Applied Deep Learning

Prompt-Based Learning

November 9th, 2023

http://adl.miulab.tw

National Taiwan University 國立臺灣大學

2 Wide Usage of PLMs (Han et al., 2021)

Increasing usage of PLMs

Three Types of Model Pre-Training

3

Encoder

- Bidirectional context
- Examples: BERT and its variants
- Oecoder
 - Language modeling; better for generation
 - Example: GPT, GPT-2, GPT-3

Encoder-Decoder

- Sequence-to-sequence model
- Examples: Transformer, BART, T5

Three Types of Model Pre-Training

4

Encoder

- Bidirectional context
- Examples: BERT and its variants
- Decoder
 - Language modeling; better for generation
 - Example: GPT, GPT-2, GPT-3

Encoder-Decoder

- Sequence-to-sequence model
- Examples: Transformer, BART, T5

Improvements to the BERT pretraining:

- RoBERTa: mainly train BERT on *more data* and *longer*
- SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

- Generation tasks
 - BERT and other pretrained encoders don't naturally lead to *autoregressive (1-word-at-a-time)* generation methods

Three Types of Model Pre-Training

Encoder

- Bidirectional context
- Examples: BERT and its variants

Oecoder

- Language modeling; better for generation
- Example: GPT, GPT-2, GPT-3

Encoder-Decoder

- Sequence-to-sequence model
- Examples: Transformer, BART, T5

GPT: Generative Pretrained Transformer

(Radford et al., 2018)

Transformer decoder

8

- Pre-trained on BooksCorpus (~7000 books; 5GB)
 - Transformer decoder with 12 layers
 - 768-dim hidden states, 3072-dim feed-forward hidden layers
 - BPE with 40,000 merges

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding by generative pre-training." (2018).

GPT: Generative Pretrained Transformer (Radford et al., 2018)

Transformer decoder

9

- Supervised fine-tuning for the target tasks
- Next word prediction is kept during fine-tuning

Transformer decoder

- Pre-trained on more data
 - WebText from Raddit (40GB)
- Good for NLG

Context (WebText test)

Outfit 1: Typical

This pairing was the first outfit I thought of when I bought the shoes. It's like a summer version of this Jake Grantham outfit; in fact, my shoes are close to the colors of his Nike Racers! Instead of a heavy Harris Tweed jacket and denim shirt, I'm wearing a cotton DB jacket and and a linen shirt. Both fabrics (in these colors) are an absolute must for summer, as they go with both dark and and light pants! As you can see, they pair wonderfully with the dark jeans and shoes. It's a pseudo menswear/prep outfit.

Overall, this is a very casual outfit which is why I paired my sneakers with it. I'm not about wearing a full wool suit with sneakers (as GQ shows a lot) but I'm definitely open to keeping things casual, like this cotton DB. Casual fabrics are key to pulling off your sneakers in a dressed down menswear outfit. I'd even suggest to wear these sneakers with a khaki chino suit or a white linen suit. Just be sure to ditch the tie or wear a tee or polo; wearing a tie with sneakers is a bit too much

Small model completion

GPT-2 completion

for me!

Outfit 2: High End

Outfit 2: Casual Jacket

This outfit was just in the eye of the storm. It's a hybrid of what ASICS does with streetwear (like J. Crew) and what J. Crew does with casual pieces that are a bit more traditional. Again, as I mentioned before, it's a low budget item and they can be very expensive. These will definitely be an issue if you're trying to work as a casual sneakermaker, and that's OK but don't hesitate if you want to try the lower price versions of their outfits!

This version features a very low cut-cut neckline (which is not a bad thing), slightly longer legs, and a pair of long legs to keep things nice. My preferred color of color these items are blue-gray (which is my first colors, as they are a light white), or black (which is my favorite of my designs). As always, my pick of colors from this store have nothing to do with that other than the design. For a high end, I would recommend this to everyone!

Outfit 3: High Light

This was a "high light" look while I had a chance to get some color. I think the color is based on

I know that some people might be opposed to wearing sneakers in a turtleneck, but I wanted to be true to myself, so I went with a slim fitting turtleneck in a color more similar to my favorite color of the day. Overall, it's a classic turtleneck, with nothing too flashy. I did swap my shoes for these ASICS Tiger Killshots and I wish I hadn't did that. The shoe itself is very comfortable, however, I found that wearing them in these sneakers made my feet look a bit larger. I'd wear them with denim, chinos, whatever, but would never recommend wearing them alone. There are just too many variables involved.

Outfit 3: Dress

This is the final outfit I wore the ASICS Tiger Killshots. This version of the ASICS is a much more modern and streamlined version. The shoe has the most modern and minimal design that I can think of! With a lot of black, these sneakers look very cool. They'll definitely be very comfortable for summer.

To me, wearing them with a suit is the easiest way to have a good pair of sneaker shoes. That's pretty much it! If

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language models are unsupervised multitask learners." *OpenAl blog* 1, no. 8 (2019): 9.

GPT-3 (Brown et al., 2020)

• Transformer decoder

Pre-trained on *more data* (45TB)

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

- Common Crawl: web data over 8 years (metadata & text with filtering)
- WebText2: web pages from all outbound Reddit links from posts with 3+ upvotes
- Books1 & Books2: internet-based books corpora
- Wikipedia: English pages

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language models are fewshot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

Model	#Parameters	Pre-Trained Data
GPT (Radford et al., 2018)	0.117 B	5GB
GPT-2 (Radford et al., 2019)	1.5 B	40GB
GPT-3 (Brown et al., 2020)	175 B	45TB
GPT-4 (OpenAI, 2023)	?	?

— Three Types of Model Pre-Training

13

Encoder

- Bidirectional context
- Examples: BERT and its variants
- Decoder
 - Language modeling; better for generation
 - Example: GPT, GPT-2, GPT-3

Encoder-Decoder

- Sequence-to-sequence model
- Examples: Transformer, BART, T5

Image: The second pre-Training Image: The second pre-Training

- The encoder portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling.
- Pre-training objective: span corruption (denoising)
 - implemented in preprocessing
 - similar to language modeling at the decoder side

Thank you for inviting me to your party last week

10 Denoising for Pre-Training

Thank you for inviting me to your party last week

BART: output the whole sentence (Lewis et al., 2019)

T5: output the missing parts (Raffel et al., 2020)

10 Fine-Tuning for Classification

BART: repeat input in decoder (Lewis et al., 2019)

T5: treat it as a seq2seq task (Raffel et al., 2020)

1 Diverse No	oises in	BART
--------------	----------	------

A_CE. DE.ABC. C.DE.AB Token Masking Sentence Permutation Document Rotation								
A.C.E. Token Deletion ABC.DE. ABC.DE. AD_E. Text Infilling								
Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL		
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-		
BART Base								
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10		
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87		
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83		
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59		
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89		
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41		

Beffectiveness of Denoising in T5

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$\mathbf{L}\mathbf{M}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$\mathbf{L}\mathbf{M}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

19— T5: Text-to-Text Transfer Transformer

Multi-task pre-training: learning multiple tasks via seq2seq

Differences

- Training data size: BART > T5 (about 2x)
- Model size:
 - BART-large: 12 encoder, 12 decoder, 1024 hidden
 - T5-base: 12encoder, 12decoder, 768 hidden, 220M parameters (2x BERT-base)
 - T5-large: 24encoder, 24decoder, 1024hidden, 770M parameters
- Position encoding: learnable absolute position (BART) & relative position (T5)

Understanding performance

	SQuAD	MNLI	SST	QQP	QNLI	STS-B	RTE	MRPC	CoLA
BART	88.8 / 94.6	89.9 / 90.1	96.6	92.5	94.9	91.2	87.2	90.4	62.8
T5	86.7 / 93.8	89.9 / 89.6	96.3	89.9	94.8	89.9	87.0	89.9	61.2

Generation performance (summarization)

CNN/DailyMail	ROUGE-1	ROUGE-2	ROUGE-3
BART	45.14	21.28	37.25
Т5	42.50	20.68	39.75

21— Fine-Tuning on Pretrained LMs

Standard) fine-tuning: use the pre-trained LMs for initialization and tuning the parameters for a **downstream** task

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Downstream annotated data may not be large

Task	MNLI	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE
Size	391K	363K	108K	67K	8.5K	5.7K	3.5K	2.5K

 \rightarrow More practical cases are few-shot, one-shot or even zero-shot settings

Pine-Tuning vs. In-Context Learning

24 GPT-3 "In-Context" Learning

題組一:詞彙與結構 本部分共15題,每題含一個空格。請就試題中A、B、C、D四個選項中 選出最適合題意的字或詞。

題型說明

25 GPT-3 "In-Context" Learning

²⁶ Benchmark 42 NLU Tasks

27 NLU Performance in SuperGLUE

Human identify if the article is generated

Human ability to detect model generated news articles

Using a new word in a sentence (few-shot)

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus.

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence that uses the word yalubalu is:

I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden there. It was delicious.

A "Burringo" is a car with very fast acceleration. An example of a sentence that uses the word Burringo is:

In our garage we have a Burringo that my father drives to work every day.

A "Gigamuru" is a type of Japanese musical instrument. An example of a sentence that uses the word Gigamuru is:

I have a Gigamuru that my uncle gave me as a gift. I love to play it at home.

PLMs are larger and larger

Model	#Params	#Layers
ELMo	93M	2 (BiLSTM)
BERT Base	110M	12
BERT Large	340M	24
GPT-3 Small	125M	12
GPT-3 Medium	350M	24
GPT-3 Large	760M	24
GPT-3 XL	1.3B	24
GPT-3 2.7B	2.7B	32
GPT-3 6.7B	6.7B	32
GPT-3 13B	13B	40
GPT-3 175B ("GPT-3")	175.0B	96

Image: Better Performance from Larger Models

Language understanding performance (Ahmet & Abdullah, 2021)

32— Better Performance from Large Models

• More types of data for pre-training \rightarrow diverse capability

33— Training Cost of Large PLMs

Total Compute Used During Training

– Training Cost of Large PLMs

34

Sevilla et al., "Compute Trends Across Three Eras of Machine Learning," in arXiv:2202.05924, 2022.

Training Cost of Large PLMs

35

1e+25 Era ιŪ Megatron-Turing NLG 530B 1e+24 earning AlphaGo Zero 🛆 AlphaGo Master AlphaStar A 1e+23 Deep Training compute (FLOPs) 1e+22 BiaGAN-deep 512x512 AlphaGoNAS (CIFAR-10) ELA8O MnasNet-AMaa 1e+21 Libratus OpenAI TI7 DOTA 141 2.0 LARGE AlphaGo Fan RT-Large IMPALAO KEPLERO 1e+20 Xception () OMSRA (C, PFO DeepSpeech2 ObjectNaneforn mer local-attention (NesT-B) 1e+19 GPTO Oselá AlphaX-1 ansformer DLRM-2020 Decoupled weight decays digglasizatigm (1910) GoogLeNet / InceptionV1 1e+18 OAlexNet OMitosis Part-of-sentence tagging model le+17 OKN5 LM + RNN 400/10 (WSJ OWord2Vec (large) 1e+16 ODropout (MNIST) ORNN **O**DQN 1e+15 **O**Feedforward NN 6-layer MLP (MNIST 1e+14 2016 2017 2011 2012 2013 2014 2015 2018 2019 2020 2021 2022 Publication date

Training compute (FLOPs) of milestone Machine Learning systems over time

Sevilla et al., "Compute Trends Across Three Eras of Machine Learning," in arXiv:2202.05924, 2022.

Each task requires a copy of a large model

Image: Practical Issues of PLMs

- 1) Data scarcity
- 2) Large PLMs
 - Higher training cost
 - Larger space requirement

→ Solution: Prompt-Based Learning

Leveraging big pre-trained models

39 GPT-3 "In-Context" Learning

Idea: convert data into natural language prompts

 \rightarrow better for few-shot, one-shot, or zero-shot cases

1. <u>Prompt template</u>: manually designed natural language input for a task

NLI sample datapoint

2. <u>PLM</u>: perform language modeling (masked LM or auto-regressive LM)

3. <u>Verbalizer</u>: mapping from the vocabulary to labels

• Fine-tuning PLMs based on few annotated data samples

No parameter tuning when zero-shot settings

Prompt-tuning is better under data scarcity (Le and Rush, 2021) due to

- It better leverages pre-trained knowledge
- Pre-trained knowledge can be kept

48 LM-BFF: Better Few-shot Fine-tuning of Language Models-(Gao et al., 2021)

Idea: prompt + demonstration for few-shot learning

49 LM-BFF: Better Few-shot Fine-tuning of Language Models-(Gao et al., 2021)

Performance with RoBERTa-Large

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	STS-B
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	STS-B (Pear.)
Majority [†]	MNLI (acc) 32.7	MNLI-mm (acc) 33.0	SNLI (acc) 33.8	QNLI (acc) 49.5	RTE (acc) 52.7	MRPC (F1) 81.2	QQP (F1) 0.0	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	MNLI (acc) 32.7 50.8	MNLI-mm (acc) 33.0 51.7	SNLI (acc) 33.8 49.5	QNLI (acc) 49.5 50.8	RTE (acc) 52.7 51.3	MRPC (F1) 81.2 61.9	QQP (F1) 0.0 49.7	STS-B (Pear.) -3.2
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	MNLI (acc) 32.7 50.8 52.0 (0.7)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6)	SNLI (acc) 33.8 49.5 47.1 (0.6)	QNLI (acc) 49.5 50.8 53.8 (0.4)	RTE (acc) 52.7 51.3 60.4 (1.4)	MRPC (F1) 81.2 61.9 45.7 (6.0)	QQP (F1) 0.0 49.7 36.1 (5.2)	STS-B (Pear.) -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.)

50—Issues of Discrete/Hard Prompts

Difficulty of manually designing prompts

- Prompts that humans consider reasonable is not necessarily effective for LMs (<u>Liu et al., 2021</u>)
- Pre-trained LMs are sensitive to the choice of prompts (<u>Zhao et al., 2021</u>)

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

51 P-Tuning (Liu et al., 2021)

Idea: direct optimize the <u>embeddings</u> instead of prompt tokens

prompt search for "The capital of Britain is [MASK]".

(a) Discrete Prompt Search

(b) P-tuning

Prompt	\mathcal{D}_{dev} Acc.	\mathcal{D}_{dev32} Acc.
Does [PRE] agree with [HYP]? [MASK].	57.16	53.12
Does [HYP] agree with [PRE]? [MASK].	51.38	50.00
Premise: [PRE] Hypothesis: [HYP] Answer: [MASK].	68.59	55.20
[PRE] question: [HYP]. true or false? answer: [MASK].	70.15	53.12
P-tuning	76.45	56.25

52 Prefix-Tuning (Li and Liang, 2021)

Idea: only optimize the <u>prefix embeddings (all layers)</u> for efficiency

53 (Soft) Prompt-Tuning (Lester et al., 2021)

Idea: only require storing a small <u>task-specific prompt (one layer)</u> for each task and enables <u>mixed-task inference</u> using the original PLMs

64 (Soft) Prompt-Tuning (Lester et al., 2021)

Competitive performance and better space efficiency

55 Instruction Tuning (Wei et al., 2022)

Idea: improve model's capability of understanding the task description

LM for sentence completion

I went to Jolin's concert last night. I really loved her songs and dancing. It was _

Detailed task instruction for LM generation

Decide the sentiment of the following sentences: I went to Jolin's concert last night. I really loved her songs and dancing. OPTIONS: - positive – negative - neutral

56 FLAN: Finetuned LANguage Models (Wei et al., 2022)

Idea: fine-tune LM to better understand task descriptions via <u>other</u> tasks

(A) Pretrain–finetune (BERT, T5)

(B) Prompting (GPT-3)

57 Prompt v.s. Instruction Tuning (Wei et al., 2022)

Prompt	• Ir	nstruction tuning	
	Training	Input (Commonsense Reason	ing)
		Here is a goal: Get a cool sleep on set How would you accomplish this goal OPTIONS: -Keep stack of pillow cases in fridge. -Keep stack of pillow cases in oven.	ummer days. ?
		Target keep stack of pillow cases in fridge	LM Fine-tuning
Input (Translation)	Interence	Input (Translation)	
Translate this sentence to Spanish: The new office building was built in less than three months.		Translate this sentence to Spanish: T building was built in less than three m	he new office onths.
<u>Target</u>		<u>Target</u>	
El nuevo edificio de oficinas se construyó en tres meses.		El nuevo edificio de oficinas se const meses.	ruyó en tres

58 Task Clusters (Wei et al., 2022)

Zero-Shot Performance of FLAN

Combine with prompt-tuning

Model Size (# parameters)

51 TO: Multitask Prompted Training (Sanh et al., 2022)

62 Task Clusters (Sanh et al., 2022)

63 Prompt Templates (Sanh et al., 2022)

64 Performance of T0

65 Effect of #Prompts

Chain-of-Thought (CoT) (Wei et al., 2022)

Standard Prompting

Model Input

66

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

- Chain-of-Thought (CoT) (Wei et al., 2022)

67

Math Word Problems (free response)	Math Word Problems (multiple choice)	CSQA (commonsense)
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?	Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788	Q: Sammy wanted to go to where the people were. Where might he go? Options: (a) race track (b) populated areas (c) desert (d) apartment (e) roadblock
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.	A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500. $9 + 90(2) + 401(3) = 1392$. The answer is (b).	A: The answer must be a place with a lot of people. Race tracks, desert, apartments, and roadblocks don't have a lot of people, but populated areas do. So the answer is (b).
StrategyQA	Date Understanding	Sports Understanding
Q: Yes or no: Would a pear sink in water? A: The density of a pear is about 0.6 g/cm^3, which is less than water. Thus, a pear would float. So the answer is no.	Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY? A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.	Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship." A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.
SauCan (Instructing a robot)	Last Letter Concatenation	Coin Elip (state tracking)
Human: How would you bring me something that isn't a fruit?	Q: Take the last letters of the words in "Lady Gaga" and concatenate them.	Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?
Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar. Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done().	A: The last letter of "Lady" is "y". The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya.	A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Trend of Prompt-Based Research

http://pretrain.nlpedia.ai/

⁶⁹ Prompting Paradigm (Liu et al., 2021)

Prompting Typology (Liu et al., 2021)

Prompting Typology (Liu et al., 2021)

Prompting Typology (Liu et al., 2021)

Prompting Typology (Liu et al., 2021)

Prompting Typology (Liu et al., 2021)

75 Prompting Typology (Liu et al., 2021)

Concluding Remarks

(Hard) Prompt-Tuning

- (Hard) Prompt-Tuning: manually designed natural language prompts
 - Human-understandable prompts
 - Sensitive to choices of prompts
- **LM-BFF**: prompt-tuning + demonstration + template generation
 - Better performance

(Soft) Prompt-Tuning

- **P-Tuning**: tuning the input (prompt) embeddings
 - Better performance via soft prompts
- Prefix-Tuning: only optimize the prefix embeddings (all layers)
 - Better training time/space efficiency
- Instruction Tuning: tuning LMs for understanding task instructions
 - Better zero-shot performance