# Applied Deep Learning



# **NLG Evaluation**

October 26th, 2023

¥

http://adl.miulab.tw



National Taiwan University 國立臺灣大學

# Automatic Evaluation Metrics

• Word overlap metrics: BLEU, ROUGE, METEOR, etc.

- Not ideal for machine translation
- Much worse for summarization
- Even worse for dialogue, storytelling

more open-ended

#### Embedding metrics

2

- Computing the similarity of word embeddings
- Capturing semantics in a flexible way

Evaluating the outputted results instead of the generative model



#### N-Gram Precision

$$p_n = \frac{\sum_{ngram \in hyp} count_{clip}(ngram)}{\sum_{ngram \in hyp} count(ngram)} \longrightarrow \begin{array}{c} \text{highest count of n-gram in any reference sentence} \end{array}$$

Brevity Penalty

$$B = \begin{cases} e^{(1-|ref|/|hyp|)}, \text{ if } |ref| > |hyp|\\ 1, \text{ otherwise} \end{cases}$$

Often used in machine translation

$$BLEU = \mathbf{B} \cdot exp\left[\frac{1}{\mathbf{N}} \sum_{n=1}^{N} p_n\right]$$



ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

Often used in summarization tasks



# **BLEU & ROUGE**

#### 🖲 BLEU

5

- Based on <u>n-gram overlap</u>
- Consider precision
- Reported as a single number
  - Combination of n = 1, 2, 3, 4 n-grams

#### ROUGE

- Based on <u>n-gram overlap</u>
- Consider recall
- Reported separately for each ngram
  - ROUGE-1: unigram overlap
  - ROUGE-2: bigram overlap
  - ROUGE-L: LCS overlap

# Automatic Evaluation Metrics

Word overlap metrics: BLEU, ROUGE, METEOR, etc.

- Not ideal for machine translation
- Much worse for summarization
- Even worse for dialogue, storytelling

more open-ended

#### Embedding metrics

6

- Computing the similarity of word embeddings
- Capturing semantics in a flexible way

# - Automatic Metrics vs. Human Judgement



# Focused Metrics for Particular Aspects

• Evaluating a single aspect instead of the overall quality

- Fluency (compute probability w.r.t. well-trained LM)
- Correct style (prob w.r.t. LM trained on target corpus)
- Diversity (rare word usage, uniqueness of n-grams)
- Relevance to input (semantic similarity measures)
- Simple things like length and repetition

8

• Task-specific metrics e.g. compression rate for summarization

Scores help us track some important qualities we care about



- Perplexity is a measurement of confusion degree when a language model predicts a sentence
  - A better LM predicts an unseen test set better  $\rightarrow$  lower perplexity

$$PP(S) = p(w_1, w_2, \cdots, w_N)^{-1/N} 
onumber \ = \sqrt[N]{rac{1}{p(w_1, w_2, \cdots, w_N)}}$$

$$PP(S) = 2^{-l}$$
 where  $l = rac{1}{N} \log p(w_1, w_2, \cdots, w_N)$ 

inverse probability of the test set normalized by the number of words

Evaluating the trained generative (probabilistic) language model



Cross entropy is a distance between two distributions

the testing sentence is  $w_1, w_2, \cdots, w_{i-1}, w_i$ , so  $q(w_i \mid w_1, \cdots, w_{i-1}) = 1$ 

$$= -rac{1}{N} \sum_{i=1}^N \log p(w_i \mid w_1, \cdots, w_{i-1}) \ = -rac{1}{N} \log p(w_1, w_2, \cdots, w_N) = \log PP(S)$$

# 11 LLM-Eval (Lin & Chen, 2023)

#### LLM-Eval

#### {evaluation schema}

Score the following dialogue response generated on a continuous scale from 0.0 to 5.0.

Context:

My cat likes to eat cream.

E careful not to give too much, though.

Dialogue response :

L: Don't worry, I only give a little bit as a treat.



Appropriateness: 3.0 Content: 2.5 Grammer: 4.0 Relevence: 2.0

## LLM has a reasonable capability of evaluating dialogue responses

| $r / \rho (\%)$  | TopicalChat        | PersonaChat               | ConvAI2            | DD                        | ED                 | DSTC6              | Average                   |
|------------------|--------------------|---------------------------|--------------------|---------------------------|--------------------|--------------------|---------------------------|
| BLEU-4           | 21.6 / 29.6        | 13.5/ 9.0                 | 0.3 / 12.8         | 7.5 / 18.4                | -5.1 / 0.2         | 13.1 / 29.8        | 8.5 / 16.6                |
| ROUGE-L          | 27.5 / 28.7        | 6.6/ 3.8                  | 13.6 / 14.0        | 15.4 / 14.7               | 2.9 / -1.3         | 33.2 / 32.6        | 16.5 / 15.4               |
| BERTScore        | 29.8 / 32.5        | 15.2/12.2                 | 22.5 / 22.4        | 12.9 / 10.0               | 4.6/ 3.3           | 36.9 / 33.7        | 20.3 / 19.0               |
| DEB              | 18.0 / 11.6        | 29.1/37.3                 | 42.6 / 50.4        | <u>33.7</u> / <b>36.3</b> | 35.6/39.5          | 21.1/21.4          | 30.0 / 32.8               |
| GRADE            | 20.0 / 21.7        | 35.8/35.2                 | 56.6 / 57.1        | 27.8 / 25.3               | 33.0/29.7          | 11.9 / 12.2        | 30.9 / 30.2               |
| USR              | 41.2 / 42.3        | 44.0/41.8                 | 50.1 / 50.0        | 5.7/ 5.7                  | 26.4 / 25.5        | 18.4 / 16.6        | 31.0/30.3                 |
| USL-H            | 32.2 / 34.0        | 49.5 / 52.3               | 44.3 / 45.7        | 10.8 / 9.3                | 29.3 / 23.5        | 21.7 / 17.9        | 31.3 / 30.5               |
| without human re | ference            |                           |                    |                           |                    |                    |                           |
| LLM-EVAL 0-5     | <u>55.7 / 58.3</u> | 51.0/48.0                 | <u>59.3 / 59.6</u> | 31.8/32.2                 | 42.1/41.4          | 43.3 / 41.1        | 47.2 / 46.8               |
| LLM-EVAL 0-100   | 49.0 / 49.9        | 53.3/51.5                 | 61.3 / 61.8        | <b>34.6</b> / <u>34.9</u> | <u>43.2 / 42.3</u> | 44.0 / 41.8        | <b>47.6</b> / <u>47.0</u> |
| with human refer | ence               |                           |                    |                           |                    |                    |                           |
| LLM-EVAL 0-5     | 56.5 / 59.4        | 55.4 / 53.1               | 43.1 / 43.8        | .320/32.2                 | 40.0 / 40.1        | <u>47.0 / 45.5</u> | 45.7/45.7                 |
| LLM-EVAL 0-100   | 55.6 / 57.1        | <u>53.8</u> / <u>52.7</u> | 45.6 / 45.9        | 33.4 / 34.0               | 43.5 / 43.2        | 49.8 / 49.9        | 47.0 / <b>47.1</b>        |

LLM-Eval better correlates with human-judged scores than all existing metrics

# <sup>12</sup> LLM-Eval (Lin & Chen, 2023)

## LLM-Eval works good on not only single-turn but multiturn evaluation

| $m \log(07)$   | DailyDialog-PE            | FED                       |                           | DSTC9                     | Auguago                   |  |
|----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
| $rr\rho(\%)$   | <b>Turn-Level</b>         | <b>Turn-Level</b>         | <b>Dialog-Level</b>       | <b>Dialog-Level</b>       | Average                   |  |
| DynaEval       | 16.7 / 16.0               | 31.9 / 32.3               | 50.3 / 54.7               | 9.3 / 10.1                | 27.1 / 28.3               |  |
| USL-H          | 68.8 / 69.9               | 20.1 / 18.9               | 7.3 / 15.2                | 10.5 / 10.5               | 26.7 / 28.6               |  |
| FlowScore      | -                         | -6.5 / -5.5               | -7.3 / -0.3               | 14.7 / 14.0               | 0.3 / 2.7                 |  |
| GPTScore       | -                         | - / 38.3                  | - / 54.3                  | -                         | - /46.3                   |  |
| LLM-EVAL 0-5   | <u>71.0</u> / <b>71.3</b> | 60.4 / 50.9               | 67.6 / 71.4               | <u>15.9</u> / <u>16.5</u> | 53.7 / 52.5               |  |
| LLM-EVAL 0-100 | <b>71.4</b> / <u>71.0</u> | <u>59.7</u> / <u>49.9</u> | <u>64.4</u> / <u>70.4</u> | 16.1 / 18.6               | <u>52.9</u> / <u>52.5</u> |  |

#### Idea: LLM-Eval scores can be the proxy of human evaluation

Yen-Ting Lin and Yun-Nung Chen, "LLM-EVAL: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models," in *Proceedings of NLP for Conversational AI Workshop (NLP4ConvAI)*, 2023.

# Reinforcement Learning for NLG

**Global Optimization** 

13

# Global Optimization v.s. Local Optimization

 Minimizing the error defined on component level (local) is not equivalent to improving the generated objects (global)



Optimize object-level criterion instead of component-level cross-entropy. Object-level criterion:  $R(y, \hat{y})$  y: ground truth,  $\hat{y}$ : generated sentence

Gradient Descent?

# 15 Reinforcement Learning

# Start with observation $s_1$







Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016









# <sup>19</sup> RL-Based Summarization

- RL: directly optimize ROUGE-L
- ML+RL: MLE + RL for optimizing ROUGE-L

#### Automatic

| Model                     | <b>ROUGE-1</b> | ROUGE-2 | <b>ROUGE-L</b> |
|---------------------------|----------------|---------|----------------|
| ML, no intra-attention    | 44.26          | 27.43   | 40.41          |
| ML, with intra-attention  | 43.86          | 27.10   | 40.11          |
| RL, no intra-attention    | 47.22          | 30.51   | 43.27          |
| ML+RL, no intra-attention | 47.03          | 30.72   | 43.10          |

Human

| Model | Readability | Relevance |
|-------|-------------|-----------|
| ML    | 6.76        | 7.14      |
| RL    | 4.18        | 6.32      |
| ML+RL | 7.04        | 7.45      |

Using RL instead of ML achieves higher ROUGE scores, but lower human scores.

Hybrid is the best.

# 20 ChatGPT: Reinforcement Learning from Human Feedback

Improving GPT via teacher's feedback



generation update via reinforcement learning

Idea: optimize abstract indicators (e.g. human's satisfaction)

# - RLHF: RL from Human Feedback

21



# 22 Concluding Remarks

- Automatic evaluation
  - Output evaluation
  - Model evaluation
- Perplexity
  - Confusion degree when a language model predicts a sentence
  - Cross entropy between true and predicted distributions
  - Lower is better

## RL for NLG

- Hybrid is better (MLE first, RL later)
- RL enables models to improve abstract indicators