Applied Deep Learning

BERT

Bidirectional Encoder Representations from Transformers

September 18th, 2024

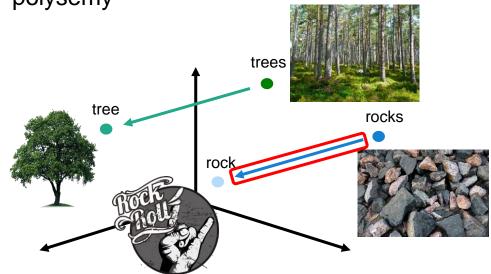
http://adl.miulab.tv

National Taiwan University 國立臺灣大學

Sesame Street

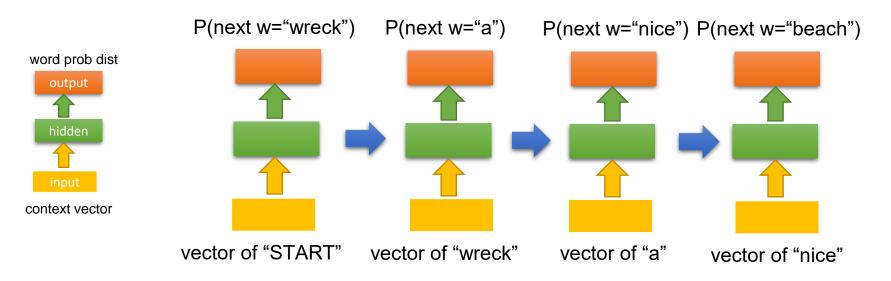
Word Embedding Polysemy Issue

- Words are polysemy
 - ✓ An apple a day, keeps the doctor away.
 - ✓ Smartphone companies including apple, ...
- However, their embeddings are NOT polysemy
- Issue
 - ✓ Multi-senses (polysemy)
 - Multi-aspects (semantics, syntax)



4 RNNLM

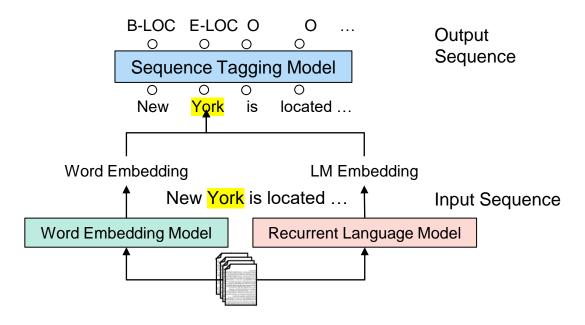
 Idea: condition the neural network on <u>all previous words</u> and <u>tie the weights</u> at each time step



This LM producing contextual word representations at each position

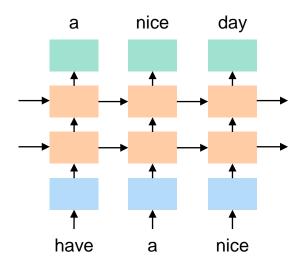
TagLM – "Pre-ELMo"

Idea: train LM on big unannotated data to provide the <u>contextual embeddings</u> for the target task → self-supervised learning



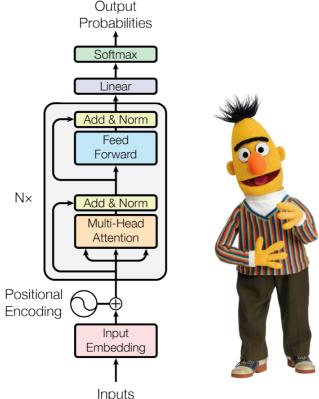
ELMo: Embeddings from Language **Mo**dels

- Idea: contextualized word representations
- Learn word vectors using long contexts instead of a context window
- ✓ Learn a deep LM and use all its layers in prediction



BERT: Bidirectional Encoder Representations from Transformers

- Idea: contextualized word representations
 - Learn word vectors using long contexts using Transformer instead of LSTM



BERT #1 – Masked Language Model

 Idea: language understanding is bidirectional while LM only uses left or right context

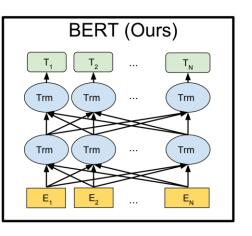
Use the output of the masked word's position to predict the masked word

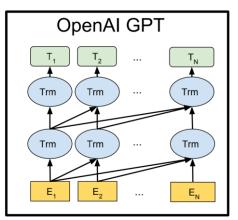
Aardvark 0.1% Possible classes: Improvisation All English words Zyzzyva FFNN + Softmax **BERT**

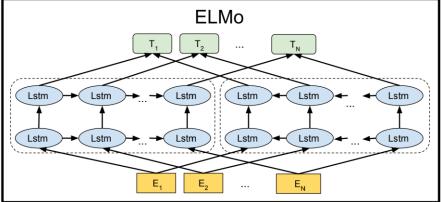
Randomly mask 15% of tokens

- Too little: expensive to train
- Too much: not enough context

BERT #1 – Masked Language Model





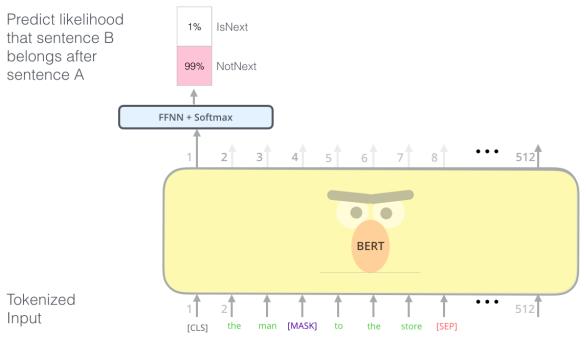


BERT #2 – Next Sentence Prediction

- Idea: modeling relationship between sentences
 - QA, NLI etc. are based on understanding inter-sentence relationship

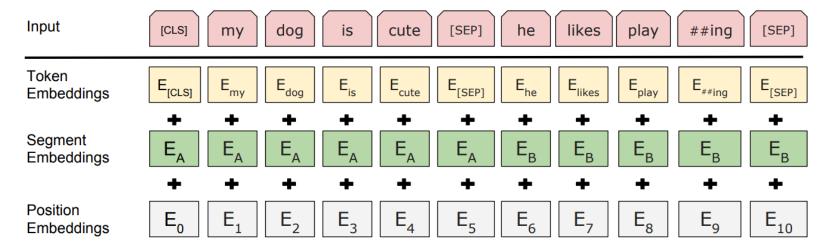
BERT #2 – Next Sentence Prediction

Idea: modeling relationship between sentences



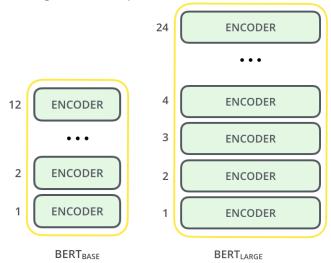
BERT – Input Representation

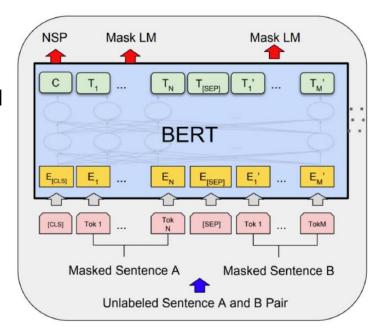
- Input embeddings contain
 - Word-level token embeddings
 - Sentence-level segment embeddings
 - Position embeddings



BERT Training

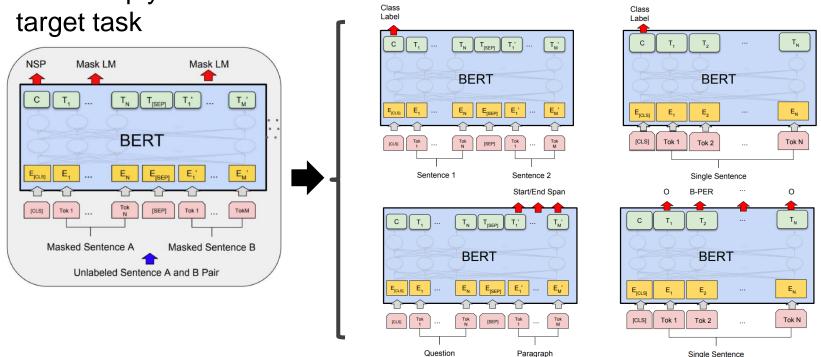
- Training data: Wikipedia + BookCorpus
- 2 BERT models
 - BERT-Base: 12-layer, 768-hidden, 12-head
 - BERT-Large: 24-layer, 1024-hidden, 16-head





BERT Fine-Tuning for Understanding Tasks

Idea: simply learn a classifier/tagger built on the top layer for each

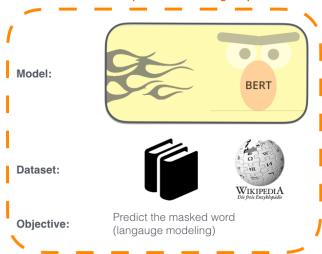


BERT Overview

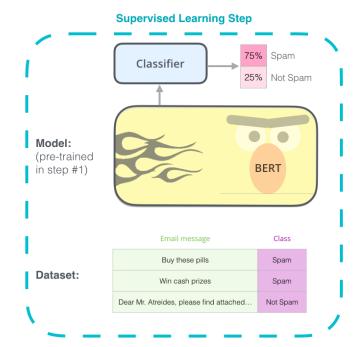
1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

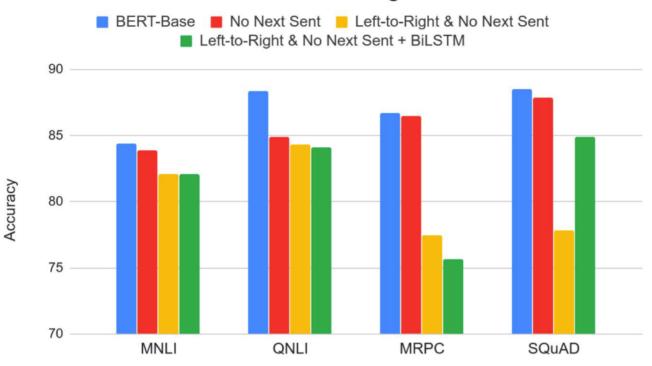


2 - Supervised training on a specific task with a labeled dataset.



BERT Fine-Tuning Results

Effect of Pre-training Task

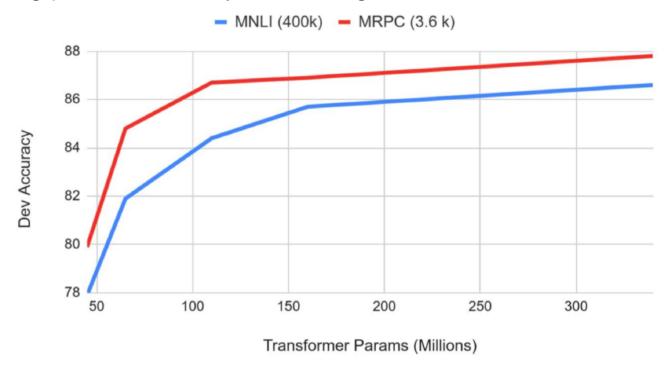


BERT Results on NER

Model	Description	CONLL 2003 F1
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22
BERT-Base (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.4</u>
CVT Clark	Cross-view training + multitask learn	92.61
BERT-Large (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.8</u>
Flair	Character-level language model	93.09

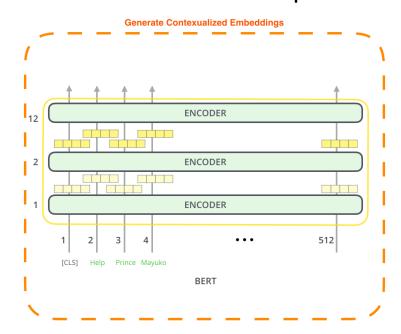
BERT Results with Different Model Sizes

Improving performance by increasing model size

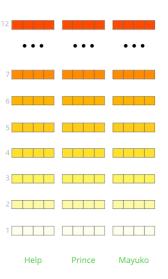


BERT for Contextual Embeddings

Idea: use pre-trained BERT to get contextualized word embeddings and feed them into the task-specific models



The output of each encoder layer along each token's path can be used as a feature representing that token.



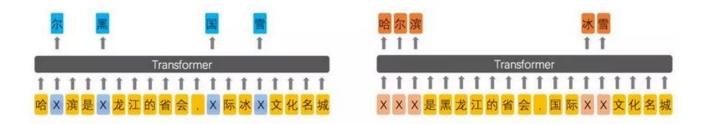
BERT Contextual Embeddings Results on NER

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

ERNIE: Enhanced Representation through kNowledge IntEgration

- BERT models local cooccurrence between tokens, while characters are modeled independently
 - 哈(ha), 爾(er), 濱(bin) instead 哈爾濱(Harbin)
- ERNIE incorporates knowledge by masking semantic units/entities
 Learned by BERT
 Learned by ERNIE



Concluding Remarks

- Contextualized embeddings learned from masked LM via Transformers provide informative cues for transfer learning
- BERT a general approach for learning contextual representations from Transformers and benefiting language understanding
 - ✓ Pre-trained BERT:

https://github.com/google-research/bert https://github.com/huggingface/transformers

