

Course Logistics

Course Logistics

Instructor: 陳縕儂 Yun-Nung (Vivian) Chen

Time: Tuesday 234, 9:10-12:20

Location: 資104

Website: <u>http://adl.miulab.tw</u>

NTU COOL: https://cool.ntu.edu.tw/courses/175/

Email: adl-ta@csie.ntu.edu.tw

- To ensure timely response, email title should contain "[ADL2019]"
- Do NOT send to our personal emails

Always check the up-to-date information from the website

Applied Deep Learning

National Taiwan University

Computer Science and Information Engineering Yun-Nung (Vivian) Chen The course objective is to enable the students to understand how and why to tackle various problems using deep learning.

Learn More

View Syllabus

NTU COOL

新的課程平台: NTU COOL

- 。課程側錄上傳
- 。作業手寫題直接上傳繳交 (還可以寫 code 呢!)

強大的助教團隊

- 論壇郵件回信
- TA Recitation
- TA Hours

Course Goal

The students are expected to understand

- 1. how deep learning works
- 2. how to frame tasks into learning problems
- 3. how to use toolkits to implement designed models, and
- 4. when and why specific deep learning techniques work for specific problems

Pre-requisites

Course

Required: college-level calculus, linear algebra

Preferred: probability, statistics

Programming

- proficiency in Python; all assignments will be in Python
- GitHub; all assignments will be handed in via GitHub
- Kaggle; all assignments will be submitted to Kaggle

GPU resources are LIMITED, so please consider your available resources for taking this course

GitHub Student Pack

The student plan provides unlimited private repositories

- make your assignments private before the due date
- make them public afterwards

GitHub Education

Home / Students / Student Developer Pack

Learn to ship software like a pro.

There's no substitute for hands-on experience, but for most students, real world tools can be cost prohibitive. That's why we created the GitHub Student Developer Pack with some of our partners and friends: to give students free access to the best developer tools in one place so they can learn by doing.

Join GitHub Education

Grading Policy

- 4 Individual Assignment: 18% x 4 = 72%
 - GitHub code w/ README
 - The score is given based on the ranking list
 - Bonus points for outstanding performance
 - Late policy: 25% off per day late afterwards
- Final Group Project: 25%
- GitHub code, Project document
 - Bonus points for the outstanding work

Others: 5%

Write-up for the guest lecture/company visit

Understanding the difference between "collaboration" and "academic infraction"

Individual Assignments

A1. Dialogue Modeling

A2. Word Representation

A3. Game Playing

A4. Conditional Generation

Final Group Project (2~5 persons)

Choose your preferred project topic

- Proposal (BONUS!): submit your proposal
 - Get additional bonus if other groups choose the same the proposed topics
- Presentation
 - Poster presentation
 - Outstanding projects will be selected for company-sponsored awards/prizes
- Project Report & Code
 - Wrap-up project report
 - GitHub code submission w/ README

The project details will be announced later

How to Get the Registration Code?

Limit: ~100 students per course

Requirements

- Available GPU Resources
- Programming skills
- Fill in the Google Form

Selection order if out of limit

EECS Graduate = EECS (4-yr up) > EECS Others > Others

Tentative Schedule

Week	Торіс	Assignment
1 2019/02/19	Course Logistics & Introduction	
2 2019/02/26	Neural Network Basics & Guest Lecture by Dr. Yang	
3 2019/03/05	Backpropagation + Word Representations	A1 – Dialogue Modeling
4 2019/03/12	Recurrent / Recursive Neural Networks	
5 2019/03/19	TA Recitation	A2 – Word Embeddings
6 2019/03/26	Attention Mechanism	
7 2019/04/02	Spring Break	
8 2019/04/09	Word Embeddings + Contextual Embeddings	A3 – Game Playing
9 2019/04/16	Company Workshop	
10 2019/04/23	Convolutional Neural Networks	
11 2019/04/30	Deep Reinforcement Learning	A4 – Conditional Generation
12 2019/05/07	Deep Reinforcement Learning	
13 2019/05/14	Break	
14 2019/05/21	Generative Adversarial Networks	
15 2019/05/28	Generative Adversarial Networks	
16 2019/06/04	Break	
17 2019/06/11	Unsupervised Learning	
18 2019/06/18	Final Project Presentation	

Teaching Assistant Team

Rules

Asking questions is encouraged!!

Any comment or feedback is preferred!! (speed, style, etc)

Going to TA hours!!