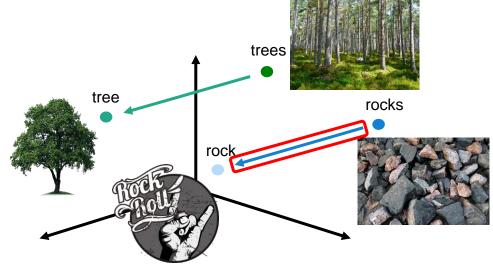
Applied Deep Learning BERT **Bidirectional Encoder Representations** from Transformers **October 12th, 2023** http://adl.miulab.tw $\langle \gamma \rangle$

National Taiwan University

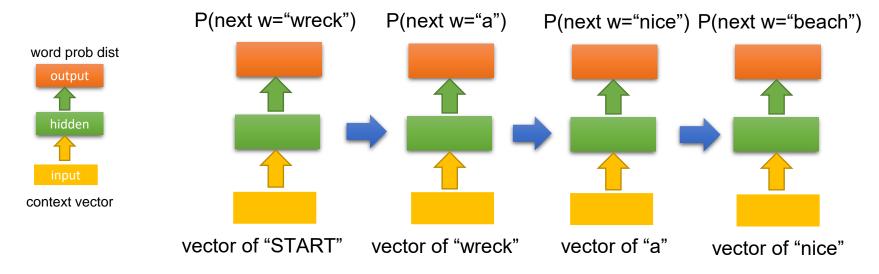
Picture from https://imagizer.imageshack.com/img924/8457/xhILHR.jpg

3 Word Embedding Polysemy Issue

- Words are polysemy
 - An apple a day, keeps the doctor away.
 - ✓ Smartphone companies including apple, ...
- However, their embeddings are NOT polysemy
- Issue
 - Multi-senses (polysemy)
 - Multi-aspects (semantics, syntax)



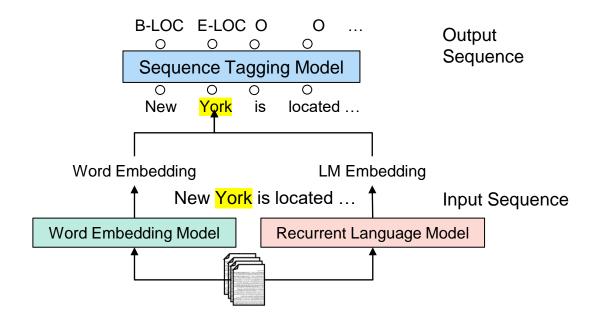
Idea: condition the neural network on <u>all previous words</u> and <u>tie the weights</u> at each time step



This LM producing contextual word representations at each position

5 TagLM – "Pre-ELMo"

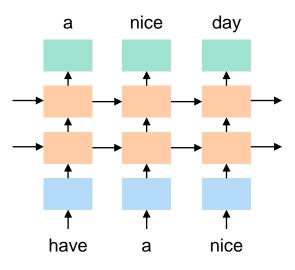
Idea: train LM on big unannotated data to provide the <u>contextual embeddings</u> for the target task → self-supervised learning



Peters et al., "Semi-supervised sequence tagging with bidirectional language models," in ACL, 2017.

ELMo: Embeddings from Language Models

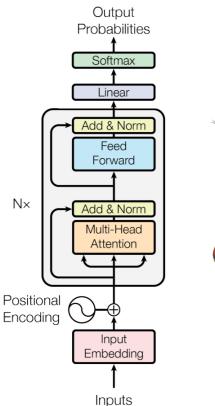
- Idea: contextualized word representations
- Learn word vectors using long contexts instead of a context window
- Learn a deep LM and use all its layers in prediction



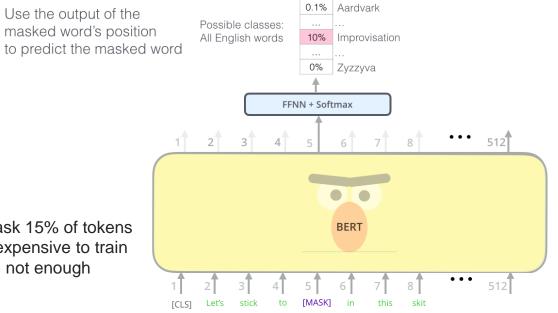
Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

7 BERT: Bidirectional Encoder Representations from Transformers

- Idea: contextualized word representations
 - Learn word vectors using long contexts using Transformer instead of LSTM

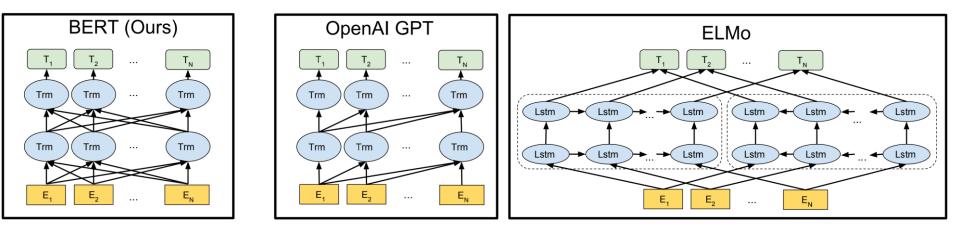


Idea: language understanding is **bidirectional** while LM only uses *left* \bigcirc or *right* context



Randomly mask 15% of tokens

- Too little: expensive to train
- Too much: not enough context



• Idea: modeling *relationship* between sentences

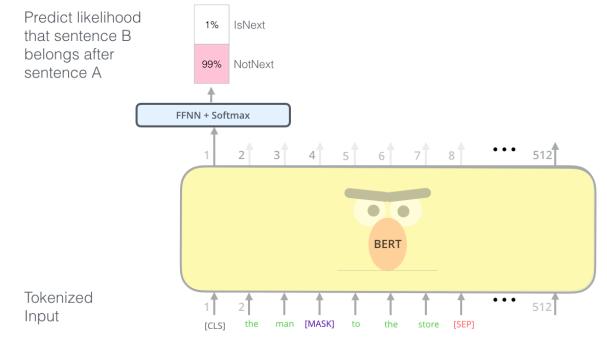
QA, NLI etc. are based on understanding inter-sentence relationship

Input = [CLS] the man went to [MASK] store [SEP]

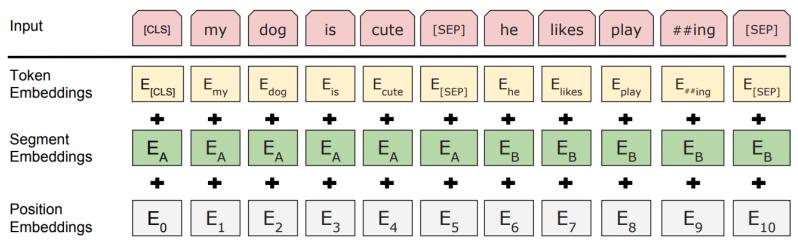
he bought a gallon [MASK] milk [SEP]

Label = IsNext

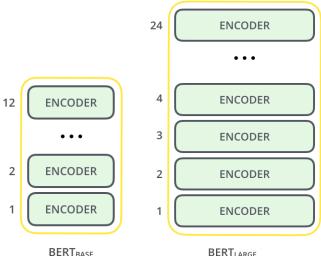
Idea: modeling relationship between sentences

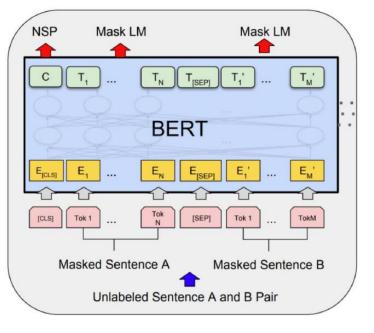


- Input embeddings contain
 - Word-level token embeddings
 - Sentence-level segment embeddings
 - Position embeddings



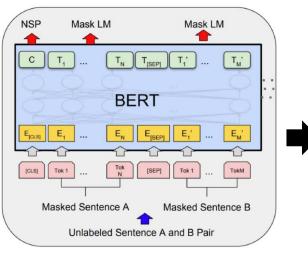
- Training data: Wikipedia + BookCorpus
- 2 BERT models
 - BERT-Base: 12-layer, 768-hidden, 12-head
 - BERT-Large: 24-layer, 1024-hidden, 16-head

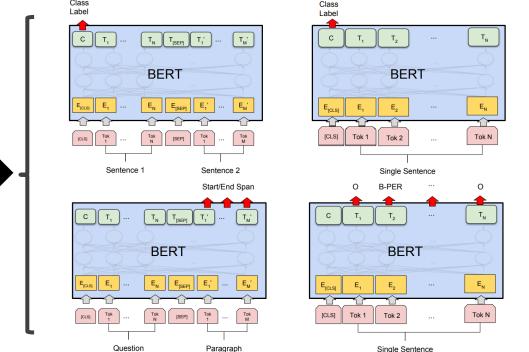




BERT Fine-Tuning for Understanding Tasks

Idea: simply learn a classifier/tagger built on the top layer for each target task



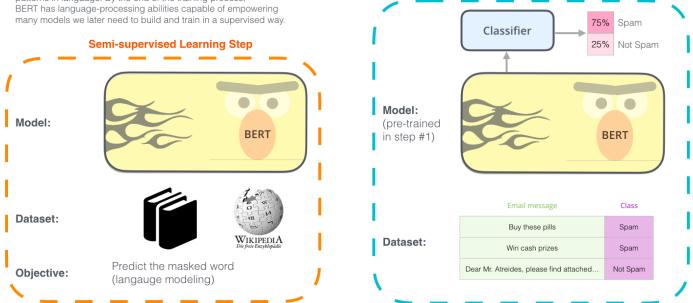


1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process,

2 - Supervised training on a specific task with a labeled dataset.

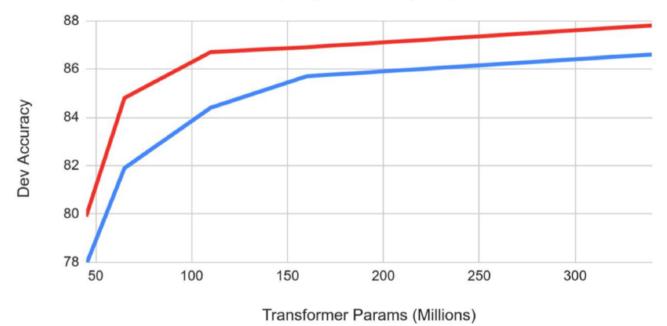
Supervised Learning Step



Effect of Pre-training Task BERT-Base No Next Sent Left-to-Right & No Next Sent Left-to-Right & No Next Sent + BiLSTM 90 85 Accuracy 80 75 70 MNLI QNLI MRPC SQuAD

Model	Description	CONLL 2003 F1
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22
BERT-Base (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.4</u>
CVT Clark	Cross-view training + multitask learn	92.61
BERT-Large (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.8</u>
Flair	Character-level language model	93.09

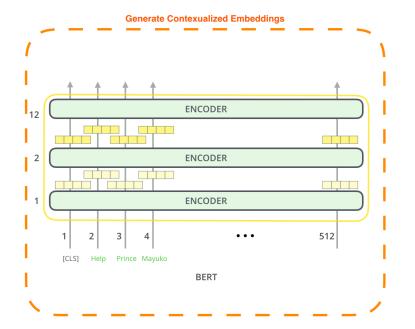
Improving performance by increasing model size



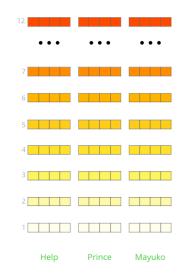
MNLI (400k) – MRPC (3.6 k)

Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", in NAACL-HLT, 2019.

Idea: use pre-trained BERT to get contextualized word embeddings and feed them into the task-specific models



The output of each encoder layer along each token's path can be used as a feature representing that token.

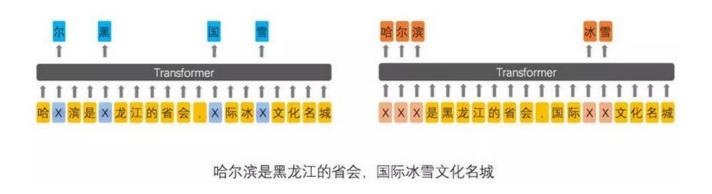


BERT Contextual Embeddings Results on NER

For named-entity recognition task CoNLL-2003 NER

21 ERNIE: Enhanced Representation through kNowledge IntEgration

- BERT models local cooccurrence between tokens, while characters are modeled independently
 - 哈(ha), 爾(er), 濱(bin) instead 哈爾濱(Harbin)
- ERNIE incorporates knowledge by masking semantic units/entities
 Learned by BERT
 Learned by ERNIE



22 Concluding Remarks

- Contextualized embeddings learned from masked LM via Transformers provide informative cues for transfer learning
- BERT a general approach for learning contextual representations from Transformers and benefiting language understanding
 - Pre-trained BERT:
 <u>https://github.com/google-research/bert</u>
 <u>https://github.com/huggingface/transformers</u>

