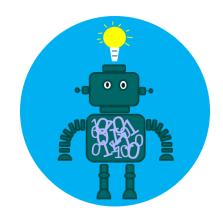
Applied Deep Learning

Introduction

September 4th, 2024 http://adl.miulab.tw

National Taiwan University 國立喜灣大學



What is Machine Learning?

什麼是機器學習?

白話文讓你了解!

3 — AI & ML

Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans.

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that "learn", that is, methods that leverage data to improve performance on some set of tasks.

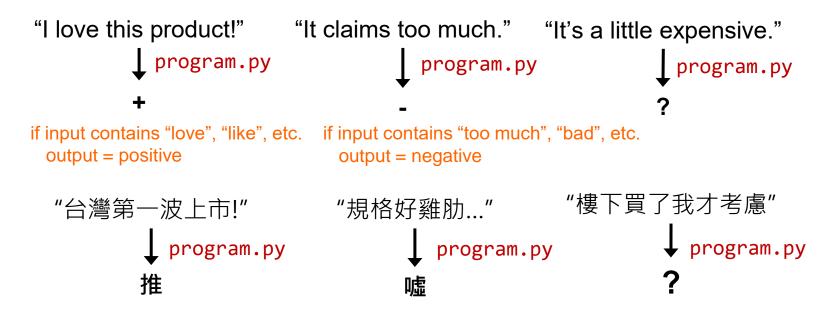
It is seen as a part of artificial intelligence.

What Computers Can Do?

→ Programs can do the things you ask them to do

Program for Solving Tasks

Task: predicting positive or negative given a product review



Some tasks are complex, and we don't know how to write a program to solve them.

Learning ≈ **Looking for a Function**

Task: predicting positive or negative given a product review

Given a large amount of data, the machine learns what the function f should be.

Learning ≈ **Looking for a Function**

Speech Recognition

Image Recognition

Weather Forecast

Last Week

Tomorrow"

Customer Prediction (KYC)

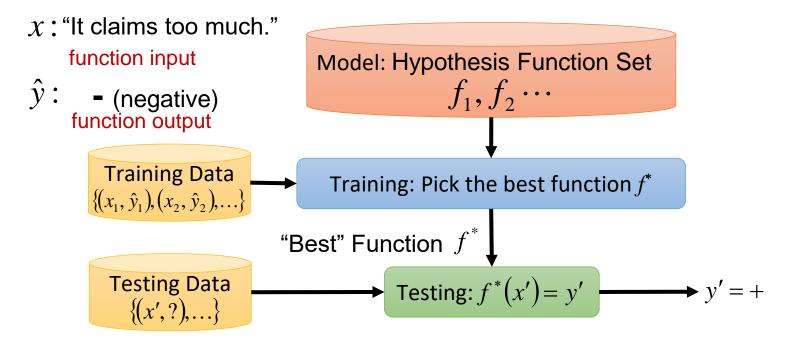
* @

)= "yes'

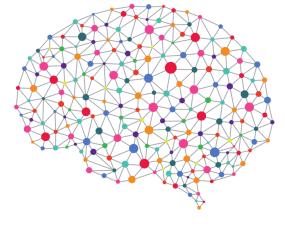
Play video games

"move left"

Machine Learning Framework



Training is to pick the best function given the observed data Testing is to predict the label using the learned function



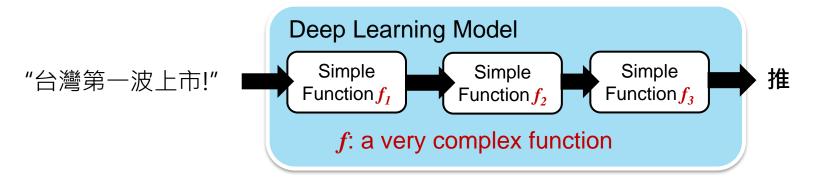
What is Deep Learning?

什麼是深度學習?

A subfield of machine learning

Stacked Functions Learned by Machine

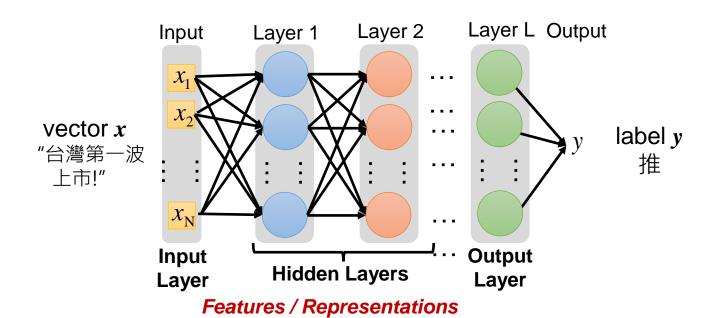
● Production line (生產線)



End-to-end training: what each function should do is learned automatically

Deep learning usually refers to neural network based model

Stacked Functions Learned by Machine

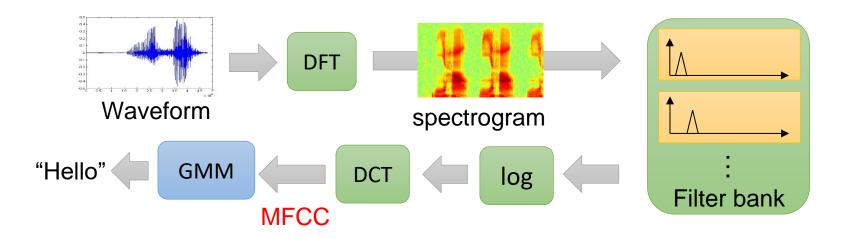


Representation Learning attempts to learn good features/representations

Deep Learning attempts to learn (multiple levels of) representations and an output

Deep vs. Shallow – Speech Recognition

Shallow Model

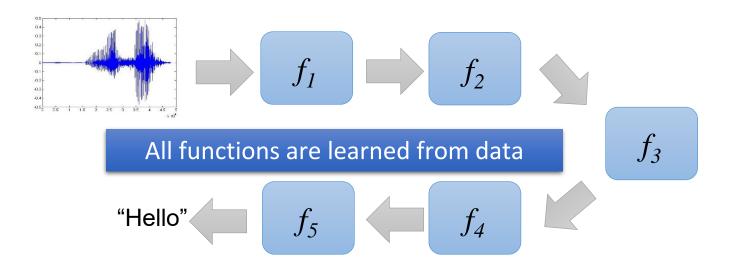


Each box is a simple function in the production line:

Deep vs. Shallow - Speech Recognition

"Bye bye, MFCC" - Deng Li in Interspeech 2014

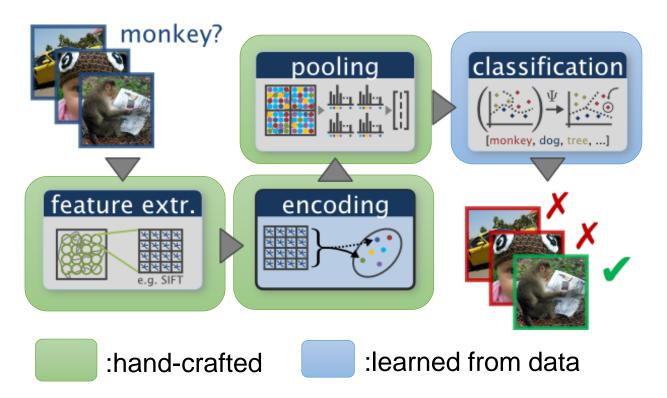
Deep Model



Less engineering labor, but machine learns more

Deep vs. Shallow – Image Recognition

Shallow Model

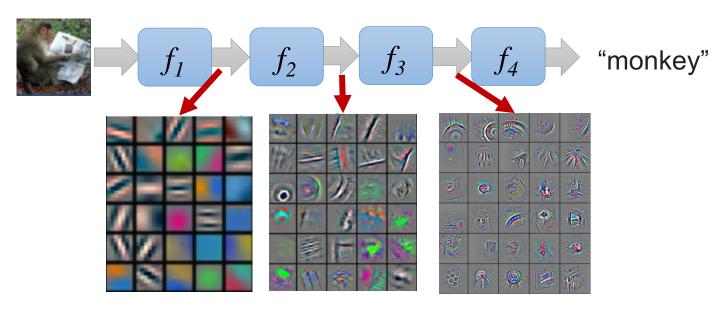


Deep vs. Shallow – Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833)

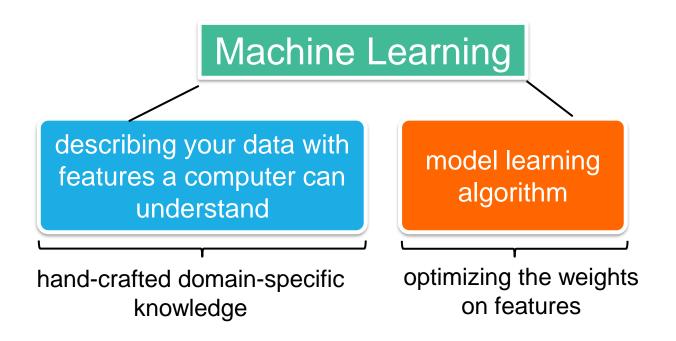
Deep Model

All functions are learned from data

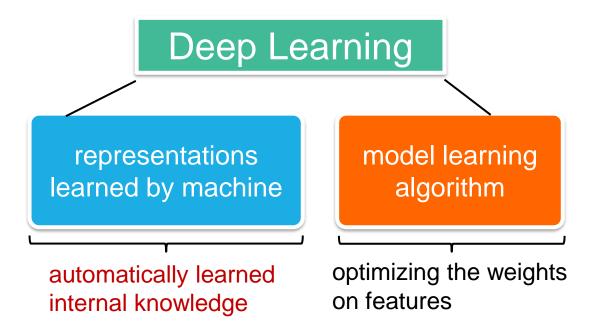


Features / Representations

Machine Learning vs. Deep Learning



Machine Learning vs. Deep Learning

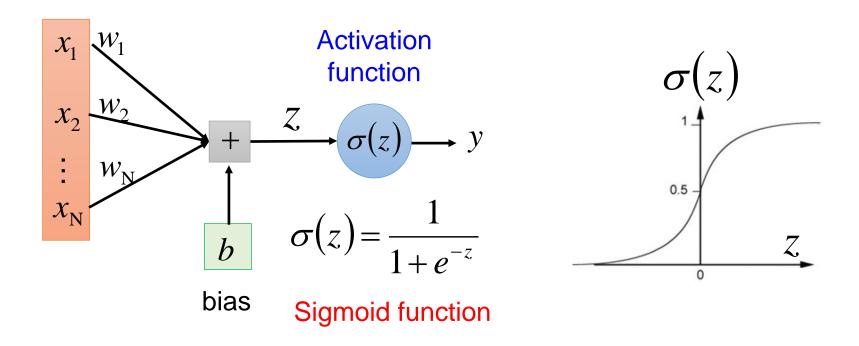


Deep learning usually refers to *neural network* based model

Inspired by Human Brain 18 Cell body Telodendria Axon Nucleus Axon hillock Synaptic terminals Golgi apparatus Endoplasmic reticulum Mitochondrion Dendrite

Dendritic branches

A Single Neuron



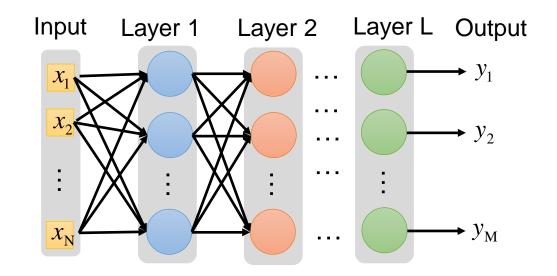
Each neuron is a very simple function

Deep Neural Network

A neural network is a complex function:

 $f: \mathbb{R}^N \to \mathbb{R}^M$

Cascading the neurons to form a neural network



Each layer is a simple function in the production line

History of Deep Learning

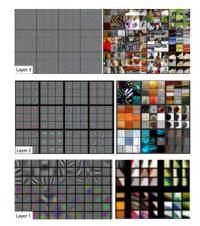
- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition
- 2016: AlphaGo "superhuman" results in Go playing
- 2022: ChatGPT "human-level" results in diverse domains

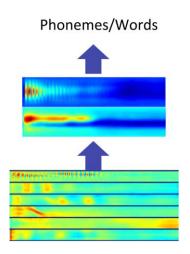
Deep Learning Breakthrough

First: Speech Recognition

Acoustic Model	WER on RT03S FSH	WER on Hub5 SWB
Traditional Features	27.4%	23.6%
Deep Learning	18.5% (-33%)	16.1% (-32%)

Second: Computer Vision





History of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition
- 2016: AlphaGo "superhuman" results in Go playing
- 2022: ChatGPT "human-level" results in diverse domains

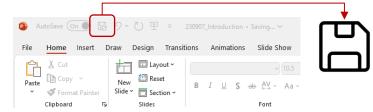
Why does deep learning show breakthrough in applications after 2010?

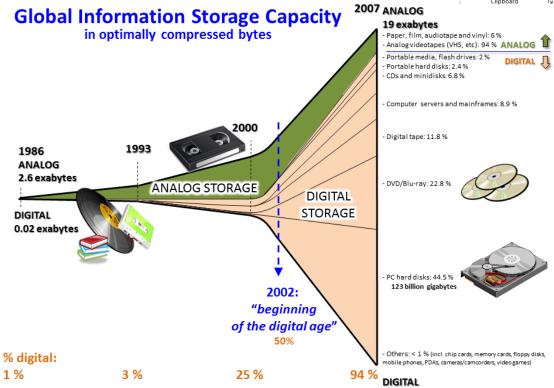
Why Deep Learning Works

Big Data

GPU

Data Storage





280 exabytes

GPU for Efficient AI Training

Searching for: 為什麼訓練AI需要很多GPU的資源

為什麼訓練AI需要很多GPU的資源

Generating answers for you...

訓練AI需要很多GPU的資源,主要是因為AI的一種方法叫做深度學習,它使用了大量的神經網絡來處理數 據1。神經網絡是一種高度並行的計算任務,也就是說,它可以把一個大的任務分成很多小的任務,同 時在不同的處理器上執行¹。GPU是一種專門用於並行計算的處理器,它有很多個核心(core),每個 核心都可以執行一個小任務¹²。相比之下,CPU是一種用於串行計算的處理器,它有較少的核心,但 每個核心都可以執行較複雜的任務²。因此,GPU比CPU更適合人工智能計算,尤其是當數據量和計算 量都很大時 3 2。

Learn more: 1. zhuanlan.zhihu.com

2. zhihu.com

3. zhuanlan.zhihu.com

GPU Companies

Searching for: 有提供GPU的公司有甚麼

有提供GPU的公司有甚麼?

Generating answers for you...

有提供GPU的公司有很多,其中最知名的是**英偉達**(NVIDIA)和AMD,它們分別生產了GeForce和 Radeon系列的GPU 1。這兩家公司的GPU主要用於遊戲和專業市場,也適合訓練AI 2 1。除此之外,還 有一些國内的公司也在開發自己的GPU,例如長沙景嘉微電子股份有限公司,它擁有完全自主知識產權的 GPU產品²。另外,一些大型科技公司也在研發自己的GPU或類似產品,例如谷歌的TPU(Tensor Processing Unit) ,蘋果的M1芯片等 1。

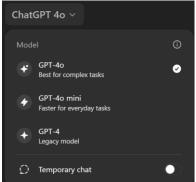
Learn more: 1. sohu.com 2. thepaper.cn

3. gigabyte.com

Why Speed Matters?

- Training time
 - Big data increases the training time
 - Too long training time is not practical
- Inference time
 - Users are not patient to wait for the responses

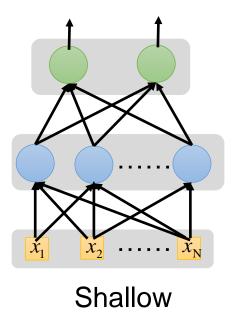




GPU enables the real-world applications using the computational power

Why Deeper is Better?

Open → More parameters



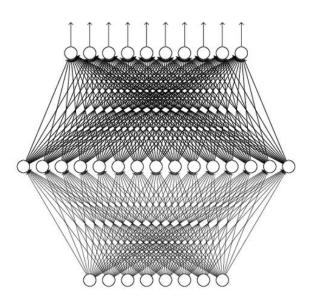
Deep

Universality Theorem

 \bigcirc Any continuous function f

$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$$

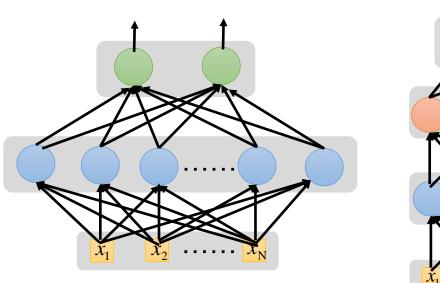
on be realized by a network with only hidden layer

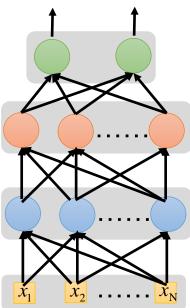


Why "deep" not "fat"?

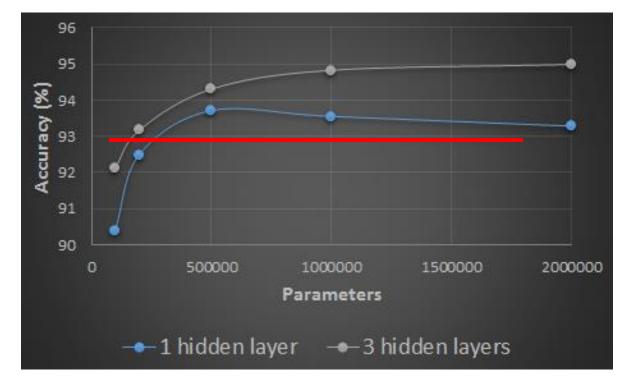
Fat + Shallow vs. Thin + Deep

Two networks with the same number of parameters





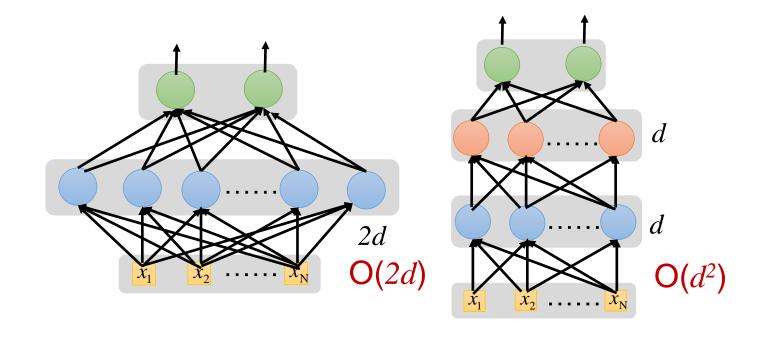
Fat + Shallow vs. Thin + Deep Hand-Written Digit Classification



The deeper model uses less parameters to achieve the same performance

Fat + Shallow vs. Thin + Deep

Two networks with the same number of parameters



How to Apply?

如何應用深度學習?

How to Frame the Learning Problem?

 \bigcirc The learning algorithm f is to map the input domain X into the output domain Y

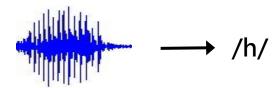
$$f: X \to Y$$

- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Output Domain – Classification

Sentiment Analysis

Speech Phoneme Recognition



Handwritten Recognition

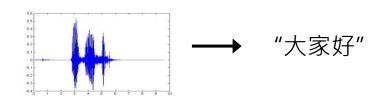
Output Domain – Sequence Prediction

POS Tagging

"推薦我台大後門的餐廳"

→ 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



Machine Translation

"How are you doing today?" → "你好嗎?"

Learning tasks are decided by the output domains

Input Domain – How to Aggregate Information

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
 - CNN (convolutional neural network): local connections, shared weights, pooling
 AlexNet, VGGNet, etc.
 - RNN (recurrent neural network): temporal information
 - Transformer: multiple inputs with interaction

Network architectures should consider the input domain properties

How to Frame the Learning Problem?

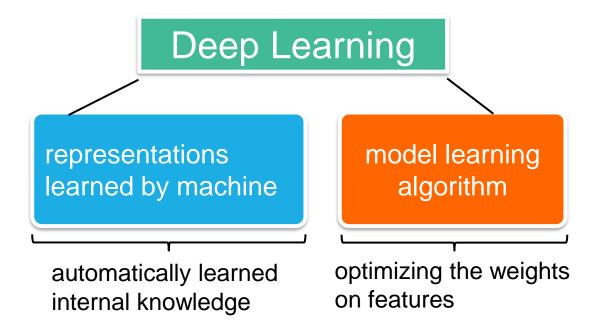
 \bigcirc The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

"Applied" Deep Learning

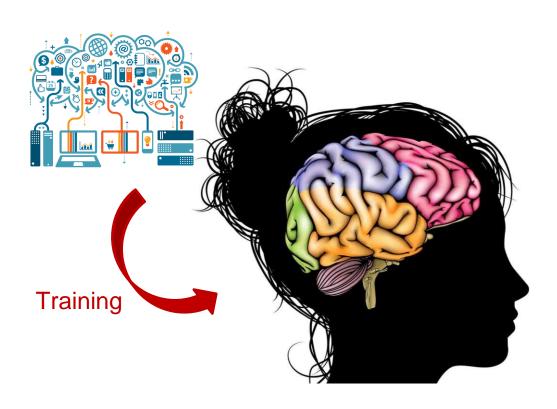


How to frame a task into a learning problem and design/choose the corresponding model

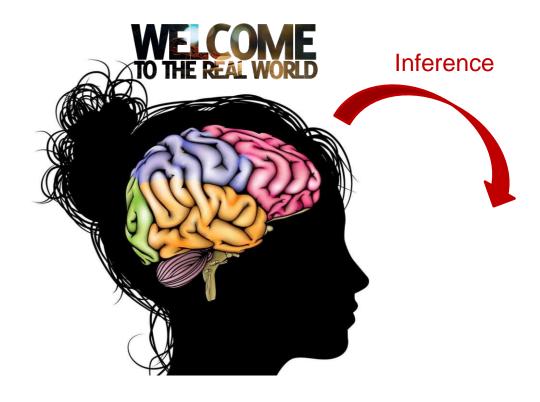
Core Factors for Applied Deep Learning

- 1. Data: big data
- 2. Hardware: GPU computing
- 3. Talent: design algorithms to allow networks to work for the specific problems

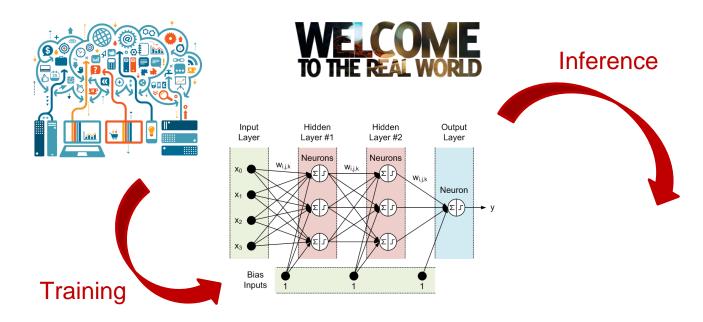
Concluding Remarks



Concluding Remarks



Concluding Remarks



Main focus: how to apply deep learning to the real-world problems

Reference

- Reading Materials
 - Referenced academic papers can be found in the slides
- Deep Learning
 - Goodfellow, Bengio, and Courville, "Deep Learning," 2016.
 http://www.deeplearningbook.org
 - Michael Nielsen, "Neural Networks and Deep Learning" http://neuralnetworksanddeeplearning.com

· Thanks!

Any questions?

You can find the course information at

- http://adl.miulab.tw
- <u>adl-ta@csie.ntu.edu.tw</u>
- slido: #ADL2024
- YouTube: Vivian NTU MiuLab