¢]

o

(M J{WY: ,: !

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the

output domain Y
f: X >Y

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure,
probability distribution

Network design should leverage input and output domain properties

(M J{WY: ,: !

Outline

(¢]
(¢]

(¢]

Applications
o Sequential Input

o

(¢]

(M J{WY: ,: !

Input Domain — Sequence Modeling

|dea: aggregate the meaning from all words into a vector

Method: N-dim
c Basic combination: average, sum \
L . [|
© Neural Comb|nat|0n ;E _02 06 03 L 04_
v'Recursive neural network (RVNN) ;Eth';))]
v'Recurrent neural network (RNN) ‘.’%Jh:'. 0.9 0.8 0.1 --- 0.1
(specification)
v'Convolutional neural network (CNN) P 0103 01 ... 0.7
(have) L ' . o
R [0.5 0.0 0.6 --- 0.4]
(sincerity) ‘
How to compute & = :.7;1 Xo I3 - -- .Cl’:N}

(M J{WY: ,: !

Sentiment Analysis

Encode the sequential input into a vector using RNN

f:[:m To XT3 -~ .cr:N}

(0000 |(ecee| (ece0|
R Z=] Ak =

———

rfmlt @_‘ H:.
0000

RNN considers temporal information to learn sentence vectors as the input
of classification tasks

(M J{WY: ,: !

Outline

(¢]
(¢]

(¢]

Applications

(¢]

o Sequential Output

(¢]

(M J{WY: ,: !

Output Domain — Sequence Prediction

POS Tagging

s s g H#EE/VV B/PN SA/NR PI/NN
T&%?‘Zmﬁfﬁﬁﬁﬁ@%ﬁ% — E],(J/DEG %E}?/NN

Speech Recognition

— "ARE"
. X

1 2 3 4 6 6 7 8 9 i

Machine Translation

“How are you doing today?” ——— “{RIFIE?"

The output can be viewed as a sequence of classification

(M J{WY: ,: !

Outline

(¢]
(¢]

(¢]

Applications

(¢]

o Sequential Output
o Aligned Sequential Pairs (Tagging)

(¢]

(M J{WY: ,: !

POS Tagging

Tag a word at each timestamp
° Input: word sequence
o Qutput: corresponding POS tag sequence

N VA AD
e 0, 0
£
14 St—I St St+1
W W W

TU U TU
xt—l xt xt+1
V018 i B

(M J{WY: _' !

Natural Language Understanding (NLU)

Tag a word at each timestamp
° Input: word sequence
o Qutput: IOB-format slot tag and intent tag

(<START> just sent email to bob about fishing this weekend <END>)

o oo ool ol || |

B-contact_name B-subject I-subject I-subject send_email

| send_email(contact_name="bob”, subject="fishing this weekend”)

Temporal orders for input and output are the same

(M J{WY: ,: :

Outline

(¢]
(¢]

(¢]

Applications

(¢]

o Sequential Output

(¢]

> Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

(M J{WY: ,: !

Machine Translation

Cascade two RNNs, one for encoding and one for decoding
o [nput: word sequences in the source language
o Qutput: word sequences in the target language

{ Awesome sauch
Y1

encoder

0000
0000 >

decoder

(M J{WY: ,: !

Chit-Chat Dialogue Modeling

Cascade two RNNs, one for encoding and one for decoding
o [nput: word sequences in the question
o Qutput: word sequences in the response

<EQL=

some - - -

<EOL>

Temporal ordering for input and output may be different

(M J{WY: _' !

Sci-Fi Short Film - SUNSPRING

.‘ | AA

-

SUNSPRING 3

https://www.youtube.com/watch?v=LY7x2lhgj 53

(M J{WY: ,: !

Concluding Remarks

Language Modeling 0
O Ot-1 o Ot41
o RNNLM A A
\% W \% S \%) 174 .
Recurrent Neural Networks L W
> OO O
o Definition U U U U
St = O'(WSt_l + Uili’t) - X1 % el

o; = softmax(V s;)
o Backpropagation through Time (BPTT)
oVanishing/Exploding Gradient

Applications
o Sequential Input: Sequence-Level Embedding

o Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)

