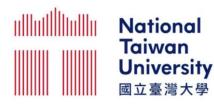
Applied Deep Learning

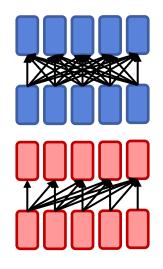
BERT Variants

September 18th, 2024 <a href="http://

http://adl.miulab.tw



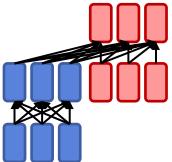
Three Types of Model Pre-Training



- Bidirectional context
- Examples: BERT and its variants

Operation Decoder

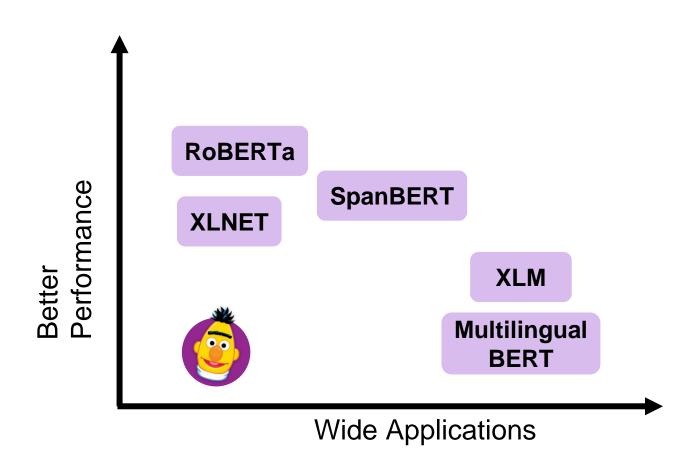
Language modeling; better for generation



• Encoder-Decoder

Sequence-to-sequence model

Beyond BERT

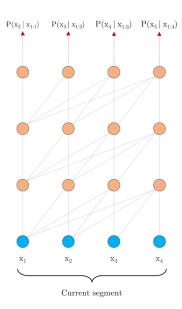


Transformer-XL

(Dai et al, 2019)

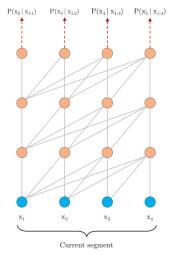
Transformer

- Issue: context fragmentation
 - Long dependency: unable to model dependencies longer than a fixed length
 - Inefficient optimization: ignore sentence boundaries



Transformer-XL (extra-long)

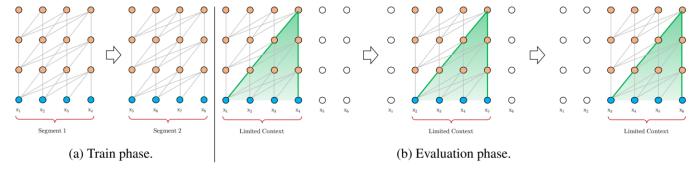
- Idea: segment-level recurrence
 - Previous segment embeddings are fixed and cached to be reused when training the next segment
 - → increases the largest dependency length by N times (N: network depth)



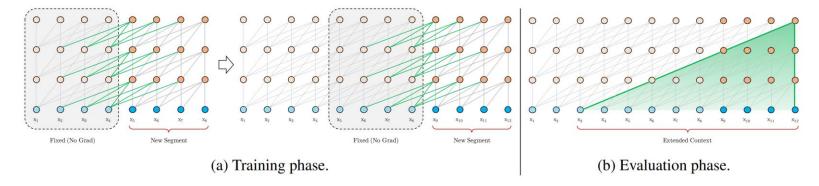
resolve the context fragmentation issue and makes the dependency longer

State Reuse for Segment-Level Recurrence

Vanilla



State Reuse

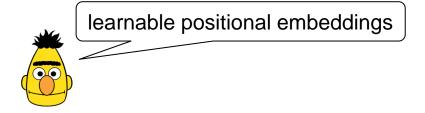


Positional Encoding

- Issue: naively applying segment-level recurrence can't work
 - absolute positional encodings are incoherent when reusing

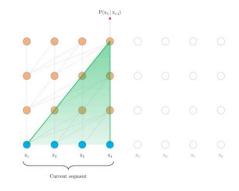
$$[0, 1, 2, 3] \rightarrow [0, 1, 2, 3, 0, 1, 2, 3]$$

relative positional encoding for supporting state reuse

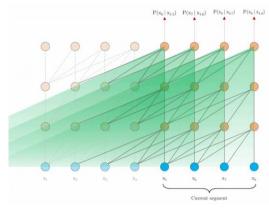


Segment-Level Recurrence in Inference

Vanilla



State Reuse



Contributions

- Longer context dependency
 - Learn dependency than vanilla Transformers
 - Better perplexity on long sequences
 - Better perplexity on short sequences by addressing the fragmentation issue
- Speed increase
 - Process new segments without recomputation
 - Achieve up to 1,800+ times faster than a vanilla Transformer during evaluation on LM tasks

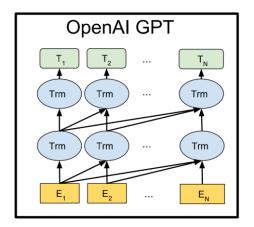
XLNet

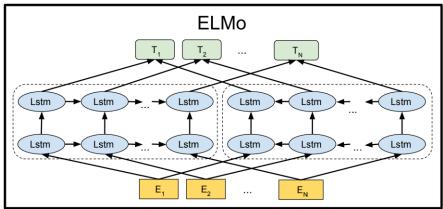
(Yang et al., 2019)

Auto-Regressive (AR)

 Objective: modeling information based on either previous or following contexts

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp \left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp \left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)}$$



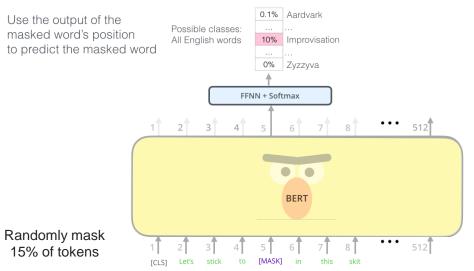


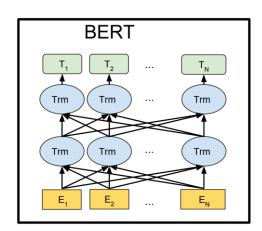
Auto-Encoding (AE)

• Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)}$$

dimension reduction or denoising (masked LM)





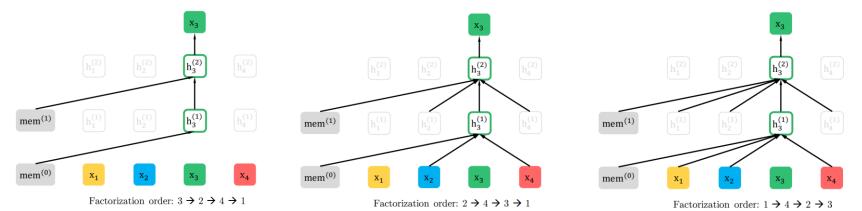
Auto-Encoding (AE)

- Issues
 - Independence assumption: ignore the dependency between masks
 - Input noise: discrepancy between pre-training and fine-tuning

```
(w/[MASK]) (w/o[MASK])
```

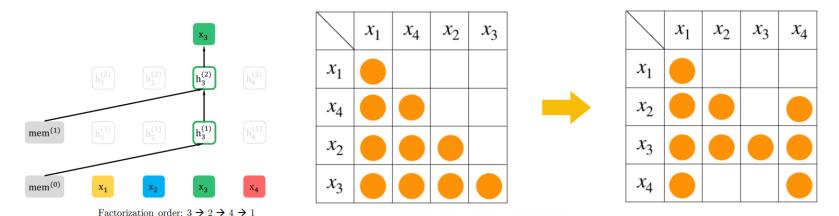
Permutation Language Model

- Goal: use AR and bidirectional contexts for prediction
- Idea: parameters shared across all factorization orders in expectation
 - T! different orders to a valid AR factorization for a sequence of length T
 - Pre-training on sequences sampled from all possible permutations



Permutation Language Model

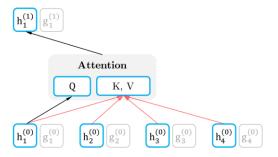
- Implementation: only permute the factorization order
 - Remain original positional encoding
 - Rely on proper attention masks in Transformers



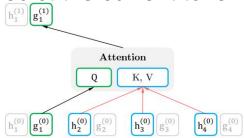
resolve independence assumption and pretrain-finetune discrepancy issues

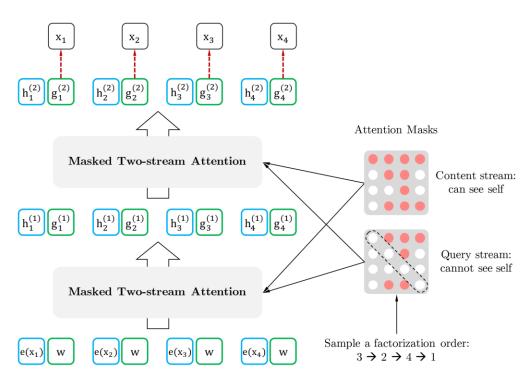
Two-Stream Self-Attention

- Content stream
 - Predict other tokens



- Query stream
 - Predict the current token





GLUE Results

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single	models on de								
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-
Single-task single	models on te	st							
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensem	bles on test (fi	rom leade	rboard as	s of June	19, 2019)			
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
$ALICE^*$	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	$\boldsymbol{90.2/89.7}^{\dagger}$	98.6^{\dagger}	90.3^{\dagger}	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4

Contributions

AR for addressing independence assumption

$$\mathcal{J}_{\mathrm{BERT}} = \log p(\mathrm{New} \mid \mathrm{is} \ \mathrm{a} \ \mathrm{city}) + \log p(\mathrm{York} \mid \mathrm{is} \ \mathrm{a} \ \mathrm{city})$$

$$\mathcal{J}_{\mathrm{XLNet}} = \log p(\mathrm{New} \mid \mathrm{is} \ \mathrm{a} \ \mathrm{city}) + \log p(\mathrm{York} \mid \mathrm{New}, \mathrm{is} \ \mathrm{a} \ \mathrm{city})$$

AE for addressing the pretrain-finetune discrepancy

$$\mathcal{J}_{\text{BERT}} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N}); \quad \mathcal{J}_{\text{XLNet}} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N} \cup \mathcal{T}_{< x})$$

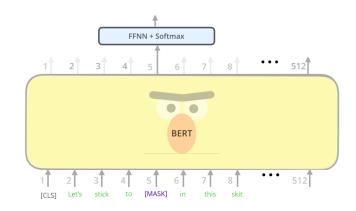
Roberta (Liu et al., 2019)

Robustly optimized BERT approach

What's More in RoBERTa

- Openie Dynamic masking
 - 10 different masking ways over 40 epochs
 - BERT: static masking by preprocessing

Masking	SQuAD 2.0	MNLI-m	SST-2
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9



- Optimization
 - peak learning-rate & #warmup-steps tuned separately
 - large batch (batch size=8K)

batch size	learning rate	epochs	steps	perplexity	MNLI-m	SST-2
256	1e-4	32	1M	3.99	84.7	92.5
2K	7e-4	32 64 128	125K 250K 500K	3.68 3.59 3.51	85.2 85.3 85.4	93.1 94.1 93.5
8K	1e-3	32 64 128	31K 63K 125K	3.77 3.60 3.50	84.4 85.3 85.8	93.2 93.5 94.1

What's More in RoBERTa

Data

- train only with full-length sequences
 - BERT: on the reduced length
- BookCorpus + English Wikipedia (16G), CC-News (76G), OpenWebText (38G), Stories (31G)

Model	Model data		steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
$\mathrm{BERT}_{\mathrm{LARGE}}$						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

GLUE Results

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg			
Single-task single models on dev													
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-			
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-			
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-			
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)								
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3			
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6			
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4			
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5			

24

SpanBERT

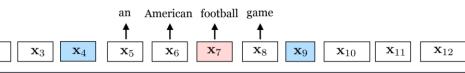
(Joshi et al., 2019)

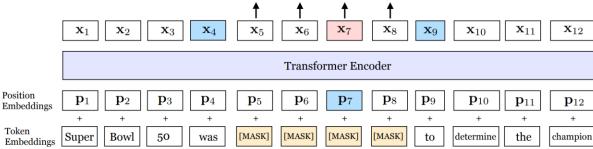
SpanBERT

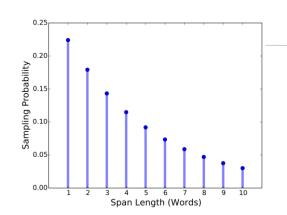
- Span masking
 - A random process to mask spans of tokens
- Single sentence training
 - a single contiguous segment of text for each training sample (instead of two)

 $\mathcal{L}(\text{football}) = \mathcal{L}_{\text{MLM}}(\mathbf{x}_7) + \mathcal{L}_{\text{SBO}}(\mathbf{x}_4, \mathbf{x}_9, \mathbf{p}_7)$

- Span boundary objective (SBO)
 - predict the entire masked span using only the span's boundary







26 Results

• Masking scheme

	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Subword Tokens	83.8	72.0	76.3	77.7	86.7	92.5
Whole Words	84.3	72.8	77.1	76.6	86.3	92.8
Named Entities	84.8	72.7	78.7	75.6	86.0	93.1
Noun Phrases	85.0	73.0	77.7	76.7	86.5	93.2
Random Spans	85.4	73.0	78.8	76.4	87.0	93.3

• Auxiliary objective

	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Span Masking (2seq) + NSP	85.4	73.0	78.8	76.4	87.0	93.3
Span Masking (1seq)	86.7	73.4	80.0	76.3	87.3	93.8
Span Masking (1seq) + SBO	86.8	74.1	80.3	79.0	87.6	93.9

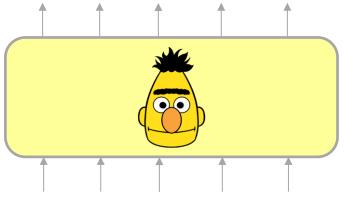
27

Multilingual BERT

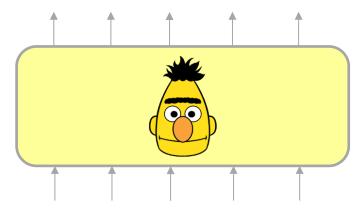
(Devlin et al., 2018)

Multilingual BERT

- Data: Wikipedia in top 104 languages
 - Code-mixing helps align words in different languages



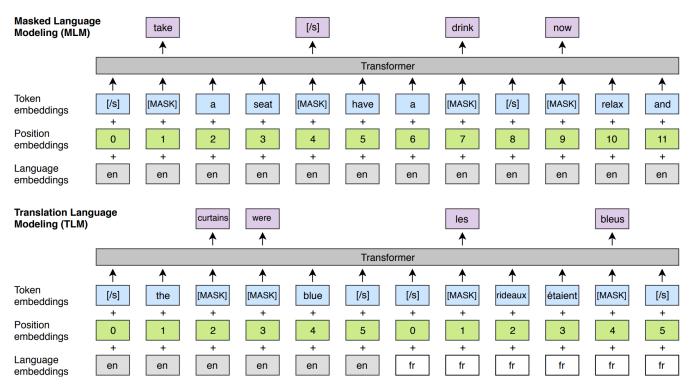
《名偵探柯南》(日語:名探偵コナン)・是<u>日本</u>漫畫家青山剛昌筆下的著名推理漫畫作品...



Case Closed, also known as Detective Conan (<u>Japanese</u>: 名 探偵コナン, <u>Hepburn</u>: Meitantei Konan, lit. "Great Detective Conan"), is a Japanese <u>detective</u> <u>manga</u> series

(Lample & Connueau, 2019)

Masked LM + Translation LM



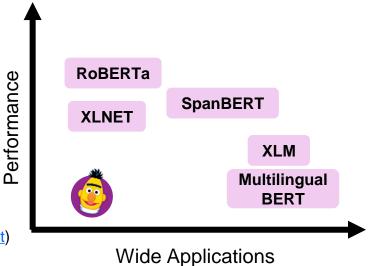
31 Results

Cross-lingual classification

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur	Δ
Machine translation baselines (TRANSLATE-TRAIN)																
Devlin et al. (2018)	81.9	-	77.8	75.9	-	-	-	-	70.7	-	-	76.6	-	-	61.6	-
XLM (MLM+TLM)	<u>85.0</u>	80.2	80.8	<u>80.3</u>	<u>78.1</u>	<u>79.3</u>	<u>78.1</u>	<u>74.7</u>	<u>76.5</u>	<u>76.6</u>	<u>75.5</u>	<u>78.6</u>	<u>72.3</u>	<u>70.9</u>	63.2	<u>76.7</u>
Machine translation baselines	Machine translation baselines (TRANSLATE-TEST)															
Devlin et al. (2018)	81.4	-	74.9	74.4	-	-	-	-	70.4	-	-	70.1	-	-	62.1	-
XLM (MLM+TLM)	<u>85.0</u>	79.0	79.5	78.1	77.8	77.6	75.5	73.7	73.7	70.8	70.4	73.6	69.0	64.7	65.1	74.2
Evaluation of cross-lingual se	ntence	encode	rs													
Conneau et al. (2018b)	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	65.6
Devlin et al. (2018)	81.4	-	74.3	70.5	-	-	-	-	62.1	-	-	63.8	-	-	58.3	-
Artetxe and Schwenk (2018)	73.9	71.9	72.9	72.6	73.1	74.2	71.5	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0	70.2
XLM (MLM)	83.2	76.5	76.3	74.2	73.1	74.0	73.1	67.8	68.5	71.2	69.2	71.9	65.7	64.6	63.4	71.5
XLM (MLM+TLM)	<u>85.0</u>	78.7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	<u>67.3</u>	75.1

Concluding Remarks

- Transformer-XL (https://github.com/kimiyoung/transformer-xl)
 - Longer context dependency
- XLNet (https://github.com/zihangdai/xlnet)
 - \circ AR + AE
 - No pretrain-finetune discrepancy
- Roberta (http://github.com/pytorch/fairseq)
 - Optimization details & data
- SpanBERT
 - Better for QA, NLI, coreference
- Multilingual BERT (https://github.com/google-research/bert)
- XLM (https://github.com/facebookresearch/XLM)
 - Zero-shot scenarios



Better