
Applied Deep Learning

NLG Decoding

Ŷ

September 25th, 2024 <u>http://adl.miulab.tw</u>

National Taiwan University 國立臺灣大學

NLG Review

- Language Modeling
- Conditional Language Modeling

Oecoding Algorithm

- Greedy
- Beam Search
- Sampling
- Top-k Sampling
- Nucleus Sampling

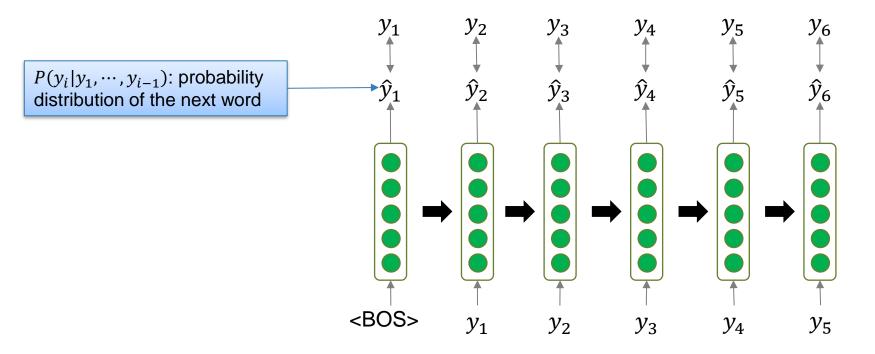
Natural Language Generation

Many tasks contain NLG

- Machine Translation
- Abstractive Summarization
- Dialogue Generation
- Image Captioning
- Creative Writing
 - Storytelling, poetry generation
- o ...

3

4 Language Modeling


• Goal: predicting the next word given the words so far

 $P(y_i|y_1,\cdots,y_{i-1})$

Language model is to estimate the probability distribution

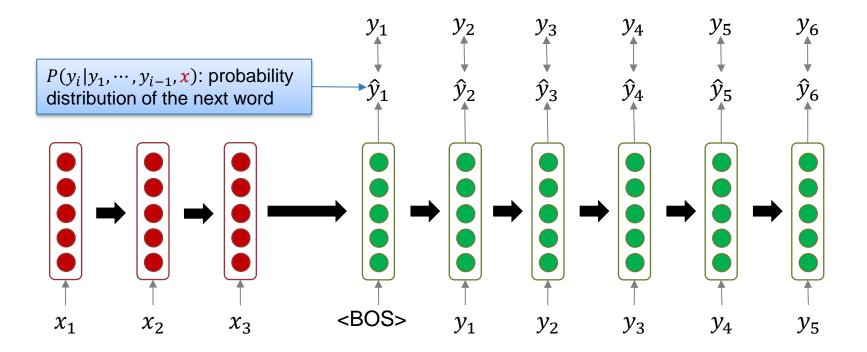
- RNN-LM uses RNN for modeling the distribution
- GPT uses Transformer for modeling the distribution

Idea: pass the information from the previous hidden layer to leverage all contexts

— Conditional Language Modeling

Goal: predicting the next word given the words so far, and other input x

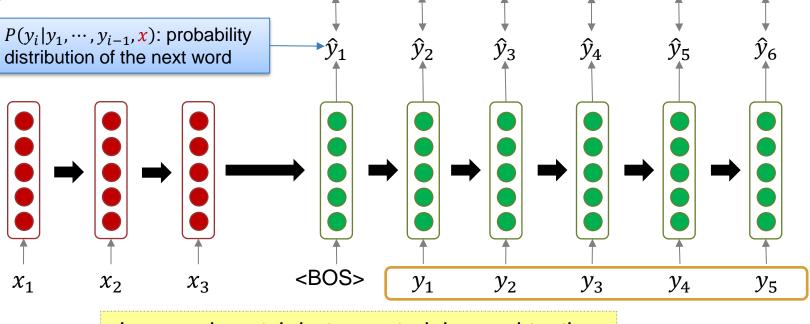
 $P(y_i|y_1,\cdots,y_{i-1},x)$


Conditional language modeling tasks

- Machine translation (x = source sentence, y = target sentence)
- Summarization (x = document, y = summary)
- Dialogue (x = dialogue context, y = response)
- Image captioning (x = image, y = caption)

o ...

6


Conditional Language Modeling

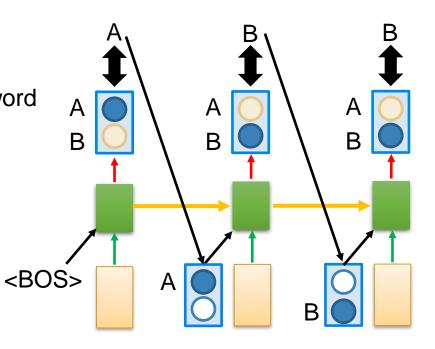
An encoder-decoder model or a decoder only architecture can condition on context

• During training, feeding the gold target sentence into the decoder regardless of prediction y_1 y_2 y_3 y_4 y_5

 y_6

Issue: mismatch between training and testing

Mismatch between Train and Test



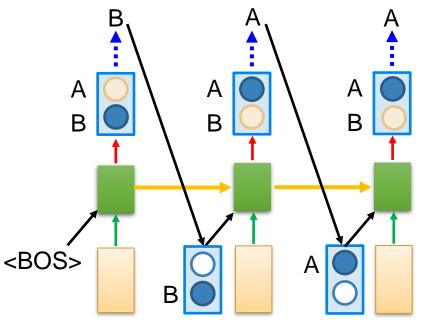
9

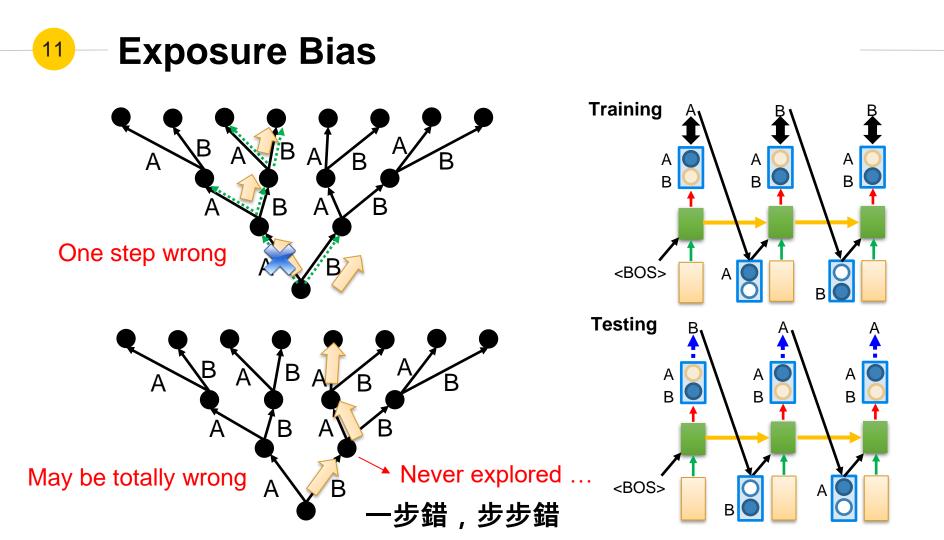
$$C = \sum_{t} C_t$$

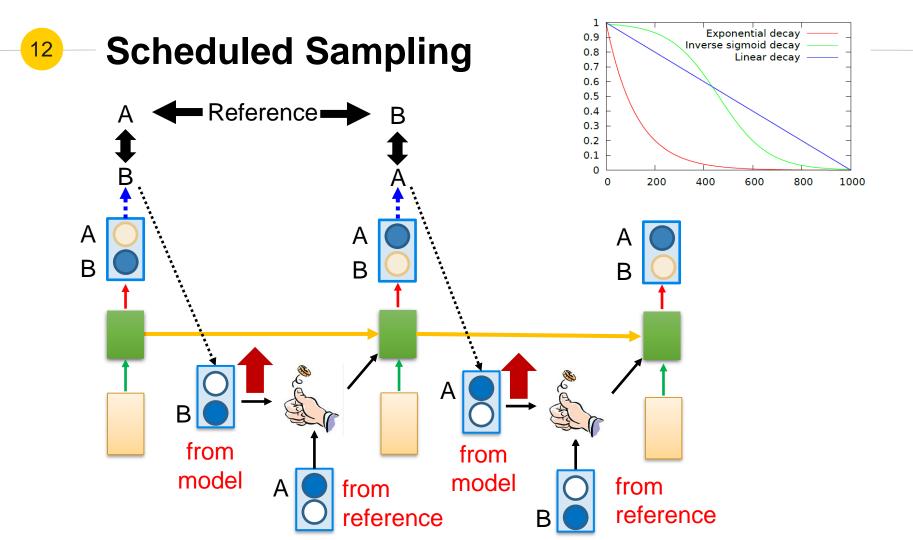
minimizing cross-entropy of each word

Reference:

: condition

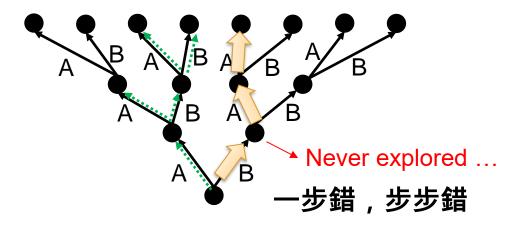

Mismatch between Train and Test


Generation


- Testing: Output of model is the input of the next step.
 - Reference is unknown

Exposure Bias

• Training: the inputs are reference.


Image captioning on MSCOCO

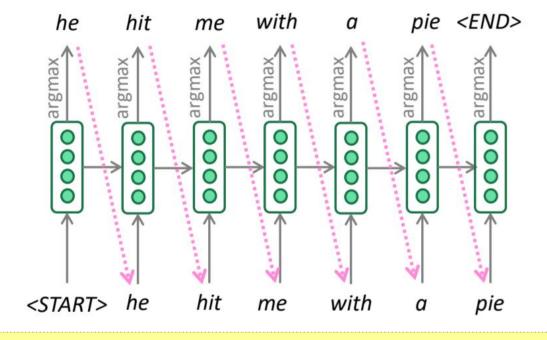
	BLEU-4	METEOR	CIDER
Always from reference	28.8	24.2	89.5
Always from model	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer, Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, arXiv preprint, 2015

14—No Scheduled Sampling in LLM Training

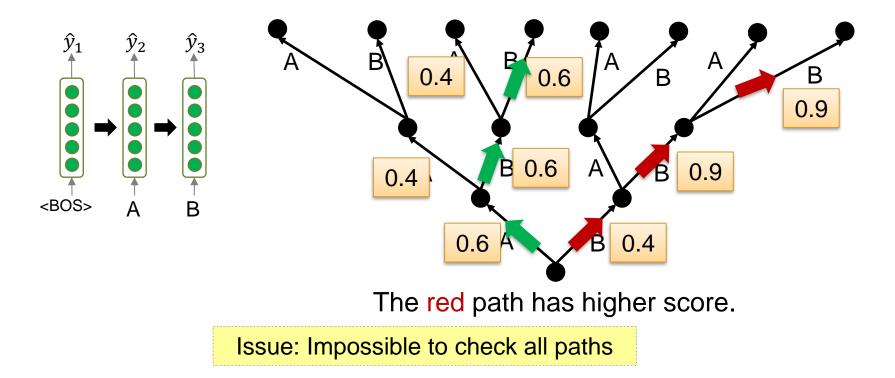
Exposure bias

LLM pre-training may explore much more paths from large data


Strategy of Word Generation

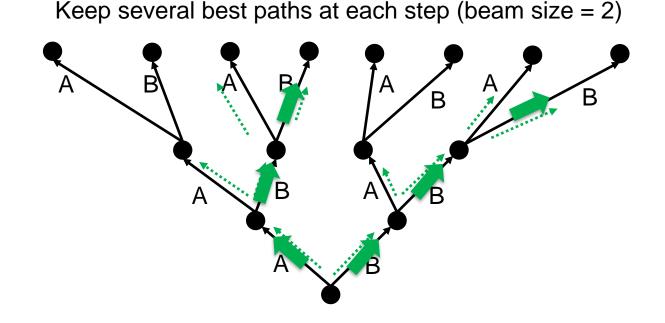
Decoding Algorithm

- With a trained (conditional) LM, a <u>decoding algorithm</u> decides how to generate texts from the LM.
- Decoding Algorithms
 - o Greedy
 - Beam Search
 - Sampling
 - Top-k Sampling
 - Nucleus Sampling


• Strategy: choosing the most probable word (argmax)

Output can be poor due to lack of backtracking

Our Content of the second s



Initial: Dwight arose from his bed. He walked down stairs, He made his breakfast, and he sat at the finely crafted wooden dinner table. At his right, a cup of coffee. At his left, the news paper. The crossword puzzle was particularly interesting.

Continuation: The headline read: "The New York Times." The headline read: "The New York Times." The headline said: "The New York Times."

Strategy: keeping track of the k most probable sequences and finding a better one

21 Effect of Beam Size

- Small beam size
 - Ungrammatical, unnatural, incorrect, etc.

🖲 Large beam size

- Reduce some above issues
- Computationally expensive
- Introduce other issues
 - Chit-chat dialogues with large beam often generate generic sentences

Effect of Beam Size in Chit-Chat Dialogues

I mostly eat a fresh and raw diet, so I save on groceries

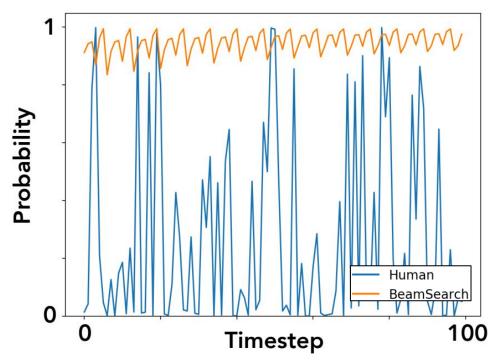
22

Beam Size	Model Response		
1	I love to eat healthy and eat healthy		
2	That is a good thing to have		
3	I am a nurse so I do not eat raw food		
4	I am a nurse so I am a nurse		
5	Do you have any hobbies?		
6	What do you do for a living?		
7	What do you do for a living?		
8	What do you do for a living?		

Small Beam Size: More on-topic but nonsensical; bad English

Large Beam Size: safe, "correct" response, but generic and less relevant

Finding a proper beam size is not trivial


²³ Beam Search Example

Initial: Dwight arose from his bed. He walked down stairs, He made his breakfast, and he sat at the finely crafted wooden dinner table. At his right, a cup of coffee. At his left, the news paper. The crossword puzzle was particularly interesting.

Continuation: The headline read: "New York City, New York, New Y

²⁴ Distribution Difference

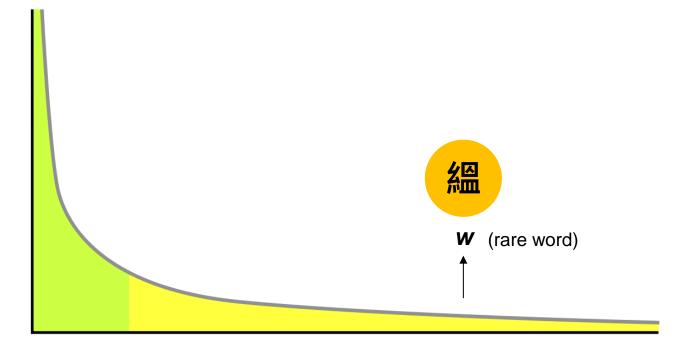
- The natural distribution of human text has lots of spikes.
- In contrast, the distribution of machine text is high and flat!

25 Why Doesn't Maximization Work

- Successful language models all rely heavily on attention, which easily learns to amplify a bias towards repetition.
- Maximization is problematic in high-entropy timesteps, regardless of the quality of the language model.
- Humans aren't attempting to maximize probability, they're trying to achieve goals. (Goodman, 2016)

26 Sampling-Based Decoding

- Strategy: choosing the next word with randomness (from a distribution)
- Sampling
 - Randomly sample the word via the probability distribution instead of argmax



Initial: Dwight arose from his bed. He walked down stairs, He made his breakfast, and he sat at the finely crafted wooden dinner table. At his right, a cup of coffee. At his left, the news paper. The crossword puzzle was particularly interesting.

Continuation: He had opened the crossword puzzle and was pointing the newspaper from it. And the title: 12:50pm how happy has white rabbit been? why is They declining white rabbit?

The (long) tail of the distribution is where the quality of LMs become worse.

²⁸ Issue of Long Tail Distribution

Sampling-Based Decoding

Strategy: choosing the next word with randomness (from a distribution)

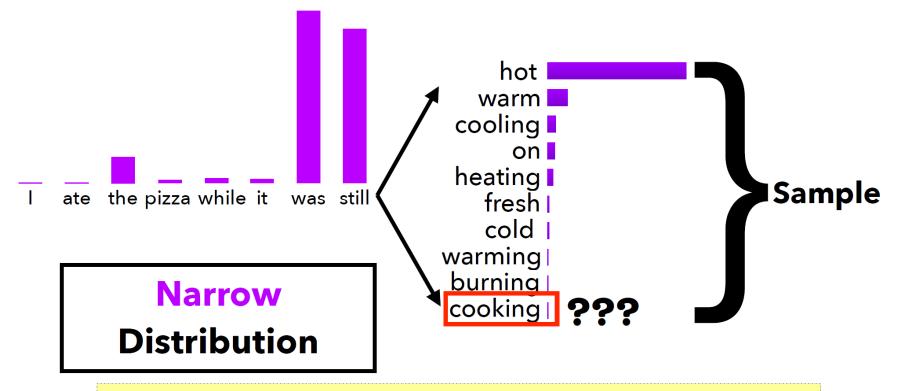
Sampling

29

• Randomly sample the word via the probability distribution instead of argmax

Top-k Sampling

- Sample the word via distribution but restricted to the top-*k* probable words
- k=1 is greedy, k=V is pure sampling
- Increasing *k* gets more diverse / risky output
- Decreasing *k* gets more generic / safe output

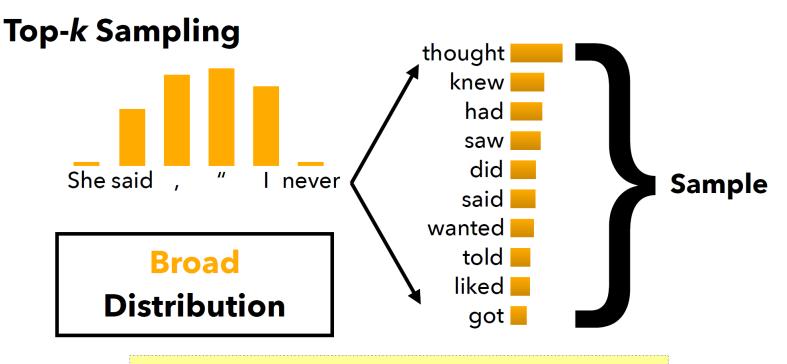

Balancing between diversity and safety is an important direction

³⁰ Top-*k* Sampling Example

Initial: Dwight arose from his bed. He walked down stairs, He made his breakfast, and he sat at the finely crafted wooden dinner table. At his right, a cup of coffee. At his left, the news paper. The crossword puzzle was particularly interesting.

Continuation: He had seen the news, but had not read the New York times or the times. The local post would have been much quicker, perhaps even better.

31 Top-k Issue 1: Narrow Distribution



High confidence \rightarrow some extremely low probability choices

Holtzman, Ari, et al. "The Curious Case of Neural Text Degeneration." International Conference on Learning Representations. 2019.

Top-k Issue 2: Broad Distribution

32

Low confidence \rightarrow generic choices

Holtzman, Ari, et al. "The Curious Case of Neural Text Degeneration." International Conference on Learning Representations. 2019.

³³ Nucleus (Top-*p*) Sampling

Sampling from a subset of vocabulary with the most probability mass

$$w_i \sim V^{(p)}$$
where
$$V^{(p)} = \sup_{V' \subset V} \sum_{x \in V'} P(x|w_1 \cdots w_{i-1}) \ge p$$

Nucleus sampling can dynamically shrinking and expanding top-k.

Holtzman, Ari, et al. "The Curious Case of Neural Text Degeneration." International Conference on Learning Representations. 2019.

³⁴ Nucleus Sampling Example

Initial: Dwight arose from his bed. He walked down stairs, He made his breakfast, and he sat at the finely crafted wooden dinner table. At his right, a cup of coffee. At his left, the news paper. The crossword puzzle was particularly interesting.

Continuation: It was on the ground floor of the Imperial Hotel. He could hear the TV from the lobby of the palace. There were headlines that would make a cop blush.

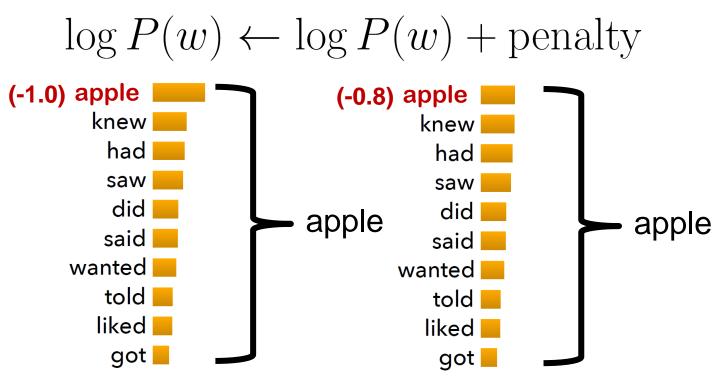
Encourage what we want and penalize what we don't want

1. Softmax

$$P(w) = \frac{\exp(s_w)}{\sum_{w' \in V} \exp(s_{w'})} \longleftarrow \begin{bmatrix} s_{w'} \\ s_{$$

softmax: LM computes a prob dist by applying softmax to a vector of scores

2. Softmax temperature: applying a temperature hyperparameter τ to the softmax


$$P(w) = \frac{\exp(s_w/\tau)}{\sum_{w' \in V} \exp(s_{w'}/\tau)}$$

- Higher temperature: P(w) becomes more uniform \rightarrow more diversity
- Lower temperature: P(w) becomes more spiky \rightarrow less diversity

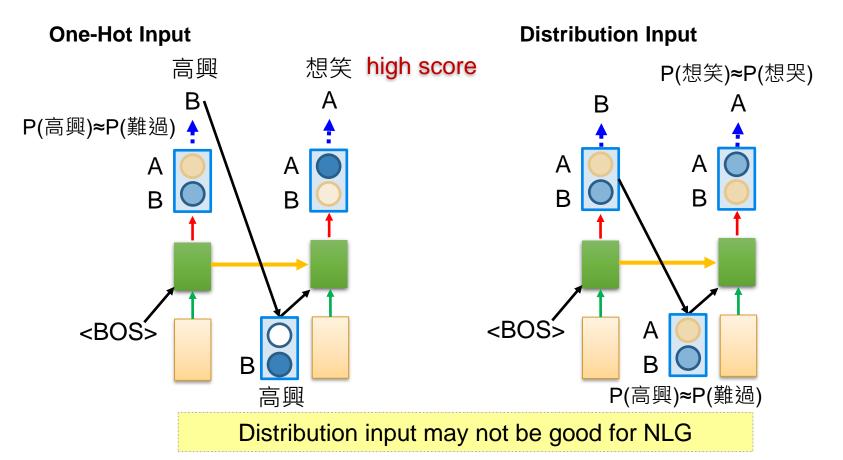
softmax temperature is not a decoding algorithm, which is the way of controlling the diversity during testing via any decoding algorithm

37 Repetition Penalty

Idea: discourage repetitions

³⁸ Frequency / Presence Penalty

Repetition Penalty


- Frequency penalty: discouraging repeating words too much
- Presence penalty: encourage using different words

³⁹ Diversity / Repetition Controlling

Overview Documentation API reference Examples	Playground Fine-tuning	🕈 Upgrade 💬 Forum 🕜 Help	National Taiwan University
Playground		Your presets \checkmark Save	View code Share ····
SYSTEM You are a helpful assistant.	USER Enter a user message here.		Chat Model gpt-3.5-turbo Temperature 1 Maximum length 256 Stop sequences Enter sequence and press Tab Top P 1 Frequency penalty 0 Presence penalty 0
	Submit 🚯		API and Playground requests will not be used to train our models. Learn more

U: 你覺得如何? M: 高興想笑 or 難過想哭

41 Concluding Remarks

NLG / Conditional NLG

Decoding Algorithm

- o Greedy
- Beam Search
- Sampling
- Top-*k* Sampling
- Nucleus Sampling
- Generation Controlling
 - Temperature
 - Frequency Penalty
 - Presence Penalty