Applied Deep Learning

Beyond Supervised Learning

November 27th, 2024 <u>http://adl.miulab.tw</u>

National Taiwan University 國立臺灣大學

2 Introduction

- Big data ≠ Big annotated data
- Machine learning techniques include:
 - Supervised learning (if we have labelled data)
 - Reinforcement learning (if we have an environment for reward)
 - Unsupervised learning (if we do not have labelled data)

Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

Latent Factors for Handwritten Digits

3

Latent Factors for Documents

4

Latent Factors for Recommendation System

5

Latent Factors for Recommendation Systems

6

\.....

Handwritten digits

The handwritten images are composed of **strokes**

Strokes (Latent Factors)

Latent Factor Exploitation

Strokes (Latent Factors)

8

......

No. 5

Discriminative vs. Generative

- **Discriminative**: calculate the probability of output given input P(Y|X)
- **Generative**: calculate the probability of a variable P(X), or multiple variables P(X, Y)

0— Variable Types

- Observed vs. Latent:
 - Observed: something we can see from our data, e.g. *X* or *Y*
 - Latent: a variable that we assume exists without a given value
- Oeterministic vs. Random:
 - Deterministic: variables calculated directly via deterministic functions
 - Random (stochastic): variables obeying a probability distribution
- A latent variable model is a probability distribution over two sets of variables

$$p(\boldsymbol{x}, \boldsymbol{z}; \theta)$$

Observed Latent

11 — Latent Variable Types $p(x, z; \theta)$

Latent

Latent continuous vector

- Auto-encoder
- Variational auto-encoder
- Latent discrete vector
 - Topic model
- Latent structure
 - HMM
 - Tree-structured model

Representation Learning

- An observed output *x*
- A latent variable z
- A function (network) f parameterized by θ maps from z to x

$$oldsymbol{x} = f(oldsymbol{z}; oldsymbol{ heta})$$

Idea: represent the output in a more compact way (latent codes)

- Represent a digit using 28 X 28 dimensions
- Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way

Output of the hidden layer is the code

10 Denoising Auto-Encoder

Improve robustness of a latent variable

Rifai, et al. "Contractive auto-encoders: Explicit invariance during feature extraction," in ICML, 2011.

Hinton and Salakhutdinov. "Reducing the dimensionality of data with neural networks," Science, 2006.

19— Feature Representation

20 Auto-Encoder – Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

Krizhevsky et al. "Using very deep autoencoders for content-based image retrieval," in ESANN, 2011.

Auto-Encoder – Similar Image Retrieval

(crawl millions of images from the Internet)

2 Auto-Encoder – Similar Image Retrieval

Images retrieved using Euclidean distance in pixel intensity space

Images retrieved using 256 codes

Learning the useful latent factors

Semantics are not considered

Auto-Encoder – Text Retrieval

The documents talking about the same thing will have close code

25 Denoising Auto-Encoding

• Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_t \log p_{\theta}(x_t \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_t \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x')\right)}$$

dimension reduction or denoising (masked LM)

20 Auto-Encoder Layer-Wise Pre-Training

27—Auto-Encoder Layer-Wise Pre-Training

28 Auto-Encoder Layer-Wise Pre-Training

29 Auto-Encoder Layer-Wise Pre-Training

30 Masked Auto-Encoder (Germain et al., 2015)

MADE: masked auto-encoder for distribution estimation
Reconstruction in a given ordering

Representation Learning and Generation

32 Generation from Latent Codes

How can we set a latent code for generation?

33— Latent Code Distribution Constraints

- Constrain the data distribution for learned latent codes
- Generate the latent code via a prior distribution

Variational Auto-Encoder

An observed output x

34

- A latent variable z generated from a Gaussian
- A function (network) f parameterized by θ maps from z to x

Idea: the compact representations follow a distribution

$$\begin{array}{c} \hline \textbf{35} & - \textbf{Variational Auto-Encoder} \quad \textbf{x} = f(\textbf{z}; \theta) \\ \hline \textbf{Observed} \quad \textbf{Conserved} \quad \textbf{Conservex$$

36 Variational Auto-Encoder

• The marginal likelihood of a single datapoint x

$$P(x; heta) = \int P(x \mid z; heta) P(z) dz$$

• Approximation by sampling z

$$P(x; heta) pprox \sum_{z \sim P(z)} P(x \mid z; heta)$$
37 Variational Auto-Encoder

Two tasks

- Learn to generate data from the latent code: $p_{ heta}(x \mid z)$
- Learn the distribution of latent factors: $p_{\theta}(z \mid x)$

³⁸ Variational Auto-Encoder

Two tasks

- Learn to generate data from the latent code: $p_{ heta}(x \mid z)$
- Learn the distribution of latent factors: $p_{ heta}(z \mid x)$

$$p_{ heta}(z \mid x) = rac{p_{ heta}(x \mid z)p(z)}{p(x)} p(z) p(z) p_{ heta}(x \mid z) dz$$
 intractable

• Variational inference approximates the true posterior $p_{\theta}(z \mid x)$ with a family of distributions $q_{\phi}(z \mid x)$

minimize
$$\operatorname{KL}(q_\phi(z \mid x) \parallel p_ heta(z \mid x))$$

Regularized Auto-Encoder

AE is not generative model: (1) Can't sample new data from AE (2) Can't compute the log likelihood of data x

41—Image Reconstruction

42— Text Reconstruction

• AE: standard encoder-decoder

embedding interpolation	 i went to the store to buy some groceries i store to buy some groceries . i were to buy any groceries . horses are to buy any groceries . horses are to buy any animal . horses the favorite any animal . horses the favorite favorite animal . horses are my favorite animal .
-------------------------	--

.

VAE

embedding interpolation	"i want to talk to you ." "i want to be with you ." "i do n't want to be with you ." i do n't want to be with you . she did n't want to be with him .	
	he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .	

43—VAE Training Tips

Posterior collapse issue

 KL divergence is easier to learn, so model learning relies solely on decoder and ignore latent variable

$$\mathbb{E}_{z \sim q_{\phi}(z \mid x)}[\log p_{ heta}(x \mid z)] - rac{D_{ ext{KL}}(q_{\phi}(z \mid x) \parallel p(z))}{D_{ ext{KL}}(q_{\phi}(z \mid x) \parallel p(z))}$$

requires good generative model

set the mean/variance of q to be the same as p

Solutions

- KL divergence annealing: an increasing constant to weight KL term
- KL thresholding $\sum_{i} \max[\lambda, D_{\mathrm{KL}}(q_{\phi}(z_{i}|x)||p(z_{i}))]$

Dual Learning

Learning Two Tasks via Duality

Slides credited from ACML 2018 Tutorial

40 Dual Unsupervised Learning

Idea: improve tasks by leveraging feedback signal via RL etc.

Idea: perfectly reconstructing the input via two models

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, "Towards Unsupervised Language Understanding and Generation by Joint Dual Learning," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

Joint Dual Learning Objective

Explicit

48

Reconstruction Likelihood

 $\begin{cases} \log p(x \mid f(x_i; \theta_{x \to y}); \theta_{y \to x}) & \mathbf{Prim} \\ \log p(y \mid g(y_i; \theta_{y \to x}); \theta_{x \to y}) & \mathbf{Dual} \end{cases}$

- Automatic Evaluation Score
 - BLEU and ROUGE for language (NLG)
 - F-score for semantic (NLU)
- Implicit
 - Model-based methods estimating data distribution
 - Language modeling (LM) for language
 - Masked autoencoder (MADE) for semantics

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, "Towards Unsupervised Language Understanding and Generation by Joint Dual Learning," in Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020.

Primal

49 Dual Supervised Learning (Xia et al., 2017)

- Proposed for machine translation
- Consider two domains X and Y, and two tasks $X \to Y$ and $Y \to X$

We have
$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

Ideally $P(x, y) = P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T.Y., "Dual supervised learning," in *Proc. of the 34th International Conference on Machine Learning*, 2017.

Dual Supervised Learning

• Exploit the duality by forcing models to follow the probabilistic constraint $P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Objective function

$$\begin{cases} \min_{\theta_{x \to y}} \mathbb{E} [l_1(f(x; \theta_{x \to y}), y)] + \lambda_{x \to y} \ l_{duality} \\ \min_{\theta_{y \to x}} \mathbb{E} [l_2(g(y; \theta_{y \to x}), x)] + \lambda_{y \to x} \ l_{duality} \\ l_{duality} = (\log \hat{P}(x)) + \log P(y \mid x; \theta_{x \to y}) - \log P(x \mid y; \theta_{y \to x}))^2 \\ \end{cases}$$

How to model the marginal distributions of X and Y?

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., "Dual supervised learning," in *Proc. of the 34th International Conference on Machine Learning*, 2017.

51— Dual Supervised Learning

Considering NLU and NLG

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, "Dual Supervised Learning for Natual Language Understanding and Generation," in *Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2019.

- E2E NLG data: 50k examples in the restaurant domain
- NLU: F-1 score; NLG: BLEU, ROUGE

E2E NLG data: 50k examples in the restaurant domain

NLU: F-1 score; NLG: BLEU, ROUGE

E2E NLG data: 50k examples in the restaurant domain

NLU: F-1 score; NLG: BLEU, ROUGE

Unsupervised/semi-supervised learning: only one task; no feedback signals for unlabeled data

Co-training: only one task; different feature sets provide complementary information about the instance

Multi-task learning: multiple tasks share the same representation

Transfer learning: use auxiliary tasks to boost the target task

Dual learning: multiple tasks involved; automatically generate reinforcement feedback for unlabeled data,

Dual learning: multiple tasks involved; no assumption on feature sets

Dual learning: don't need to share representations, only when the closed loop

Dual learning: all tasks are mutually and simultaneously boosted

Self-Supervised Learning

Self-Prediction and Contrastive Learning

Slides credited from NeurIPS 2021 Tutorial

57— Self-Supervised Learning

- Self-supervised learning (SSL): a special type of representation learning via unlabeled data
- Idea: constructing supervised tasks out of unsupervised data
 - High cost of data annotation
 - Limited annotated data
 - Good representation makes it easier to transfer to diverse downstream tasks

Self-Supervised Learning

Self-Prediction

 Given an individual data sample, the task is to predict one missing part of the sample given the other part

- Contrastive Learning
 - Given multiple data samples, the task is to predict their relationship

Assume: a part of the input is unknown and predict it

- Predict the future from the past
- Predict the future from the recent past
- Predict the past from the present
- Predict the top from the bottom
- Predict the occluded from the visible

Adapting Embedding Spaces

Ontrastive Learning

- Idea: learn an embedding space where similar sample pairs stay close to each other while dissimilar ones are far apart
 - Inter-sample classification
 - Feature clustering
 - Multi-view coding

⁶²—Inter-Sample Classification

- Task: given both similar ("positive") and dissimilar ("negative") candidates, identifying which is similar to the anchor datapoint
- Datapoint candidates
 - 1. The original input and its distorted version
 - 2. Data capturing the same target from different views

⁶³—Inter-Sample Classification

• **Triplet loss** (Schroff et al., 2015)

 minimize the distance between the anchor x and positive x⁺ and maximize the distance between the anchor x and negative x⁻ at the same time

$$\mathcal{L}_{\text{triplet}}(x, x^+, x^-) = \sum_{x} \max(0, \|f(x) - f(x^+)\|_2^2 - \|f(x) - f(x^-)\|_2^2 + \epsilon)$$

as close as possible as far as possible
$$\underbrace{\text{LEARNING}}_{\text{Anchor}} \underbrace{\text{Negative}}_{\text{Positive}} \underbrace{\text{Negative}}_{\text{Negative}} \underbrace{\text{Negative}}_{\text{Positive}} \underbrace{\text{Negative}}_{\text{Negative}} \underbrace{\text{Negative}}_{\text{Negative}}$$

⁶⁴—Inter-Sample Classification

• **N-pair loss** (Sohn, 2016)

generalizes to include comparison with multiple negative samples

$$\mathcal{L}_{ ext{N-pair}}(x,x^+,\{x^-_i\}) = \log igg(1+\sum_i \expig(f(x)^T f(x^-_i) - f(x)^T f(x^+)ig)igg)$$

65 Feature Clustering

Idea: cluster similar datapoints based on learned features
 → assign pseudo labels to samples for intra-sample classification

Idea: apply the InfoNCE objective to different views of input

- Data augmentation is adopted for generating different views
- "views" can come from different modalities

Ontrastive Learning in NLP

SimCSE (Gao et al., 2021): simple contrastive learning of sentence embeddings

• Unsupervised: predict a sentence from itself with only dropout noise

Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "SimCSE: Simple Contrastive Learning of Sentence Embeddings." in *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, 2021.

Contrastive Learning in NLP

- SimCSE (Gao et al., 2021): simple contrastive learning of sentence embeddings
 - *Supervised*: further adapt embeddings based on labels

(b) Supervised SimCSE

Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "SimCSE: Simple Contrastive Learning of Sentence Embeddings." in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.

Contrastive Learning in NLP

SpokenCSE (Chang & Chen, 2022): improve ASR robustness

• *Unsupervised*: learning with the paired clean/noisy sentences

Model	SLURP	ATIS	TREC6
RoBERTa	83.97	94.53	84.08
Phoneme-BERT [†]	83.78	94.83	85.96
SimCSE	84.47	94.07	84.92
Proposed (pre-train only)	84.51	95.02	85.20

Ya-Hsin Chang and Yun-Nung Chen, "Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding," in INTERSPEECH, 2022.

Contrastive Learning in NLP

SpokenCSE (Chang & Chen, 2022): improve ASR robustness

Supervised: learning with self-distillation

SimCSE

Proposed (pre-train only)

Proposed (pre-train + fine-tune)

94.07

95.02

95.10

84.92 85.20

86.36

Ya-Hsin Chang and Yun-Nung Chen, "Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding," in INTERSPEECH, 2022.

84.47

84.51

85.26

7 Language vs. Vision

Texts

- Self supervision (LM)
- Large training data
- Zero-shot transferability

Ciao Hola Hey Languages

Images

- Supervised learning
- Not that large training data (ImageNet)

Idea: enabling better transferability by connecting vision tasks with languages

CLIP: Contrastive Language-Image Pretraining

WebImageText (WIT): a newly constructed dataset of 400 million (image, text) pairs on the Internet

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.
Output Contrastive Language-Image Pretraining

WebImageText (WIT): a newly constructed dataset of 400 million (image, text) pairs on the Internet

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *ICML*, 2021.

Zero-Shot Image Classification

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Zero-Shot Transferability

75

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

— DALL-E 2: Image Generation with CLIP

76

• Goal: $P(z_i \mid y)$ produces a CLIP image embedding given a caption

• Goal: $P(x \mid z_i, y)$ generate images similar to the given ones

⁷⁹ Inference for Image Generation

• Goal: $P(x \mid y)$ generates images given text captions

 $P(x \mid y) = P(x, z_i \mid y) = P(x \mid z_i, y)P(z_i \mid y)$

Boole Generated Images

Diverse Approaches and Applications

82— Concluding Remarks

- Labeling data is expensive, but we have large unlabeled data
- AE / VAE
 - exploits unlabeled data to learn latent factors as representations
 - learned representations can be transfer to other tasks
- Dual Learning
 - utilize the duality of two tasks
 - towards semi-supervised learning / unsupervised learning
- Self-Prediction
 - predict one missing part of the sample given the other part
- Contrastive Learning
 - positive pairs have similar embeddings