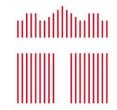
Applied Deep Learning

NLG Evaluation

September 25th, 2024 http://adl.miulab.tw



National Taiwan University 國立臺灣大學

Automatic Evaluation Metrics

- Word overlap metrics: BLEU, ROUGE, METEOR, etc.
 - Not ideal for machine translation
 - Much worse for summarization
 - Even worse for dialogue, storytelling

more open-ended

- Embedding metrics
 - Computing the similarity of word embeddings
 - Capturing semantics in a flexible way

Evaluating the outputted results instead of the generative model

N-Gram Precision

$$p_n = \frac{\sum_{ngram \in hyp} count_{clip}(ngram)}{\sum_{ngram \in hyp} count(ngram)} \longrightarrow$$

highest count of n-gram in any reference sentence

Brevity Penalty

$$B = \begin{cases} e^{(1-|ref|/|hyp|)}, & \text{if } |ref| > |hyp| \\ 1, & \text{otherwise} \end{cases}$$

- **BLEU**
 - Often used in machine translation

$$BLEU = B \cdot exp \left[\frac{1}{N} \sum_{n=1}^{N} p_n \right]$$

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - Often used in summarization tasks

ROUGE-N
$$= \frac{\sum\limits_{S \in \{ReferenceSummaries\}} \sum\limits_{gram_n \in S} Count_{match}(gram_n)}{\sum\limits_{S \in \{ReferenceSummaries\}} \sum\limits_{gram_n \in S} Count(gram_n)}$$

BLEU & ROUGE

- BLEU
 - Based on <u>n-gram overlap</u>
 - Consider precision
 - Reported as a single number
 - Combination of n = 1, 2, 3,4 n-grams

ROUGE

- Based on <u>n-gram overlap</u>
- Consider recall
- Reported separately for each ngram
 - ROUGE-1: unigram overlap
 - ROUGE-2: bigram overlap
 - ROUGE-L: LCS overlap

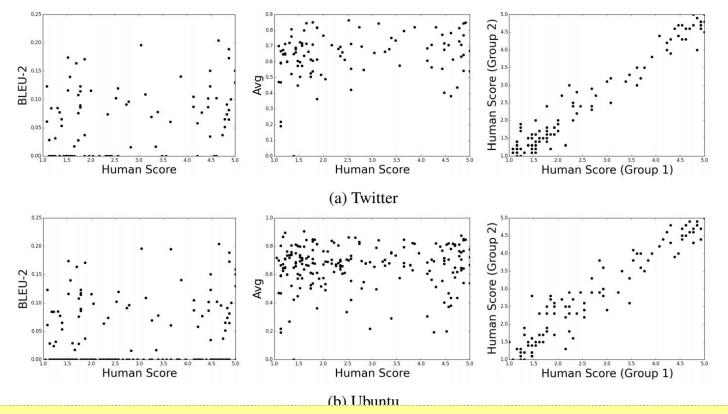
Automatic Evaluation Metrics

- Word overlap metrics: BLEU, ROUGE, METEOR, etc.
 - Not ideal for machine translation
 - Much worse for summarization
 - Even worse for dialogue, storytelling

more open-ended

- Embedding metrics
 - Computing the similarity of word embeddings
 - Capturing semantics in a flexible way

Automatic Metrics vs. Human Judgement



No agreement between automatic scores and human scores in dialogue quality

Focused Metrics for Particular Aspects

- Evaluating a single aspect instead of the overall quality
 - Fluency (compute probability w.r.t. well-trained LM)
 - Correct style (prob w.r.t. LM trained on target corpus)
 - Diversity (rare word usage, uniqueness of n-grams)
 - Relevance to input (semantic similarity measures)
 - Simple things like length and repetition
 - Task-specific metrics e.g. compression rate for summarization

Scores help us track some important qualities we care about

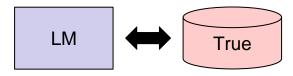
Perplexity

- Perplexity is a measurement of confusion degree when a language model predicts a sentence
 - A better LM predicts an unseen test set better → lower perplexity

$$PP(S) = p(w_1, w_2, \cdots, w_N)^{-1/N}$$
 $PP(S) = 2^{-l}$ $PP(S) = \frac{1}{N} \log p(w_1, w_2, \cdots, w_N)$ $PP(S) = 1$ where $l = \frac{1}{N} \log p(w_1, w_2, \cdots, w_N)$ inverse probability of the test set normalized by the number of words

Evaluating the trained generative (probabilistic) language model

Cross Entropy



Cross entropy is a distance between two distributions

$$egin{aligned} H(p,q) &= \mathbb{E}_q[-\log p(x)] = -\sum_x q(x) \log p(x) \ &= -rac{1}{N} \sum_{i=1}^N \left(\sum_x q(x \mid w_1, \cdots, w_{i-1}) \log p(x \mid w_1, \cdots, w_{i-1})
ight) \end{aligned}$$

the testing sentence is $w_1, w_2, \cdots, w_{i-1}, w_i$, so $q(w_i \mid w_1, \cdots, w_{i-1}) = 1$

$$=-rac{1}{N}\sum_{i=1}^N \log p(w_i\mid w_1,\cdots,w_{i-1})$$

$$=-rac{1}{N}\!\log p(w_1,w_2,\cdots,w_N)\!=\log PP(S)$$

LLM-Eval (Lin & Chen, 2023)

LLM-Eval

{evaluation schema}

Score the following dialogue response generated on a continuous scale from 0.0 to 5.0.

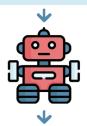
Context:

My cat likes to eat cream.

♠: Be careful not to give too much, though.

Dialogue response :

☑: Don't worry, I only give a little bit as a treat.



Appropriateness: 3.0

Content: 2.5 Grammer: 4.0 Relevence: 2.0

LLM has a reasonable capability of evaluating dialogue responses

r / ρ (%)	TopicalChat	PersonaChat	ConvAI2	DD	ED	DSTC6	Average
BLEU-4	21.6 / 29.6	13.5 / 9.0	0.3 / 12.8	7.5 / 18.4	-5.1 / 0.2	13.1 / 29.8	8.5 / 16.6
ROUGE-L	27.5 / 28.7	6.6 / 3.8	13.6 / 14.0	15.4 / 14.7	2.9 / -1.3	33.2 / 32.6	16.5 / 15.4
BERTScore	29.8 / 32.5	15.2 / 12.2	22.5 / 22.4	12.9 / 10.0	4.6 / 3.3	36.9 / 33.7	20.3 / 19.0
DEB	18.0 / 11.6	29.1 / 37.3	42.6 / 50.4	33.7 / 36.3	35.6 / 39.5	21.1 / 21.4	30.0 / 32.8
GRADE	20.0 / 21.7	35.8 / 35.2	56.6 / 57.1	$\overline{27.8}$ / 25.3	33.0 / 29.7	11.9 / 12.2	30.9 / 30.2
USR	41.2 / 42.3	44.0 / 41.8	50.1 / 50.0	5.7 / 5.7	26.4 / 25.5	18.4 / 16.6	31.0 / 30.3
USL-H	32.2 / 34.0	49.5 / 52.3	44.3 / 45.7	10.8 / 9.3	29.3 / 23.5	21.7 / 17.9	31.3 / 30.5
without human re	without human reference						
LLM-EVAL 0-5	<u>55.7</u> / <u>58.3</u>	51.0 / 48.0	<u>59.3</u> / <u>59.6</u>	31.8 / 32.2	42.1 / 41.4	43.3 / 41.1	47.2 / 46.8
LLM-EVAL 0-100	49.0 / 49.9	53.3 / 51.5	$\overline{61.3} / \overline{61.8}$	34.6 / 34.9	43.2 / 42.3	44.0 / 41.8	47.6 / 47.0
with human reference							
LLM-EVAL 0-5	56.5 / 59.4	55.4 / 53.1	43.1 / 43.8	.320 / 32.2	40.0 / 40.1	47.0 / 45.5	45.7 / 45.7
LLM-EVAL 0-100	55.6 / 57.1	<u>53.8</u> / <u>52.7</u>	45.6 / 45.9	33.4 / 34.0	43.5 / 43.2	49.8 / 49.9	47.0 / 47.1

LLM-Eval better correlates with human-judged scores than all existing metrics

LLM-Eval (Lin & Chen, 2023)

LLM-Eval works good on not only single-turn but multiturn evaluation

r / ρ (%)	DailyDialog-PE Turn-Level	F Turn-Level	ED Dialog-Level	DSTC9 Dialog-Level	Average
DynaEval	16.7 / 16.0	31.9 / 32.3	50.3 / 54.7	9.3 / 10.1	27.1 / 28.3
USL-H	68.8 / 69.9	20.1 / 18.9	7.3 / 15.2	10.5 / 10.5	26.7 / 28.6
FlowScore	-	-6.5 / -5.5	-7.3 / -0.3	14.7 / 14.0	0.3 / 2.7
GPTScore	-	- / 38.3	- / 54.3	-	- / 46.3
LLM-EVAL 0-5	<u>71.0</u> / 71.3	60.4 / 50.9	67.6 / 71.4	15.9 / 16.5	53.7 / 52.5
LLM-EVAL 0-100	71.4 / <u>71.0</u>	<u>59.7</u> / <u>49.9</u>	<u>64.4</u> / <u>70.4</u>	16.1 / 18.6	52.9 / 52.5

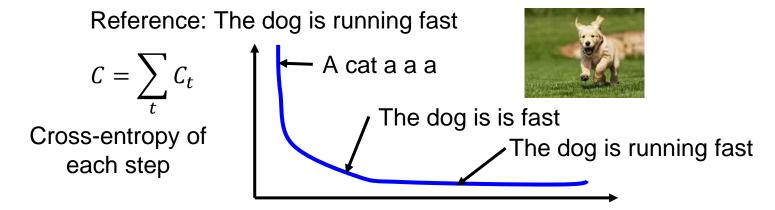
Idea: LLM-Eval scores can be the proxy of human evaluation

Reinforcement Learning for NLG

Global Optimization

Global Optimization vs. Local Optimization

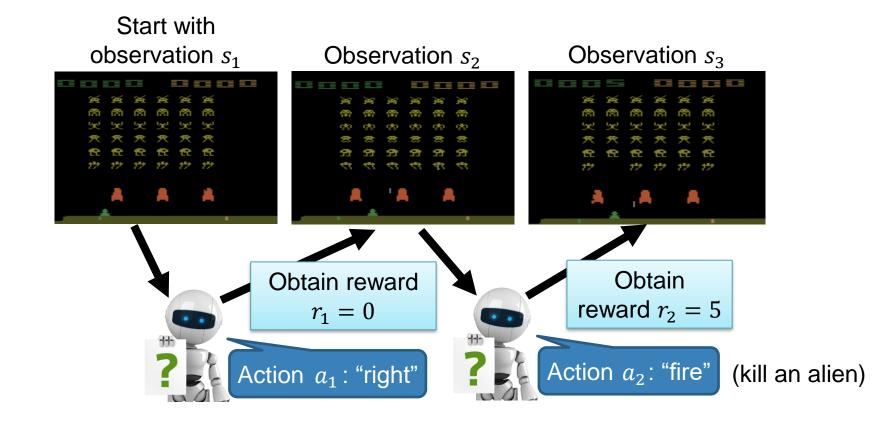
 Minimizing the error defined on component level (local) is not equivalent to improving the generated objects (global)



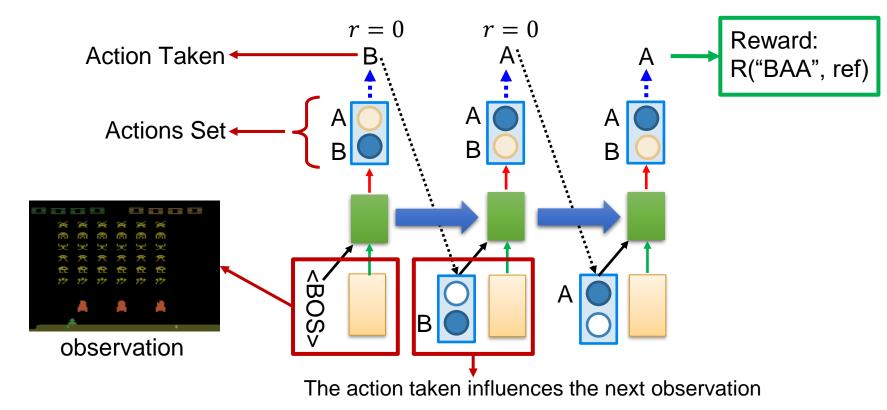
Optimize object-level criterion instead of component-level cross-entropy. Object-level criterion: $R(y, \hat{y})$ y: ground truth, \hat{y} : generated sentence

Gradient Descent?

Reinforcement Learning

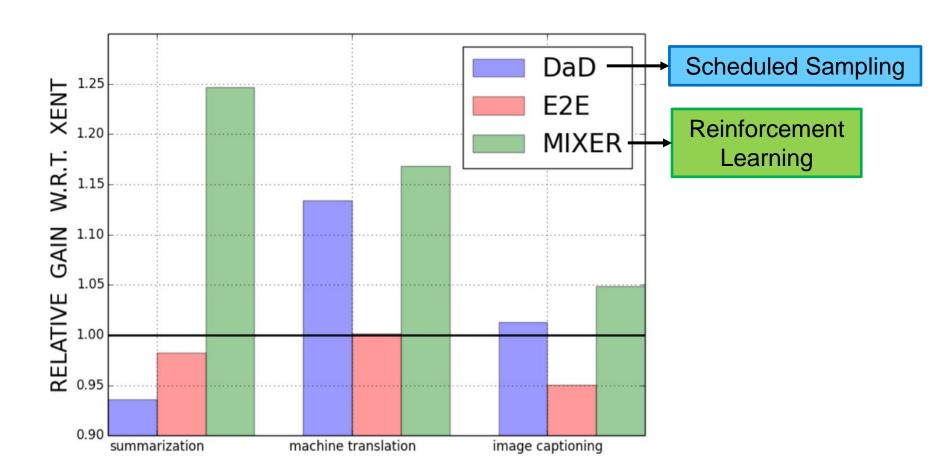


RL for NLG

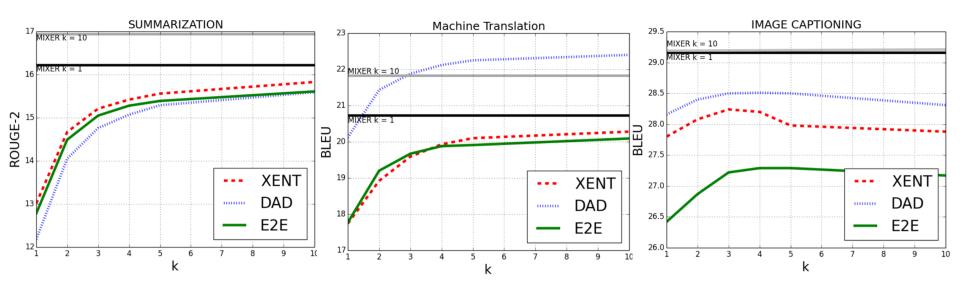


Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

RL for NLG



RL for NLG



RL-Based Summarization

RL: directly optimize ROUGE-L

ML+RL: MLE + RL for optimizing ROUGE-L

Automatic

Model	ROUGE-1	ROUGE-2	ROUGE-L
ML, no intra-attention	44.26	27.43	40.41
ML, with intra-attention	43.86	27.10	40.11
RL, no intra-attention	47.22	30.51	43.27
ML+RL, no intra-attention	47.03	30.72	43.10

Human

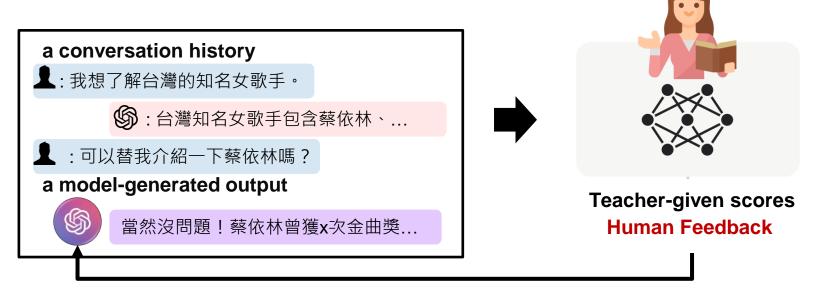
Model	Readability	Relevance
ML	6.76	7.14
RL	4.18	6.32
ML+RL	7.04	7.45

Using RL instead of ML achieves higher ROUGE scores, but lower human scores.

Hybrid is the best.

ChatGPT: Reinforcement Learning from Human Feedback

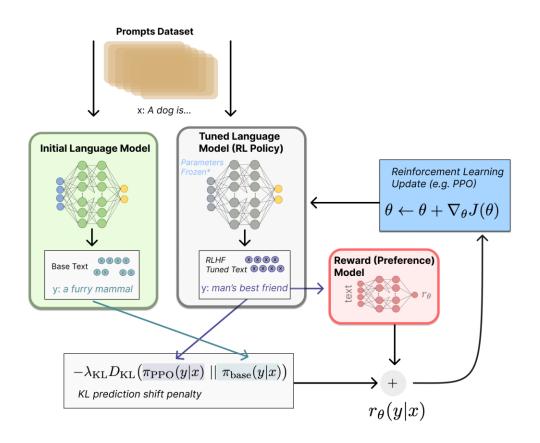
Improving GPT via teacher's feedback



generation update via reinforcement learning

Idea: optimize abstract indicators (e.g. human's satisfaction)

RLHF: RL from Human Feedback



Concluding Remarks

- Automatic evaluation
 - Output evaluation
 - Model evaluation
- Perplexity
 - Confusion degree when a language model predicts a sentence
 - Cross entropy between true and predicted distributions
 - Lower is better
- RL for NLG
 - Hybrid is better (MLE first, RL later)
 - RL enables models to improve abstract indicators