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What is Machine Learning?
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What Computers Can Do?

Programs can do the things you ask them to do
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Program for Solving Tasks

Task: predicting positive or negative given a product review

144
!

“I love this product!” “It claims too much.”  “It’s a little expensive.”

lpr‘ogr‘am.py l program.py l program.py
+ - ?
if input contains “love”, “like”, etc.  if input contains “too much”, “bad”, etc.
output = positive output = negative
"EEE—R LT RIS "BINE TRTER"
l program.py l program.py l program.py
i3 IE ?

Some tasks are complex, and we don’t know how to write a program to solve them.
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Learning = Looking for a Function

Task: predicting positive or negative given a product review

144 o
!

“I love this product It claims too much.”  “It’s a little expensive.”

1 f I f I f

+ - ?
"BEE—K Lm!” RS EEND.. "BRE R ER"

If lf Lf

i3 I ?

Given a large amount of data, the machine learns what the function f should be.
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Learning = Looking for a Function

Speech Recognition

Handwritten Recognition

f( A )= “2”

Weather forecast

f ( Thursday )= “ Saturday”

_ /7
Play video games

)= “move left”
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Machine Learning Framework

X . “It claims too much.”
function input

)7 . = (negative)
function output

Model: Hypothesis Function Set
f, £,

¢

Training Data —4 Training: Pick the best function f ° 1
{06, 9:). 06, 95) -

“Best” Function f \

Testing Data P(Testing: f*(Xr)

{(x,?),...}

Training is to pick the best function given the observed data
Testing is to predict the label using the learned function

I

\<‘

<‘
I
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What is Deep Larning?

A subfield of machine learning
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Stacked Functions Learned by Machine

Production line (£ E4%)

Deep Learning Model

TVAN ,g;,%/—/— R/Z Slmple S|mple Slmple
G Functlon Functlon Functlon
=itk

f: a very complex function

Deep learning usually refers to neural network based model
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Stacked Functions Learned by Machine

Input Layer 1 Layer 2 Layer L Output

vectorx — \\/ A SV @ v labely
R i
J:ﬁﬁ!”
Input \ Y ' Output
Layer Hidden Layers Layer

Features / Representations

Deep Learning attempts to learn (multiple levels of) representations and an output
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Deep v.s. Shallow — Speech Recognition

Shallow Model
o = b
o i FP
aveform spectrogram I A :
“Hello” < | GMM <i<i z
MFECC - Filter bank

Each box is a simple function in the production line:

@ -hand-crafted @ :learned from data
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Deep v.s. Shallow — Speech Recognition

Deep Model

“Hello” <

04

03]

o2

o

) I

o |

02

03]

o4

Yy ee 1 15 3 25 & 85 4 a5
w0t

All functions are learned from data @

e e

.

ﬁ@&

Less engineering labor, but machine learns more

“Bye bye, MFCC” - Deng Li in Interspeech 2014

12
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Deep v.s. Shallow — Image Recognition
Shallow Model

Y ‘monkey?

Y0

http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/ 13
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Deep v.s. Shallow — Image Recognition

Deep Model

All functions are learned from data

Features / Representations

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014 (pp. 818-833)
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Machine Learning v.s. Deep Learning

/ \

describing your data
with features a

model
learning
algorithm

computer can
understand

L J \ J
Y 1

hand-crafted domain-specific  optimizing the weights
knowledge on features

Credit by Dr. Socher 15
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Machine Learning v.s. Deep Learning

Deep Learning

model

representations
learned by machine

learning
algorithm

L J \ J
Y 1

automatically learned optimizing the weights
internal knowledge on features

Deep learning usually refers to neural network based model
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Inspired by Human Brain

......... _-Dendrites q
)

Stimulus

Nucleus = (\\ Presynaptic
g / ;o} cell —)

hill k\
ﬁll ‘\I ocl '

/ l bwy‘k J

Synapse
o 33 f/'
{ : __:\3'00 ) —— ‘Q:_“_‘
2%20V0,0 °2
] ° o

Neurotransmitter
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A Single Neuron

Activation
function

1 b
G(Z) — - /_'

b 1+e 5.
bias Sigmoid function J 7

0

Each neuron is a very simple function
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A neural network is a

complex function:
f:RY > RY

Deep Neural Network

Cascading the neurons to form a neural network

Input Layer 1  Layer 2 Layer L Output

Each layer is a simple function in the production line
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History of Deep Learning

1960s: Perceptron (single layer neural network)

1969: Perceptron has limitation

1980s: Multi-layer perceptron

1986: Backpropagation

1989: 1 hidden layer is “good enough”, why deep?

2006: RBM initialization (breakthrough)

2009: GPU

2010: breakthrough in Speech Recognition (Dahl et al., 2010)
2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
2015: “superhuman” results in Image and Speech Recognition
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Phonemes/Words

Deep Learning Breakthrough

First: Speech Recognition

Acoustic Model WER on RTO3S FSH WER on Hub5 SWB

Traditional Features 27.4% 23.6%

Deep Learning 18.5% (-33%) 16.1% (-32%)

Second: on
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History of Deep Learning

1960s: Perceptron (single layer neural network)

1969: Perceptron has limitation

1980s: Multi-layer perceptron

1986: Backpropagation

1989: 1 hidden layer is “good enough”, why deep?

2006: RBM initialization (breakthrough)

2009: GPU

2010: breakthrough in Speech Recognition (Dahl et al., 2010)
2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
2015: “superhuman” results in Image and Speech Recognition

Why does deep learning show breakthrough in applications after 20107
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Reasons why Deep Learning works

Big Data

Global Information Storage Capacity

in optimally compressed bytes

1986
ANALOG

2.6 exabytes
‘ DIGITAL

DIGITAL STORAGE

0.02 exabytes

2002:

“beginning
of the digital age”
50%

% digital:

1% 3% 25% 94 %

Source:Hilbert, M., & Lépez, P.(2011). The World's Technological Capacity to Store, Communicate, and
Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.net/WarldinfoCapacity.htm|

2007 ANALOG
19 exabytes

- Paper, film, audiotape and vinyl:6%

- Analogvideotapes (VHS, etc): 94 % ANALOG
- Portable media, flash drives: 2%
- Portable hard disks:2.4%

- CDsand minidisks: 6.8%

iGITAL [}

- Compuiter serversand mainframes:8.9 %

- Digitaltape: 11.8 %

- DVD/Blu-ray: 228 % @

-PCharddisks:44.5%
123 billion gigabytes

- Others: < 1 % fincl. chip cards, memary cards, floppy disks,
mabile phones, PDAs, cameras/camcorders, video games)

DIGITAL
280 exabytes

GPU

TITAN X FOR DEEP LEARNING

Training AlexNet

O =2 N WwWhA UL O

Titan X
CUDNN

Titan Black
cubDNN

16-core Xeon CPU Titan
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Why to Adopt GPU for Deep Learning?
GPU is like a brain

Human brains create graphical imagination for mental thinking

BMFIE N
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Why Speed Matters?

Training time
o Big data increases the training time
°Too long training time is not practical

Inference time
o Users are not patient to wait for the responses

Time (ms)
CPU
P4 mm
P40 m

0 50 100 150 200 250 300

GPU enables the real-world applications using the computational power
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Why Deeper is Better?

4
Deeper = More parameters
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Universality Theorem

Any continuous function f

f:RY > RM
can be realized by a network with only hidden layer

Why “deep” not “fat”? %
CCCCC(seje)e)099 S8
\\\\‘\\\‘\\\§ \i‘\ i\‘\ OO O L 4’/ .zi//’/’.‘;r/ //’/
S ‘ G / NN ’l g

TR
AR

7
z
A

http://neuralnetworksanddeeplearning.com/chap4.html 27
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Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters
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Fat + Shallow v.s. Thin + Deep
Hand-Written Digit Classification

°\°
@
P
=
O
o
<L

Parameters

1 hidden layer ——3 hidden layers
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Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters
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How to Apply?
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How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the

output domain Y
f: X >Y

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure,
probability distribution
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Output Domain — Classification

Sentiment Analysis
"BREAAR!" — +
KIE B~ —— -
Speech Phoneme Recognition
— /h/

Handwritten Recognition

A — 2
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Output Domain — Sequence Prediction

POS Tagging

s s g H#EE/VV B/PN SA/NR PI/NN
T&%?‘Zmﬁfﬁﬁﬁﬁ@%ﬁ% — E],(J/DEG %E}?/NN

Speech Recognition

— "ARE"
. X

1 2 3 4 6 6 7 8 9 i

Machine Translation

“How are you doing today?” ——— “{RIFIE?"

Learning tasks are decided by the output domains
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Input Domain —
How to Aggregate Information

Input: word sequence, image pixels, audio signal, click logs
Property: continuity, temporal, importance distribution

Example

°CNN (convolutional neural network): local connections, shared
weights, pooling
o AlexNet, VGGNet, etc.

°RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties
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How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the

output domain Y
f: X >Y

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure,
probability distribution

Network design should leverage input and output domain properties
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“Applied” Deep Learning

/ \

model
learning
algorithm

representations

learned by machine

| J \ )
! T

automatically learned optimizing the weights
internal knowledge on features

How to frame a task into a learning problem and design the corresponding model
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Core Factors for Applied Deep Learning

1. Data: big data

2. Hardware: GPU computing

3. Talent: design algorithms to allow networks to work for
the specific problems




Concluding Remarks

Training
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Concluding Remarks

Inference
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Concluding Remarks

Training&

Main focus: how to apply deep learning to the real-world problems

Inference

Layer #1 Layer #2 Layer

i Neurons Neurons

|

Wijk
\ Neuron

| f@——-y
z|r
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Reference

Reading Materials
> Academic papers will be put in the website

Deep Learning

> Goodfellow, Bengio, and Courville, “Deep Learning,” 2016.
http://www.deeplearningbook.org

> Michael Nielsen, “Neural Networks and Deep Learning”
http://neuralnetworksanddeeplearning.com
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