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©® Word Embedding Polysemy Issue

@ Words are polysemy
An apple a day, keeps the doctor away.
Smartphone companies including apple, ...

@® However, their embeddings are NOT polysemy

@ |[ssue
Multi-senses (polysemy)
Multi-aspects (semantics, syntax)




O RNNLM

@ Idea: condition the neural network on all previous words and tie the weights at
each time step
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This LM producing contextual word representations at each position




©® TagLM -“Pre-ELMo”

@ Idea: train LM on big unannotated data to provide the contextual embeddings
for the target task - self-supervised learning
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Peters et al., “Semi-supervised sequence tagging with bidirectional language models,” in ACL, 2017.



©® ELMo: Embeddings from Language Models

@ Idea: contextualized word representations
Learn word vectors using long contexts instead of a context window
Learn a deep LM and use all its layers in prediction
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Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.



e BERT: Bidirectional Encoder
Representations from Transformers
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@ Idea: contextualized word representations

Learn word vectors using long contexts
using Transformer instead of LSTM -
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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@ BERT #1 - Masked Language Model

@ Idea: language understanding is bidirectional while LM only uses left
or right context

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

[ FFNN + Softmax ]
Randomly mask 15% of tokens BERT
* Too little: expensive to train
* Too much: not enough
context
[CLS] [MASK]

http://jalammar.github.io/illustrated-bert/
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©° BERT #1 - Masked Language Model

BERT (Ours) OpenAl GPT

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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<’ BERT #2 — Next Sentence Prediction

@ Idea: modeling relationship between sentences
QA, NLI etc. are based on understanding inter-sentence relationship
Input = [cLs] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label

IsNext

Input = [cLs] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label = notnext

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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@ BERT #2 — Next Sentence Prediction

® Idea: modeling relationship between sentences

Predict likelihood
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[ FFNN + Softmax ]
BERT
Tokenized
Input [CLS] [MASK] [SEP]

http://jalammar.github.io/illustrated-bert/
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@; BERT — Input Representation

@ Input embeddings contain
Word-level token embeddings
Sentence-level segment embeddings
Position embeddings

Input [CLS] | my dog is ( cute | [SEP] he | likes H play ‘ ( ##ing W
Token
Embeddings E[CLES] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay E##'\ng
+ + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB
o+ -+ -+ -+ + -+ o+ +* -+ o+
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



< BERT Training

@ Training data: Wikipedia + BookCorpus

© 2 BERT models @9 Mask LM Mask LM \
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@ BERT Fine-Tuning for Understanding Tasks

@ Idea: simply learn a classifier/taaaer built on the top laver for each
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



£ BERT Overview

1 - Semi-supervised training on large amounts 2 - Supervised training on a specific task with a
of text (books, wikipedia..etc). labeled dataset.
The model is trained on a certain task that enables it to grasp Supervised Learning Step
patterns in language. By the end of the training process, — — — — — — —
BERT has language-processing abilities capable of empowering -~ \
many models we later need to build and train in a supervised way. 75% | Spam

, Classifier —

Semi-supervised Learning Step 256% | Not Spam
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I Model:
I Model: (pre-trained
BERT | | instep #1) C— BERT
I
I

I I Email message Class

Dataset:
- Buy these pills Spam
WIKIPEDIA I .
it Ensyblopidic I Dataset: Win cash prizes Spam
- . . Predict the masked word Dear Mr. Atreides, please find attached... Not Spam
Obijective: ;
(langauge modeling)

\ _ \ /

http://jalammar.github.io/illustrated-bert/



BERT Fine-Tuning Results

Effect of Pre-training Task

B BERT-Base M No Next Sent =1 Left-to-Right & No Next Sent
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



17@’ BERT Results on NER

Model Description CONLL 2003
F1
TagLM (Peters+, 2017) LSTM BIiLM in BLSTM Tagger 91.93
ELMo (Peters+, 2018) ELMo in BLSTM 92.22
BERT-Base (Devlin+, 2019) Transformer LM + fine-tune 92.4
CVT Clark Cross-view training + multitask learn 92.61
BERT-Large (Devlin+, 2019) Transformer LM + fine-tune 92.8
Flair Character-level language model 93.09

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



@9 BERT Results with Different Model Sizes

@ Improving performance by increasing model size

= MNLI (400k) = MRPC (3.6 k)
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



< BERT for Contextual Embeddings

@ Idea: use pre-trained BERT to get contextualized word embeddings
and feed them into the task-specific models

Generate Contexualized Embeddings each token’s path can be used as a
feature representing that token.
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http://jalammar.github.io/illustrated-bert/ But which one should we use?



BERT Contextual Embeddings Results on NER

What is the best contextualized embedding for “Help” in that context?

Dev F1 Score
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http://jalammar.github.io/illustrated-bert/



@ ERNIE: Enhanced Representation through g&*.
kNowledge IntEgration

« BERT models local cooccurrence between tokens, while characters
are modeled independently

A(ha), B (er), ;&(bin) instead 45 & /& (Harbin)
« ERNIE incorporates knowledge by masking semantic units/entities

Learned by BERT Learned by ERNIE

t to1
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RRRBRLINESR, EFRKTXRRA



@ Concluding Remarks

Output
Probabilities
@ Contextualized embeddings learned from
masked LM via Transformers provide s w
informative cues for transfer learning Feod
@® BERT — a general approach for learning —
contextual representations from il g T
Transformers and benefiting language —
understanding N B
. Positiovnal D
Pre-trained BERT: Fneoding £
https://github.com/google-research/bert Embedding
https://github.com/huggingface/transformers mpTutS

Semi-supervised Learning Step

Model:

BERT
7

Sn,
Aol
i 0%
Gw
Dataset: 1om P
™ e
WIKIPEDIA
Bt Encylipisc

Predict the masked word

Objective: (langauge modeling)
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https://github.com/google-research/bert
https://github.com/huggingface/transformers
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