Applied Deep Learning

Sequence Modeling

Language Modeling & Recurrent Neural Networks

September 11th, 2024 http://adl.miulab.tw

National Taiwan University

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Meaning Representations in Computers

How to represent words in computers?

Knowledge-Based Representation

Corpus-Based Representation

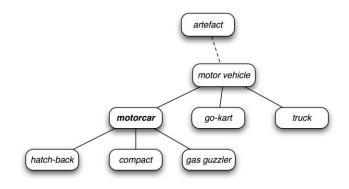
- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Knowledge-Based Representation

• Hypernyms (is-a) relationships of WordNet

```
from nltk.corpus import wordnet as wn
panda = wn.synset('panda.n.01')
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))
```

```
[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical entity.n.01'),
Synset('entity.n.01')]
```



Issues:

- newly-invented words
- subjective
- annotation effort
- difficult to compute word similarity

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Corpus-Based Representation

Atomic symbols: one-hot representation

car [0 0 0 0 0 0 1 0 0 ... 0]

car

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

Idea: words with similar meanings often have similar neighbors

Corpus-Based Representation

- Neighbor-based representation
 - Co-occurrence matrix constructed via neighbors
 - Neighbor definition: full document vs. windows

full document

word-document co-occurrence matrix gives general topics

→ "Latent Semantic Analysis"

windows

context window for each word

→ capture syntactic (e.g. POS) and semantic information

Window-Based Co-occurrence Matrix

- Example
 - Window length=1
 - Left or right context
 - Corpus:

I love AI.
I love deep learning.
I enjoy learning.

similarity > 0

Counts	I	love	enjoy	Al	deep	learning
I	0	2	1	0	0	0
love	2	0	0	1	1	0
enjoy	1	0	0	0	0	1
Al	0	1	0	0	0	0
deep	0	1	0	0	0	1
learning	0	0	1	0	1	0

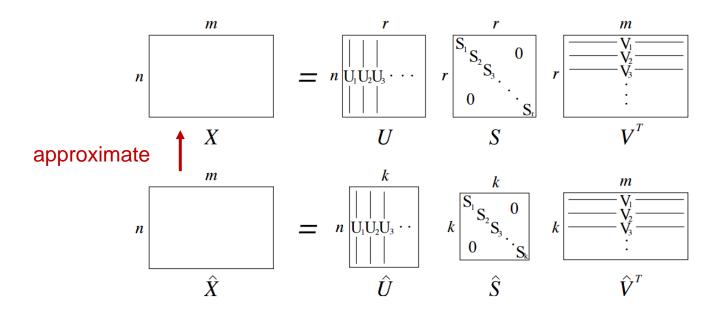
Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity → poor robustness

Idea: low dimensional word vector

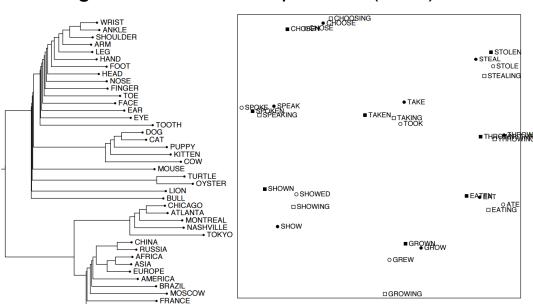
Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X



Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X



Issues:

- computationally expensive:
 O(mn²) when n<m for nxm matrix
- difficult to add new words

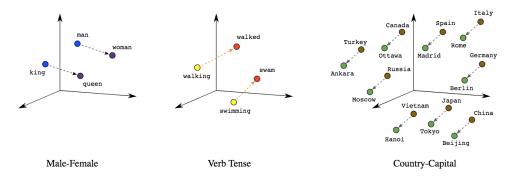
Idea: directly learn lowdimensional word vectors

semantic relations

syntactic relations

Low-Dimensional Dense Word Vector

- Method 2: directly learn low-dimensional word vectors
 - Learning representations by back-propagation. (Rumelhart et al., 1986)
 - A neural probabilistic language model (Bengio et al., 2003)
 - NLP (almost) from Scratch (Collobert & Weston, 2008)
 - Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)
 - As known as "Word Embeddings"



Language Modeling

語言模型

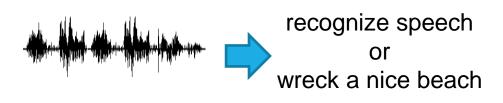
- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Language Modeling

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

 Example task: determinate whether a sequence is grammatical or makes more sense



If P(recognize speech) > P(wreck a nice beach)

Output = "recognize speech"

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

N-Gram Language Modeling

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

- N-gram language model
 - Probability is conditioned on a window of (*n*-1) previous words

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

Estimate the probability based on the training data

$$P(\text{beach}|\text{nice}) = \frac{C(\text{nice each})}{C(\text{nice})} \leftarrow \frac{C(\text{ount of "nice beach" in the training data})}{C(\text{ount of "nice" in the training data})}$$

Issue: some sequences may not appear in the training data

N-Gram Language Modeling

- Training data:
 - The dog ran
 - The cat jumped

```
P(jumped | dog) = 0.0001
P(ran | cat) = 0.0001
```

give some small probability

→ smoothing

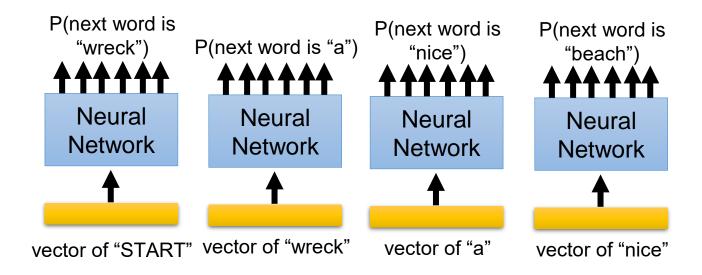
- > The probability is not accurate
- > Reason: impossible to collect all possible texts as training data

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Neural Language Modeling

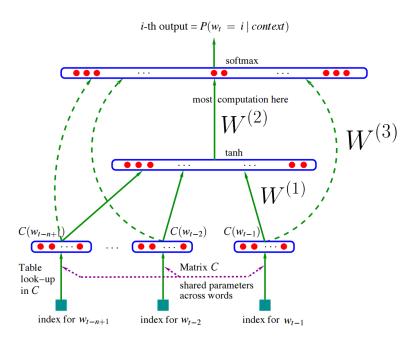
• Idea: estimate $P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$ not from count, but from NN prediction

P("wreck a nice beach") = P(wreck | START) P(a | wreck) P(nice | a) P(beach | nice)

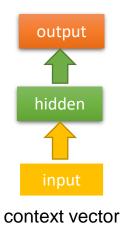


Neural Language Modeling

$$\hat{y} = \operatorname{softmax}(W^{(2)}\sigma(W^{(1)}x + b^{(1)}) + W^{(3)}x + b^{(3)})$$



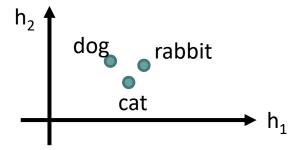
Probability distribution of the next word



Bengio et al., "A Neural Probabilistic Language Model," in *JMLR*, 2003.

Neural Language Modeling

The input layer (or hidden layer) of the related words are close



If P(jump | cat) is large, P(jump | dog) increases accordingly (even there is not "... dog jumps ..." in the data)

Smoothing is automatically done

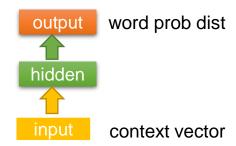
Issue: fixed context window for conditioning

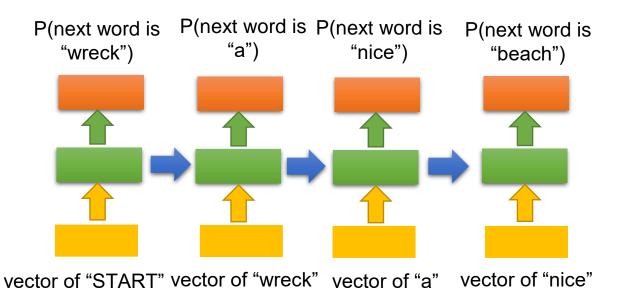
- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Recurrent Neural Network

- Idea: condition the neural network on <u>all previous words</u> and <u>tie the weights</u> at each time step
- Assumption: temporal information matters

RNN Language Modeling





Idea: pass the information from the previous hidden layer to leverage all contexts

Recurrent Neural Network

詳細解析鼎鼎大名的RNN

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

RNNLM Formulation

At each time step,

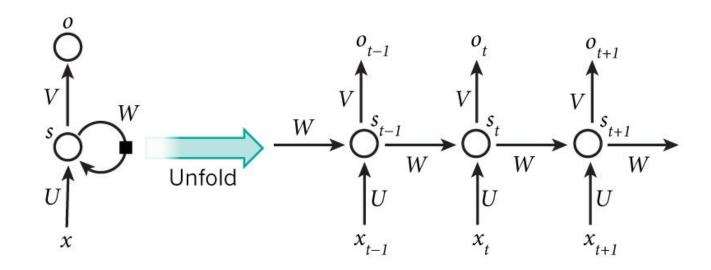
- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Recurrent Neural Network Definition

$$s_t = \sigma(Ws_{t-1} + Ux_t)$$

$$o_t = \operatorname{softmax}(Vs_t)$$

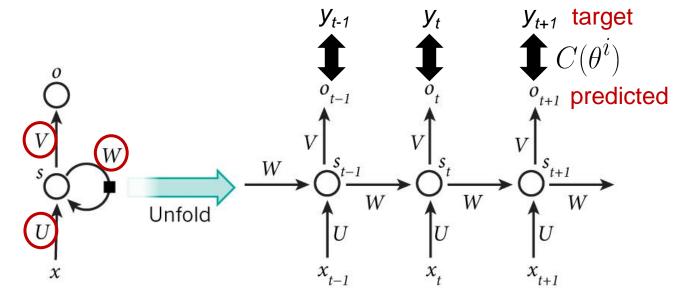
$$\sigma(\cdot): \text{tanh, ReLU}$$



Model Training

 \bullet All model parameters $\theta = \{U, V, W\}$ can be updated by

$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$$

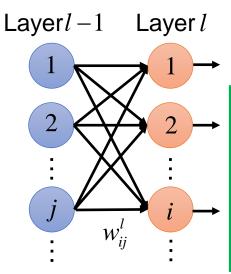


- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Backpropagation

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

Error signal



Backward Pass

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

Forward Pass

$$z^{1} = W^{1}x + b^{1}$$

$$a^{1} = \sigma(z^{1})$$

$$\vdots$$

$$z^{l} = W^{l}z^{l-1}$$

$$z^{l} = W^{l}a^{l-1} + b^{l}$$

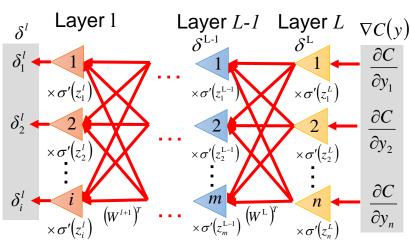
$$a^{l} = \sigma(z^{l})$$

Backpropagation

$$\frac{\partial C(\theta)}{\partial w_{ij}^{l}} = \boxed{\begin{array}{c} \partial C(\theta) \\ \partial z_{i}^{l} \end{array}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

$$\begin{array}{c} \delta_{i}^{l} \end{array} \text{ Error signal } \\ \frac{\partial C}{\partial y_{1}} \\ \frac{\partial C}{\partial y_{2}} \\ \frac{\partial C}{\partial y_{2}} \end{array}$$

$$\begin{array}{c} \delta_{i}^{L} = \sigma'(z^{L}) \odot \nabla C(y) \\ \delta^{L-1} = \sigma'(z^{L-1}) \odot (W^{L})^{T} \delta^{L} \\ \vdots \\ \frac{\partial C}{\partial y_{2}} \end{array}$$



$$\delta^{L} = \sigma'(z^{L}) \odot \nabla C(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \odot (W^{L})^{T} \delta^{L}$$

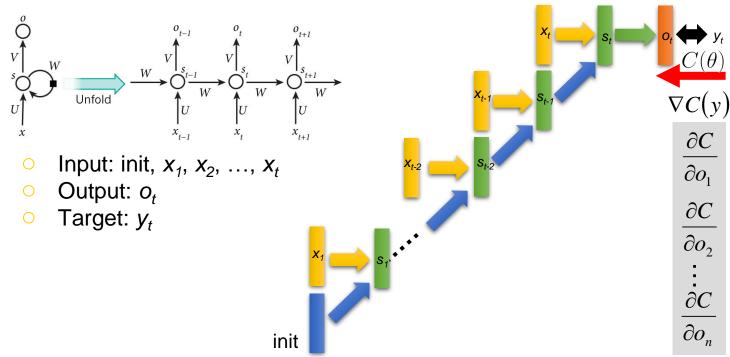
$$\vdots$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

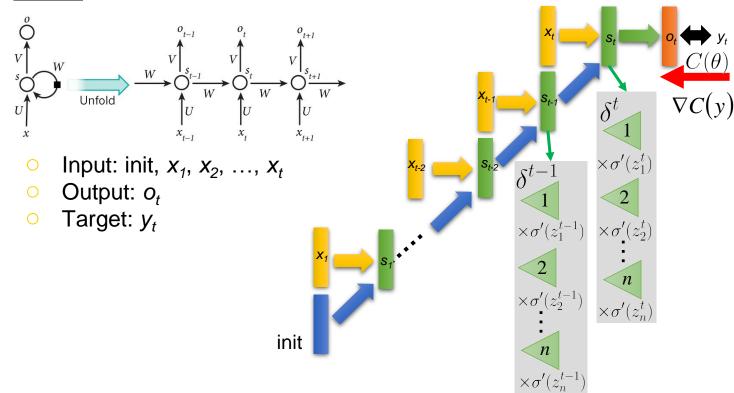
$$\vdots$$

Backpropagation through Time (BPTT)

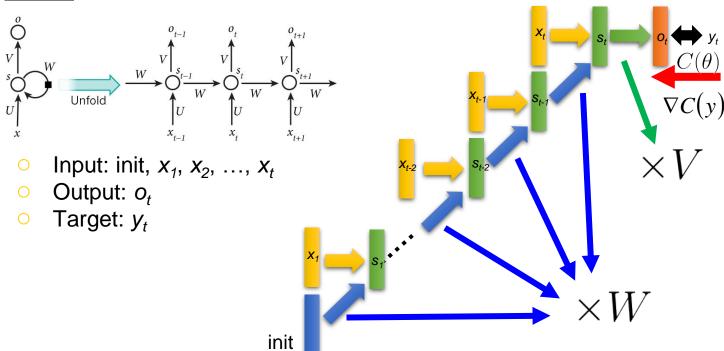
Unfold



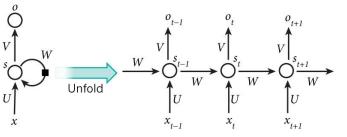
Unfold



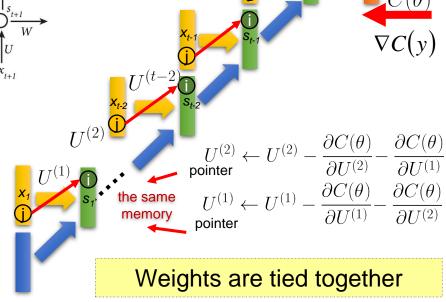
Unfold



Unfold

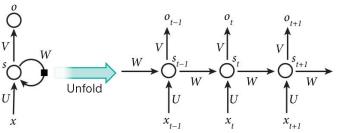


- Input: init, x_1 , x_2 , ..., x_t
- Output: 0,
- Target: y_t



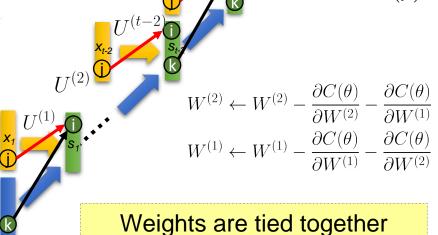
init

<u>Unfold</u>



init

- Input: init, x_1 , x_2 , ..., x_t
- Output: 0,
- Target: y_t



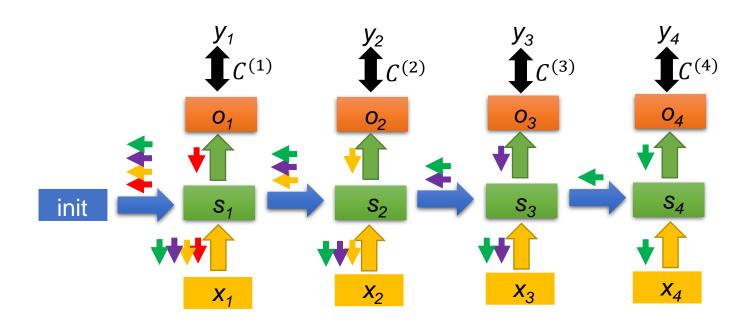
BPTT

Forward Pass:

Compute s_1 , s_2 , s_3 , s_4

Backward Pass:

For $C^{(4)}$ For $C^{(3)}$ For $C^{(2)}$



- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

RNN Training Issue

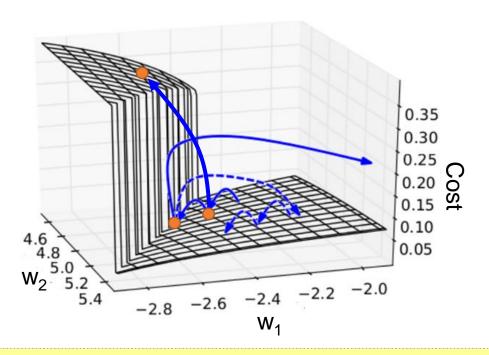
- The gradient is a product of Jacobian matrices, each associated with a step in the forward computation
- Multiply the <u>same</u> matrix at each time step during backprop

$$\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$$

The gradient becomes very small or very large quickly

vanishing or exploding gradient

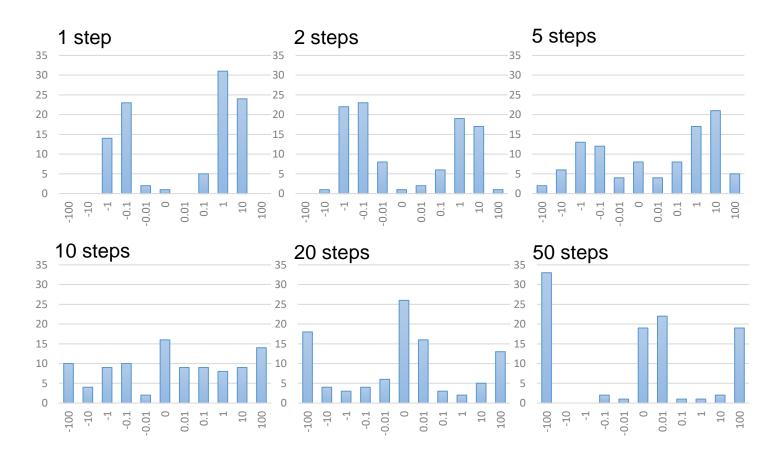
Rough Error Surface



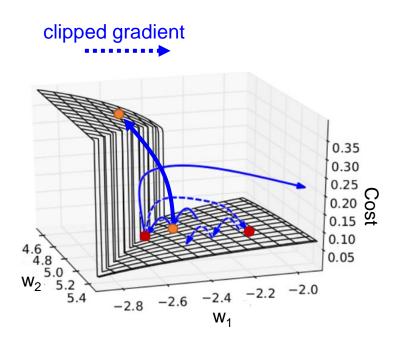
The error surface is either very flat or very steep

Bengio et al., "Learning long-term dependencies with gradient descent is difficult," *IEEE Trans. of Neural Networks*, 1994. [link] Pascanu et al., "On the difficulty of training recurrent neural networks," in *ICML*, 2013. [link]

Vanishing/Exploding Gradient Example



Solution for Exploding Gradient: Clipping



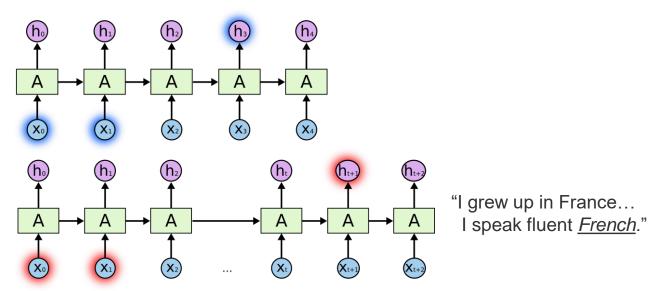
Idea: control the gradient value to avoid exploding

Algorithm 1 Pseudo-code for norm clipping
$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 if $\|\hat{\mathbf{g}}\| \geq threshold$ then
$$\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$$
 end if

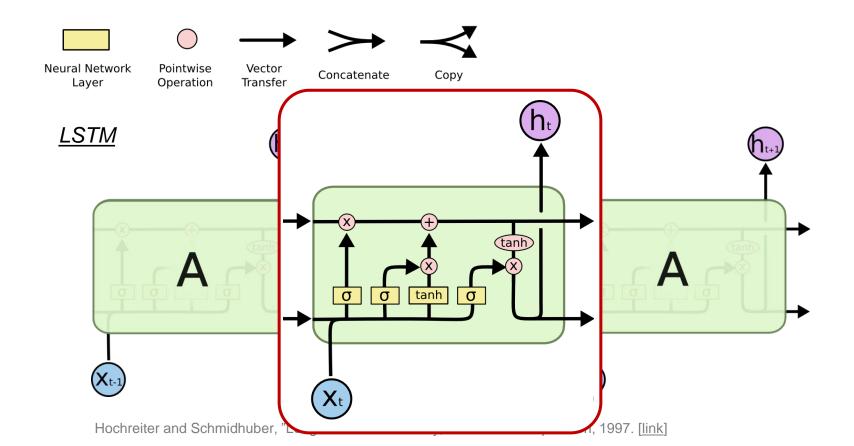
Parameter setting: values from half to ten times the average can still yield convergence

Solution for Vanishing Gradient: Gating

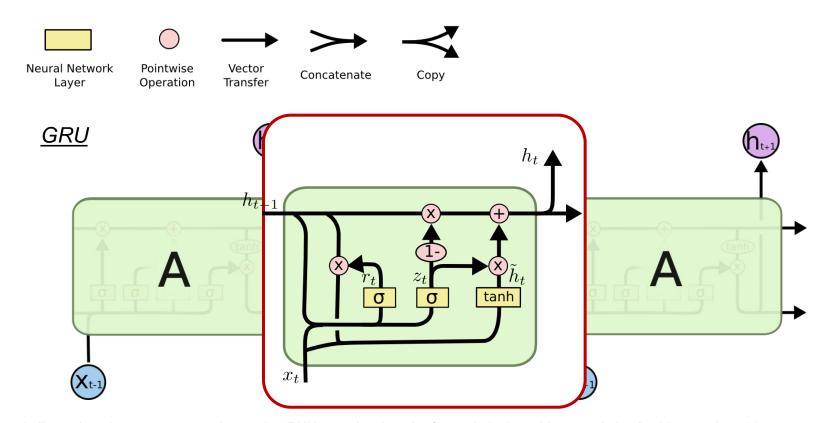
- RNN models temporal sequence information
 - o can handle "long-term dependencies" in theory



Long Short-Term Memory (LSTM)

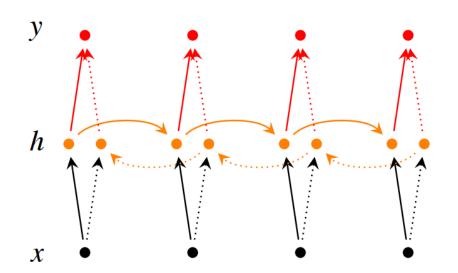


Gated Recurrent Unit (GRU)



Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.

Extension: Bidirectional RNN



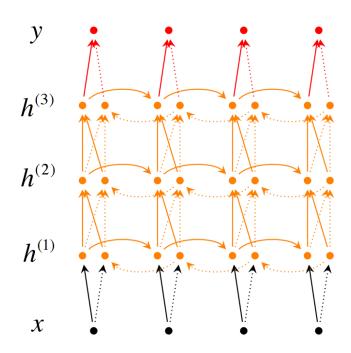
$$\vec{h}_t = f(\overrightarrow{W}x_t + \overrightarrow{V}\vec{h}_{t-1} + \vec{b})$$

$$\dot{\vec{h}}_t = f(\overleftarrow{W}x_t + \overleftarrow{V}\vec{h}_{t+1} + \dot{\vec{b}})$$

$$y_t = g(U[\vec{h}_t; \dot{\vec{h}}_t] + c)$$

 $h = [\vec{h}; \vec{h}]$ represents (summarizes) the past and future around a single token

Extension: Deep Bidirectional RNN



$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\dot{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \dot{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(\vec{U}[\vec{h}_{t}^{(L)}; \dot{h}_{t}^{(L)}] + c)$$

Each memory layer passes an intermediate representation to the next

RNN Applications

RNN各式應用情境

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

How to Frame the Learning Problem?

lacktriangle The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

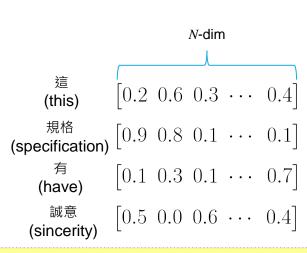
- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
- Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Input Domain – Sequence Modeling

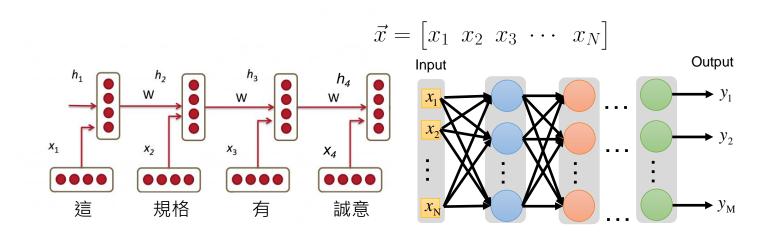
- Idea: aggregate the meaning from all words into a vector
- Method:
 - Basic combination: average, sum
 - Neural combination:
 - ✓ Recursive neural network (RvNN)
 - Recurrent neural network (RNN)
 - Convolutional neural network (CNN)
 - Transformer



How to compute
$$\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_N \end{bmatrix}$$

Sentiment Analysis

Encode the sequential input into a vector using RNN



RNN considers temporal information to learn sentence vectors as classifier's input

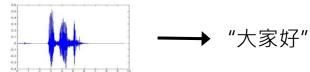
- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

Output Domain – Sequence Prediction

POS Tagging

"推薦我台大後門的餐廳" → 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



Machine Translation

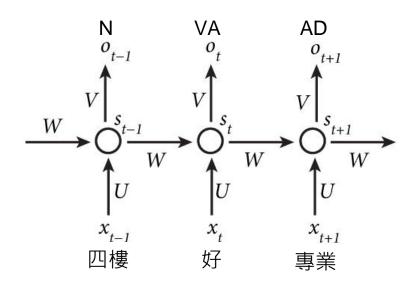
"How are you doing today?" → "你好嗎?"

The output can be viewed as a sequence of classification

- Meaning Representations
 - Knowledge-Based Representation
 - Corpus-Based Representation
- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

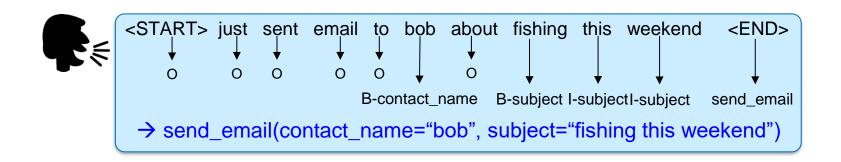
POS Tagging

- Tag a word at each timestamp
 - Input: word sequence
 - Output: corresponding POS tag sequence



Natural Language Understanding (NLU)

- Tag a word at each timestamp
 - Input: word sequence
 - Output: IOB-format slot tag and intent tag

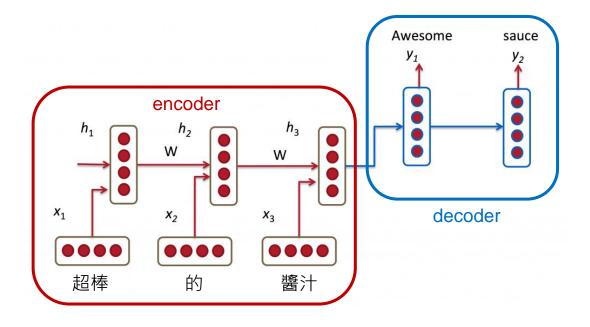


Temporal orders for input and output are the same

- Language Modeling
 - N-gram Language Model
 - Feed-Forward Neural Language Model
 - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
 - Definition
 - Training via Backpropagation through Time (BPTT)
 - Training Issue
 - Extension
- RNN Applications
 - Sequential Input
 - Sequential Output
 - Aligned Sequential Pairs (Tagging)
 - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

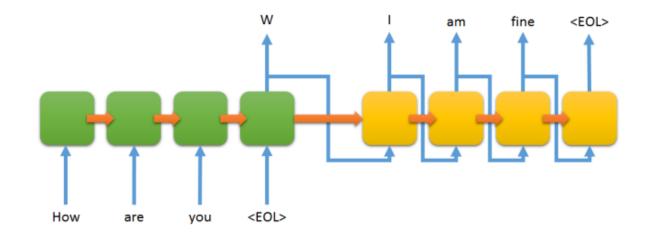
Machine Translation

- Cascade two RNNs, one for encoding and one for decoding
 - Input: word sequences in the source language
 - Output: word sequences in the target language



Chit-Chat Dialogue Modeling

- Cascade two RNNs, one for encoding and one for decoding
 - Input: word sequences in the question
 - Output: word sequences in the response



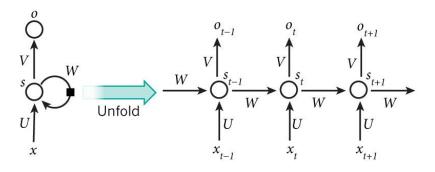
Temporal ordering for input and output may be different

Concluding Remarks

- Word Representations
 - Corpus-Based Representation
- Language Modeling
 - RNNLM
- Recurrent Neural Networks
 - Definition

$$s_t = \sigma(W s_{t-1} + U x_t)$$

$$o_t = \operatorname{softmax}(V s_t)$$



- Backpropagation through Time (BPTT)
- Vanishing/Exploding Gradient
- RNN Applications
 - Sequential Input: Sequence-Level Embedding
 - Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)