Applied Deep Learning

Transformer

October 5th, 2023 http://adl.miulab.tw

Sequence Encoding Basic Attention

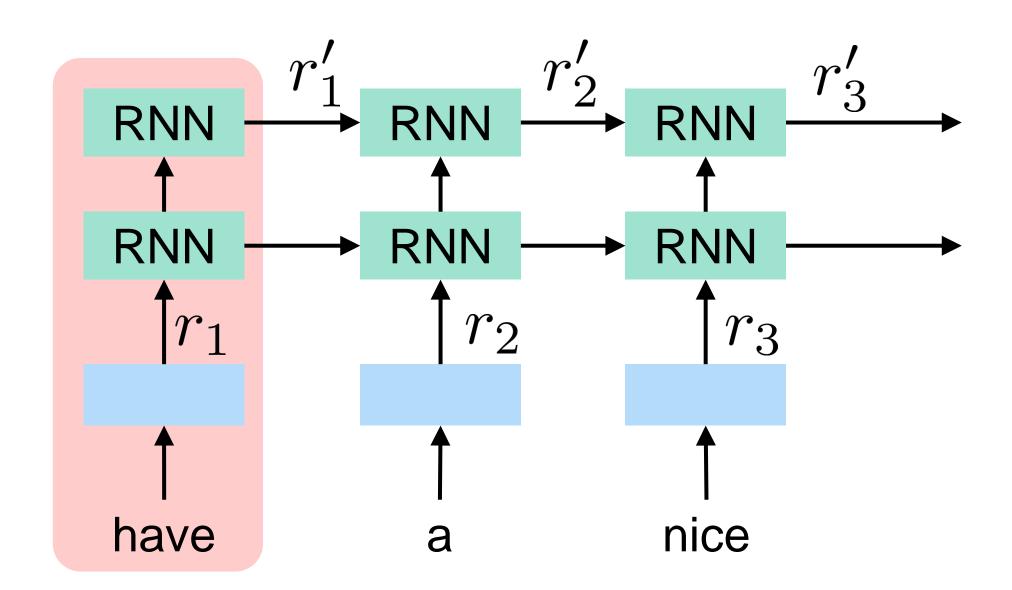
Representations of Variable Length Data

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
 - ✓ Basic combination: average, sum
 - Neural combination: network architectures should consider input domain properties
 - CNN (convolutional neural network)
 - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

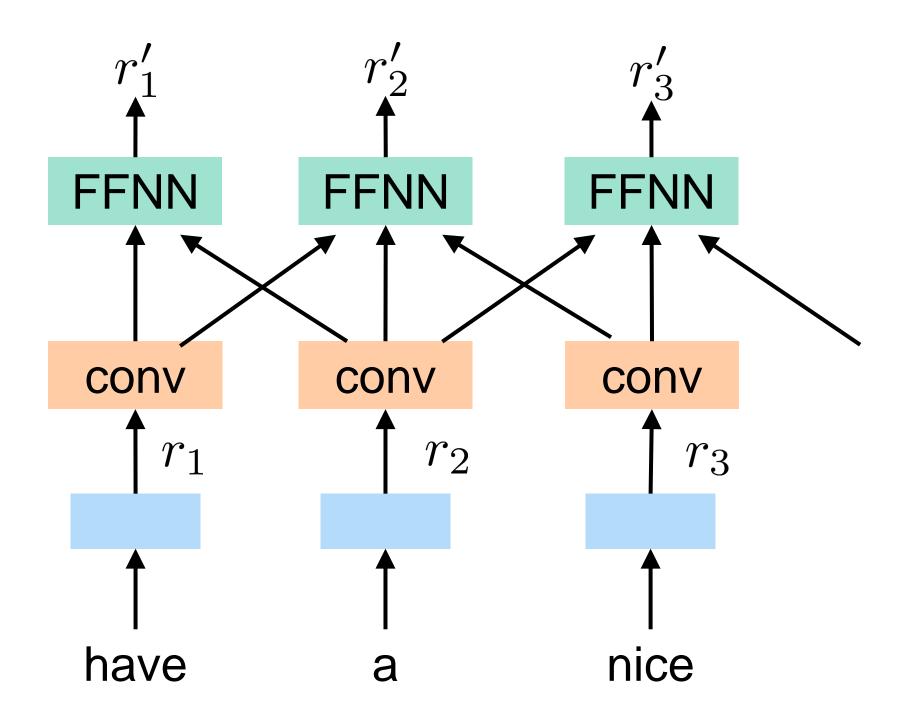
Recurrent Neural Networks

- Learning variable-length representations
 - ✓ Fit for sentences and sequences of values
- Sequential computation makes parallelization difficult
- No explicit modeling of long and short range dependencies



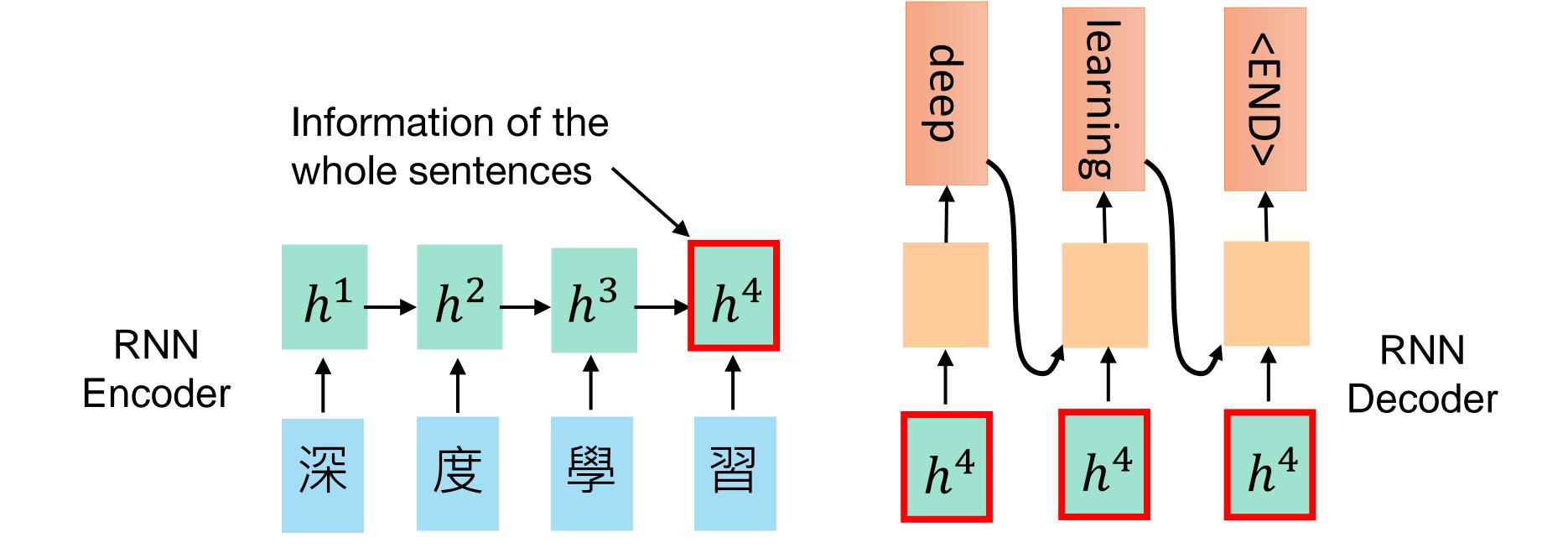
Convolutional Neural Networks

- Easy to parallelize
- Exploit local dependencies
 - ✓ Long-distance dependencies require many layers

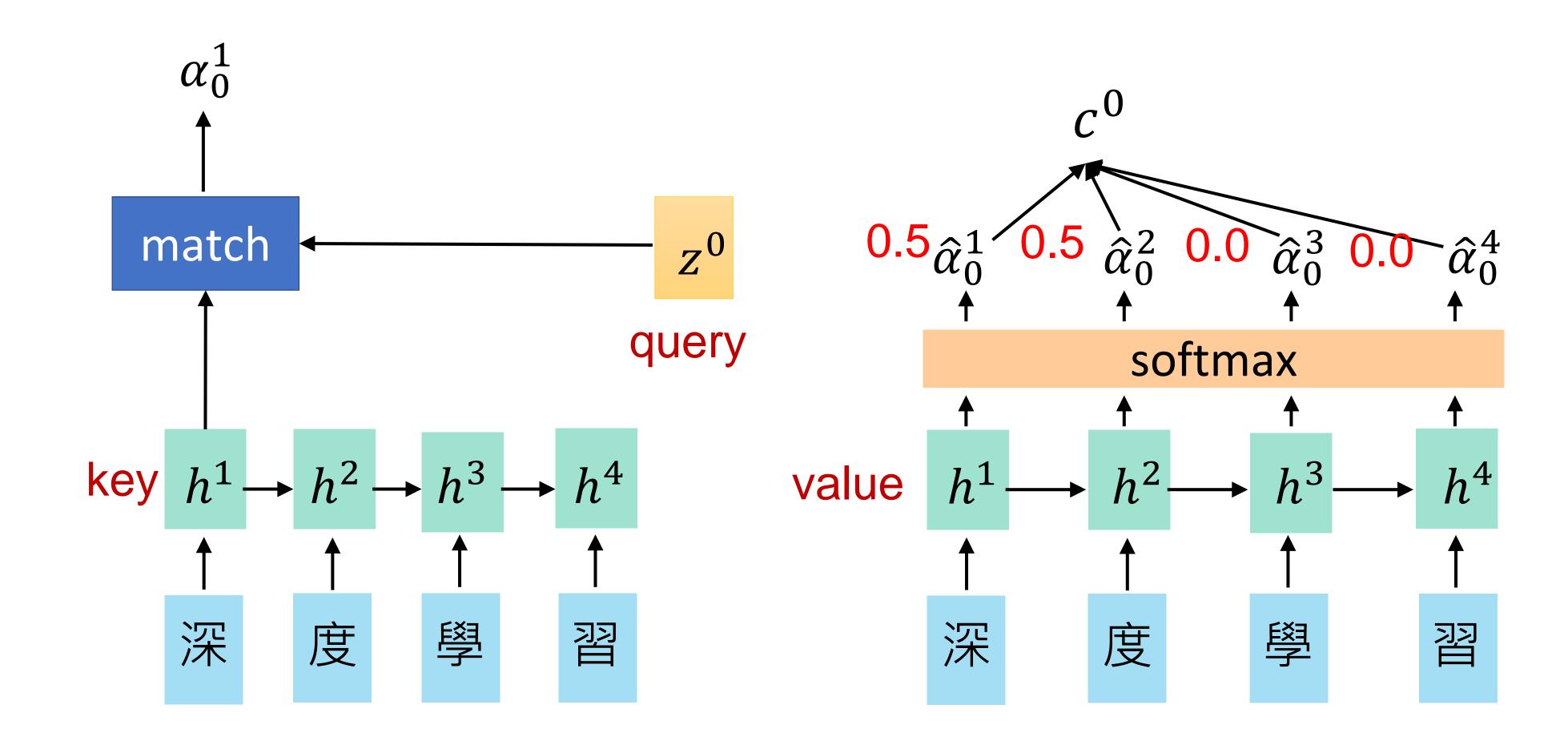


Attention

- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state



Basic Attention



Dot-Product Attention

- Input: a query q and a set of key-value (k-v) pairs to an output
- Output: weighted sum of values

Inner product of query and corresponding key

$$A(q, K, V) = \sum_{i} \left(\frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i \right)$$

- \checkmark Query q is a d_k -dim vector
- \checkmark Key k is a d_k -dim vector
- \checkmark Value v is a d_v -dim vector

Dot-Product Attention in Matrix

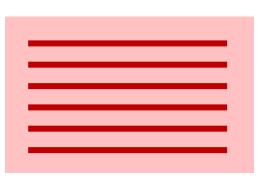
- Input: multiple queries q and a set of key-value (k-v) pairs to an output
- Output: a set of weighted sum of values

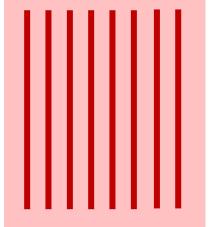
$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

$$[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$$

softmax row-wise





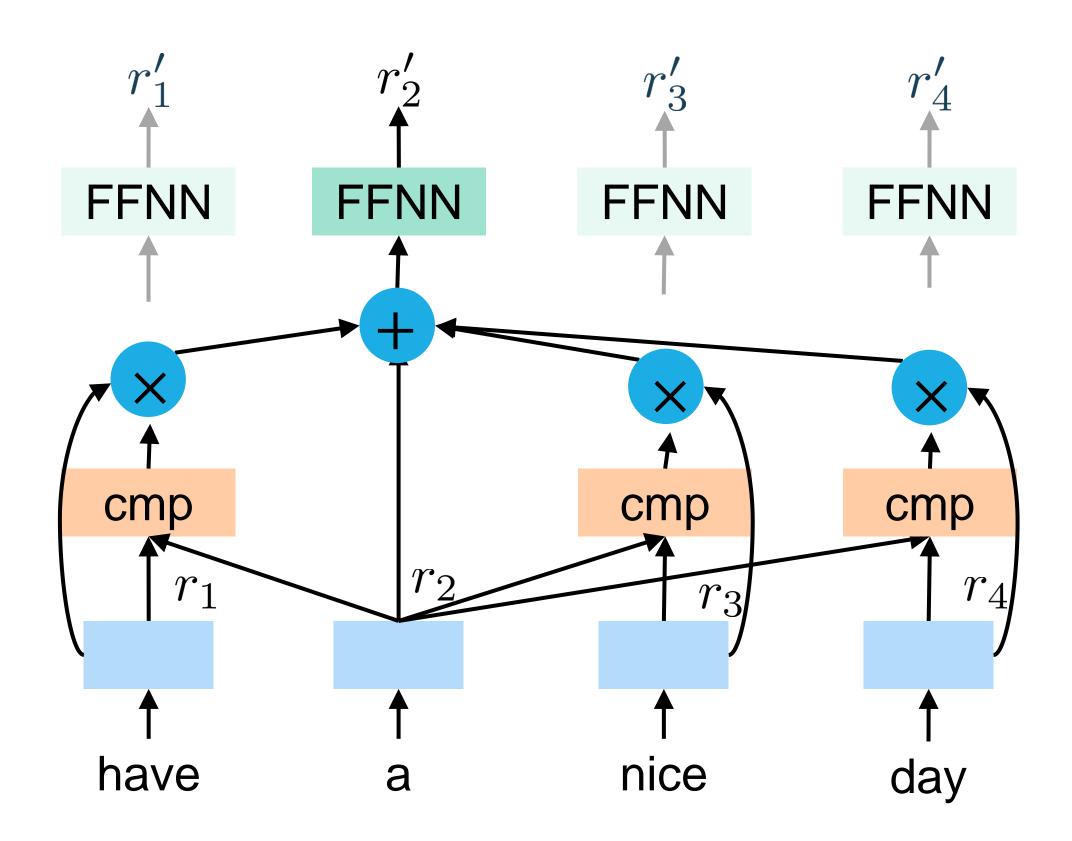
Sequence Encoding Self-Attention

Attention

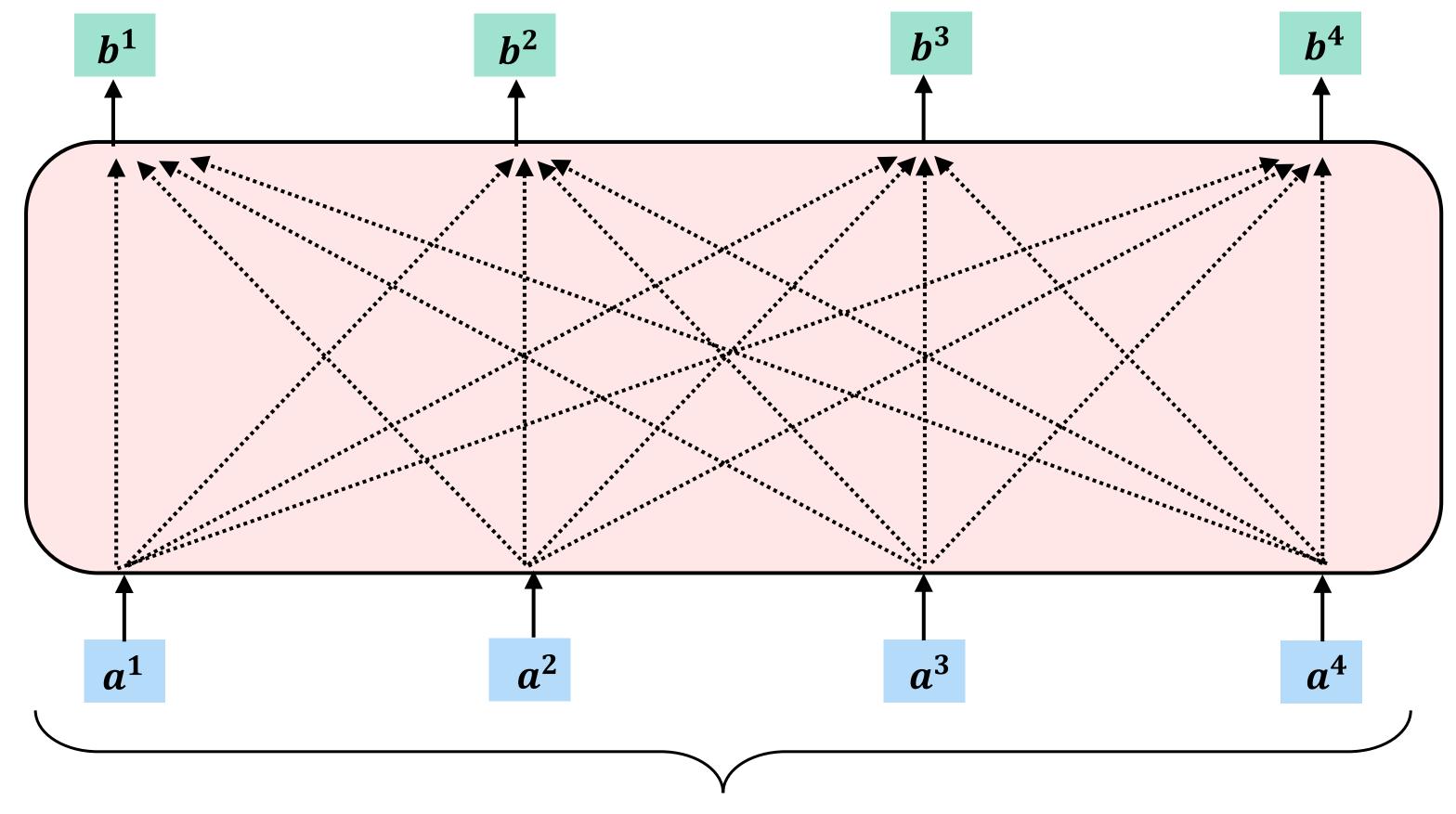
- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state

Using attention to replace recurrence architectures

- Constant "path length" between two positions
- Easy to parallelize

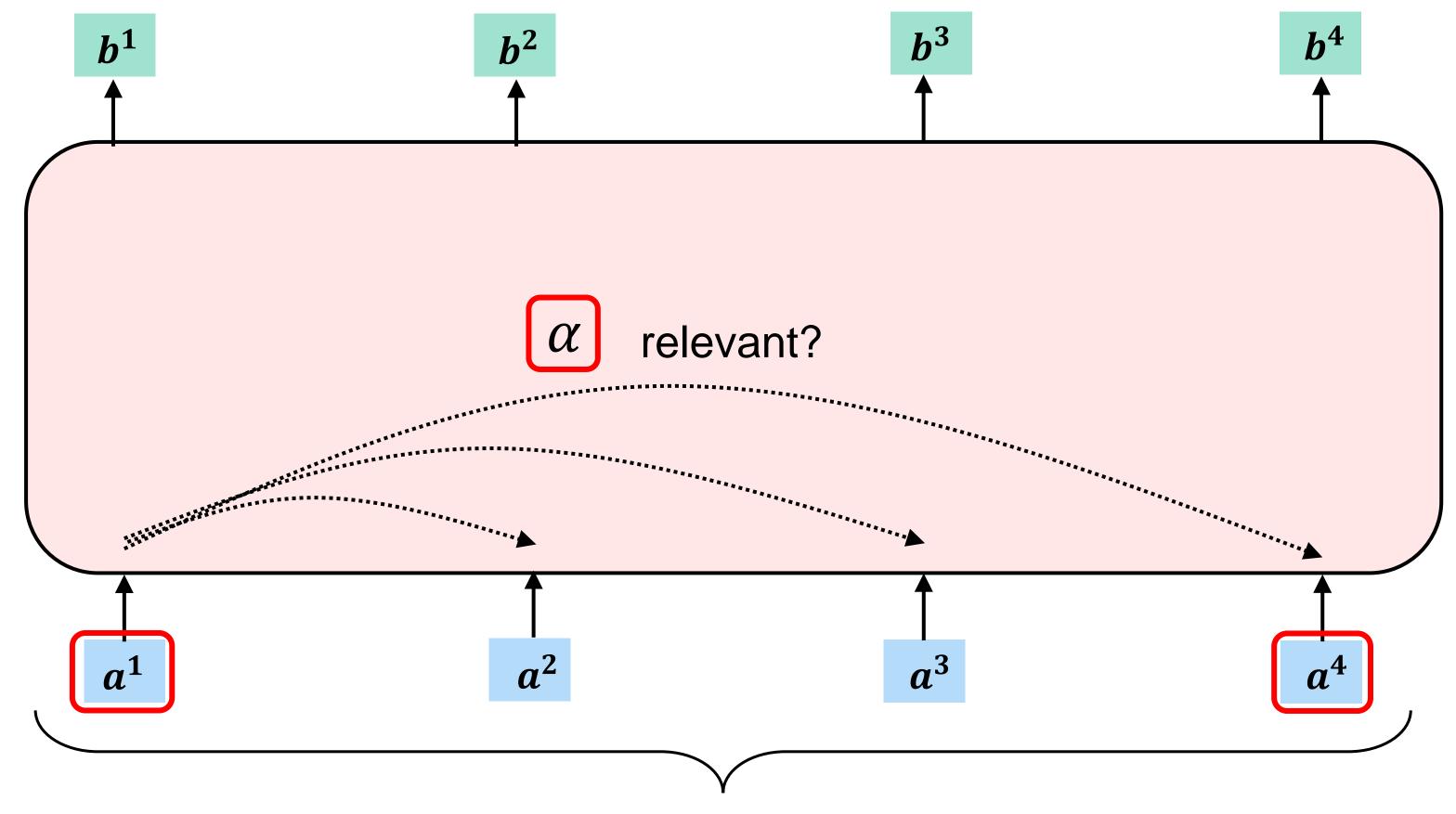


- Constant "path length" between two positions
- Easy to parallelize

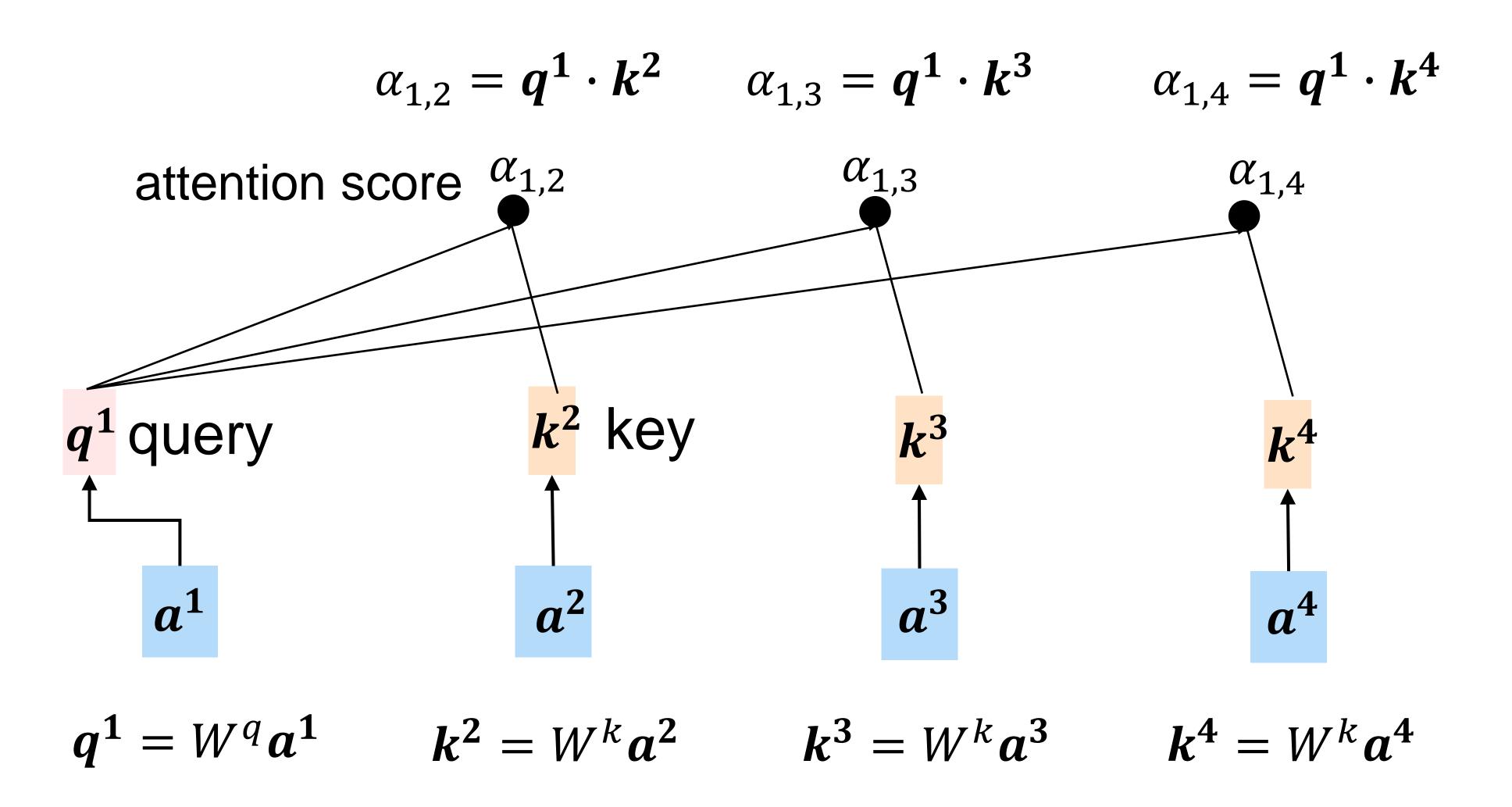


Can be either input or a hidden layer

- Constant "path length" between two positions
- Easy to parallelize

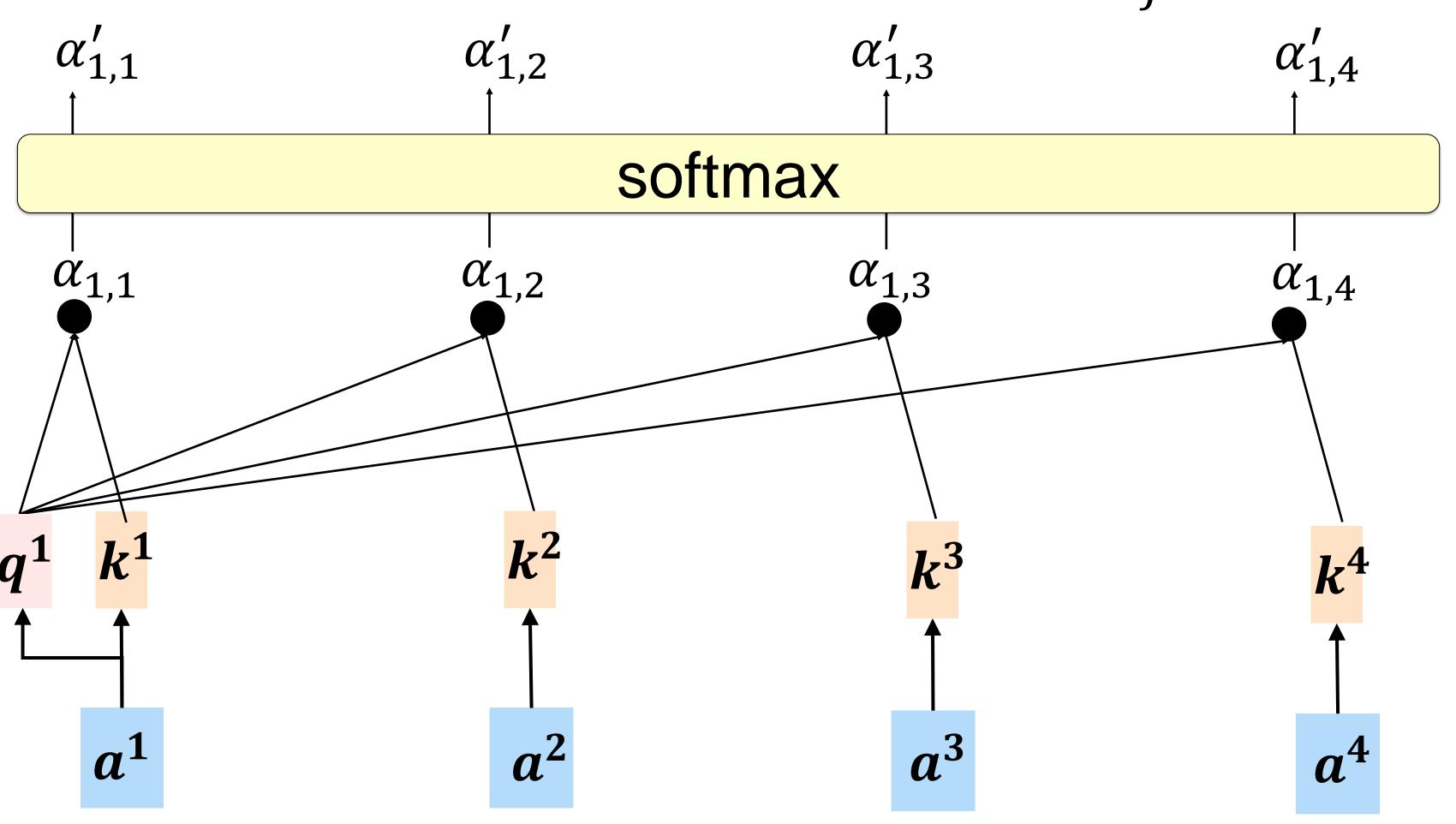


Can be either input or a hidden layer



$$\alpha'_{1,i} = e^{\alpha_{1,i}} / \sum_{j} e^{\alpha_{1,j}}$$

$$\alpha'_{1,3}$$



$$q^1 = W^q a^1$$
 $k^2 = W^k a^2$ $k^3 = W^k a^3$ $k^4 = W^k a^4$ $k^1 = W^k a^1$

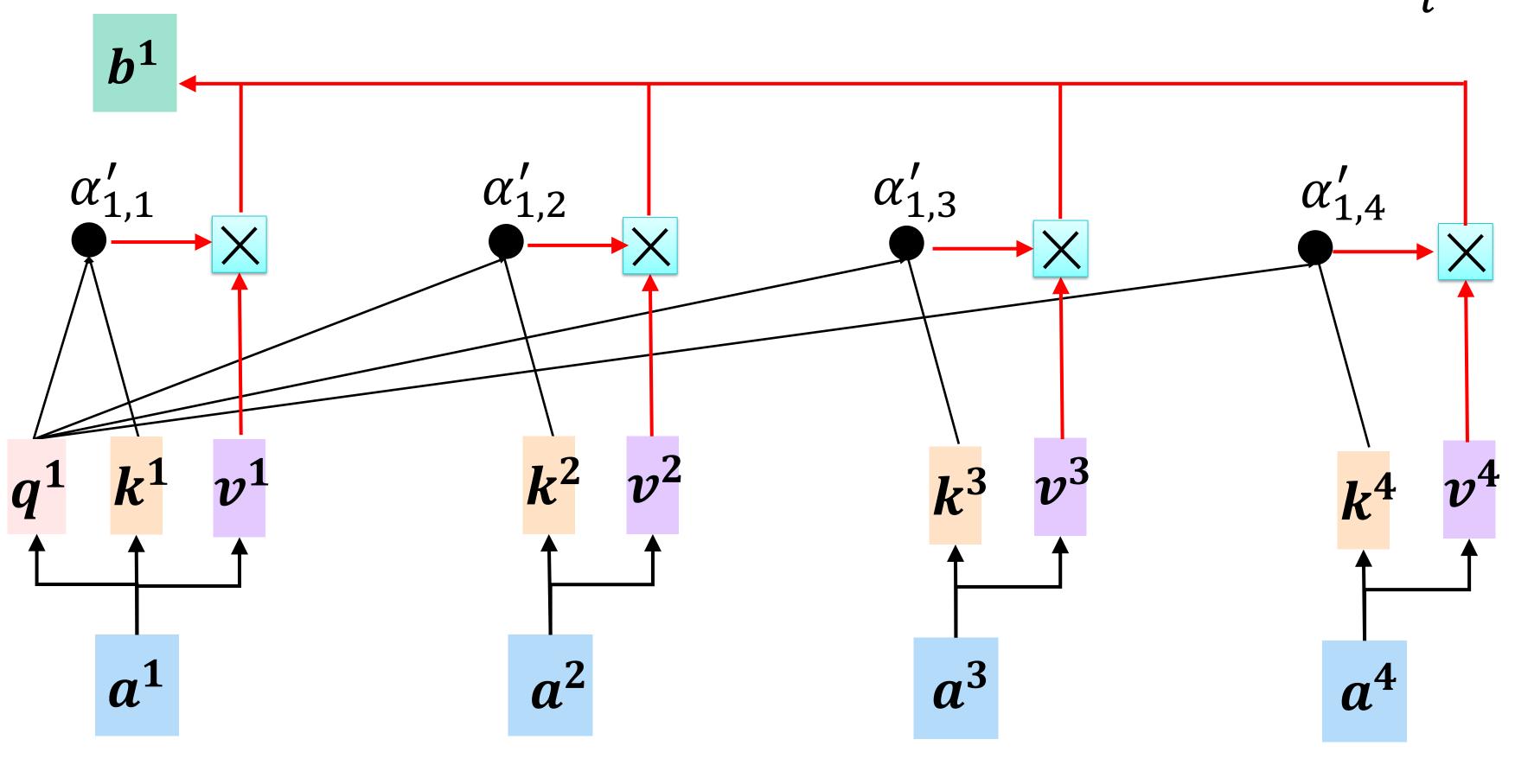
$$k^2 = W^k a^2$$

$$k^3 = W^k a^3$$

$$k^4 = W^k a^4$$

extract information based b^1 on attention scores

$$b^1 = \sum_i \alpha'_{1,i} v$$

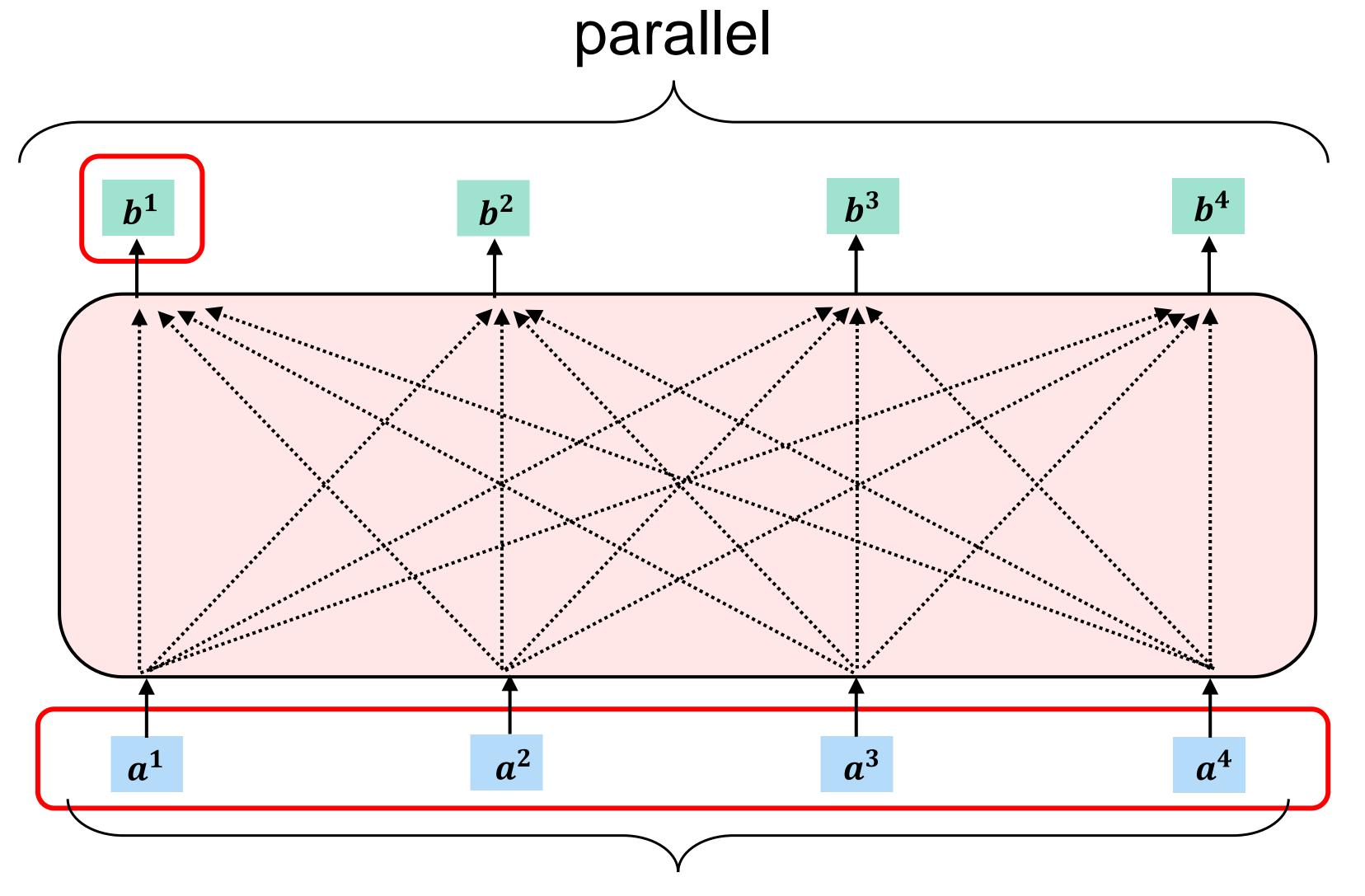


$$v^1 = W^v a^1$$

$$v^1 = W^v a^1$$
 $v^2 = W^v a^2$ $v^3 = W^v a^3$ $v^4 = W^v a^4$

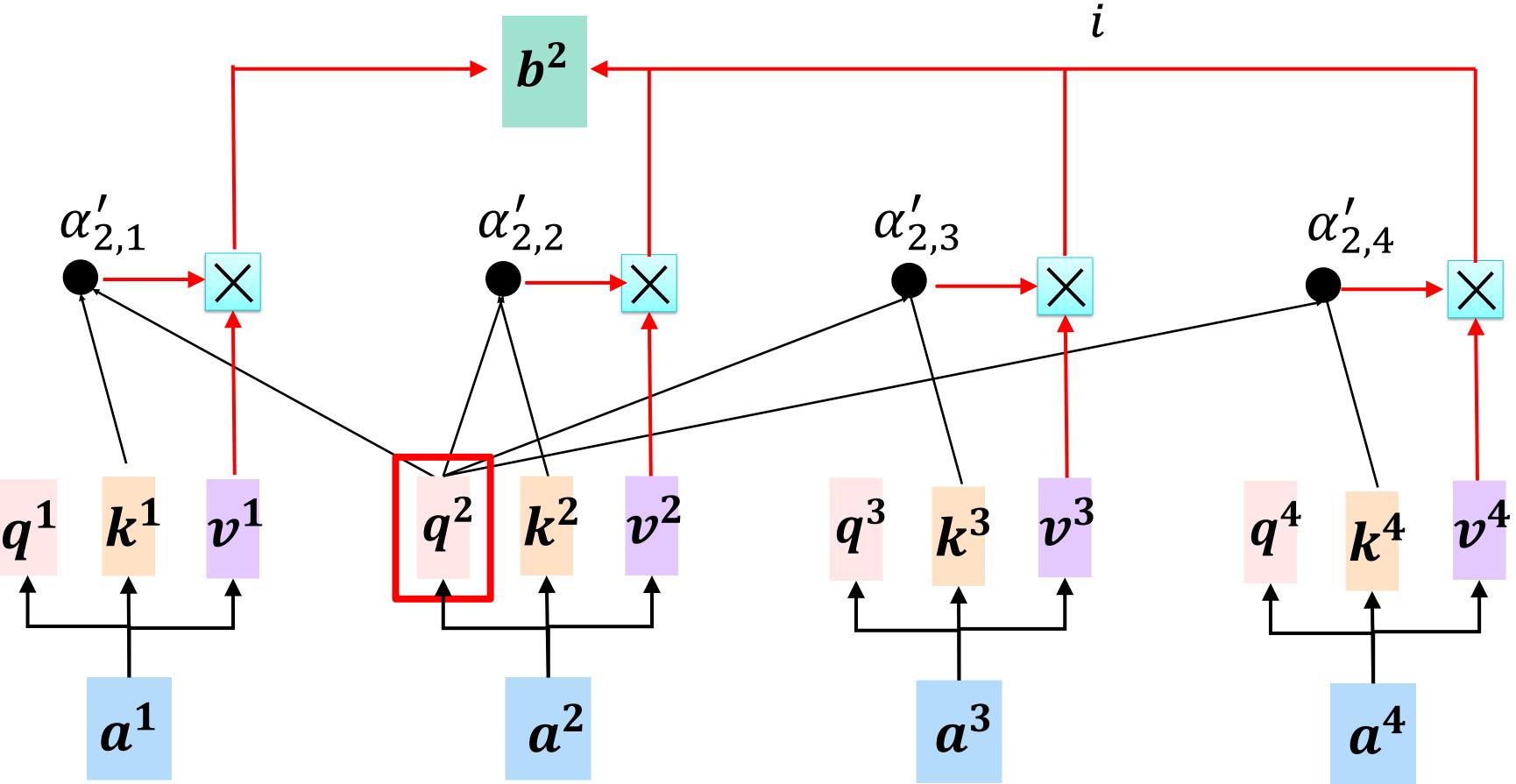
$$v^3 = W^v a$$

$$\boldsymbol{v^4} = W^{\boldsymbol{v}} \boldsymbol{a^4}$$



Can be either input or a hidden layer

$$\boldsymbol{b^2} = \sum_{i} \alpha'_{2,i} \boldsymbol{v^i}$$



Self-Attention
$$q^i = W^q a^i$$
 $q^1 q^2 q^3 q^4 = W^q a^1 a^2 a^3 a^4$

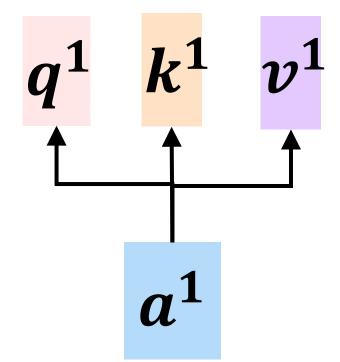
$$k^{i} = W^{k} a^{i} \qquad k^{1} k^{2} k^{3} k^{4} = W^{k} a^{1} a^{2} a^{3} a^{4}$$

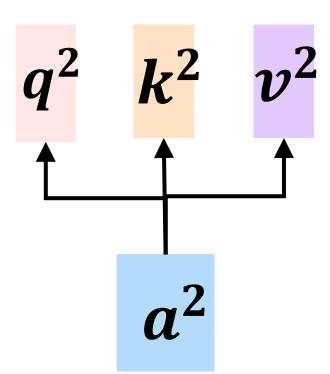
$$K$$

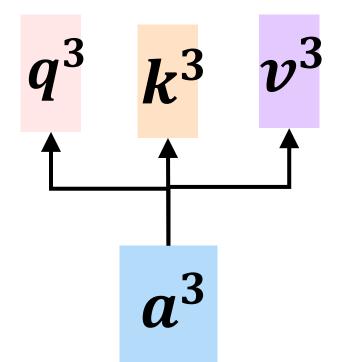
$$v^{i} = W^{v}a^{i} \quad v^{1}v^{2}v^{3}v^{4} = W^{v}a^{1}a^{2}a^{3}a^{4}$$

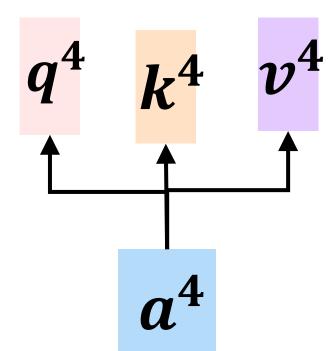
$$V$$

$$I$$



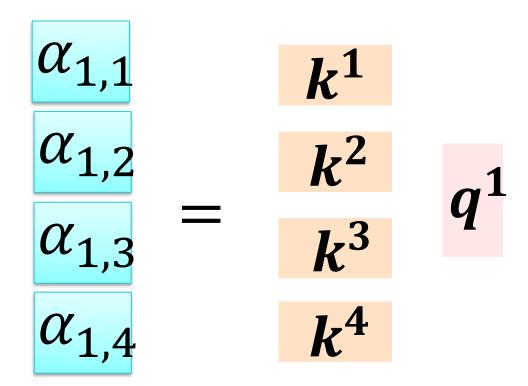


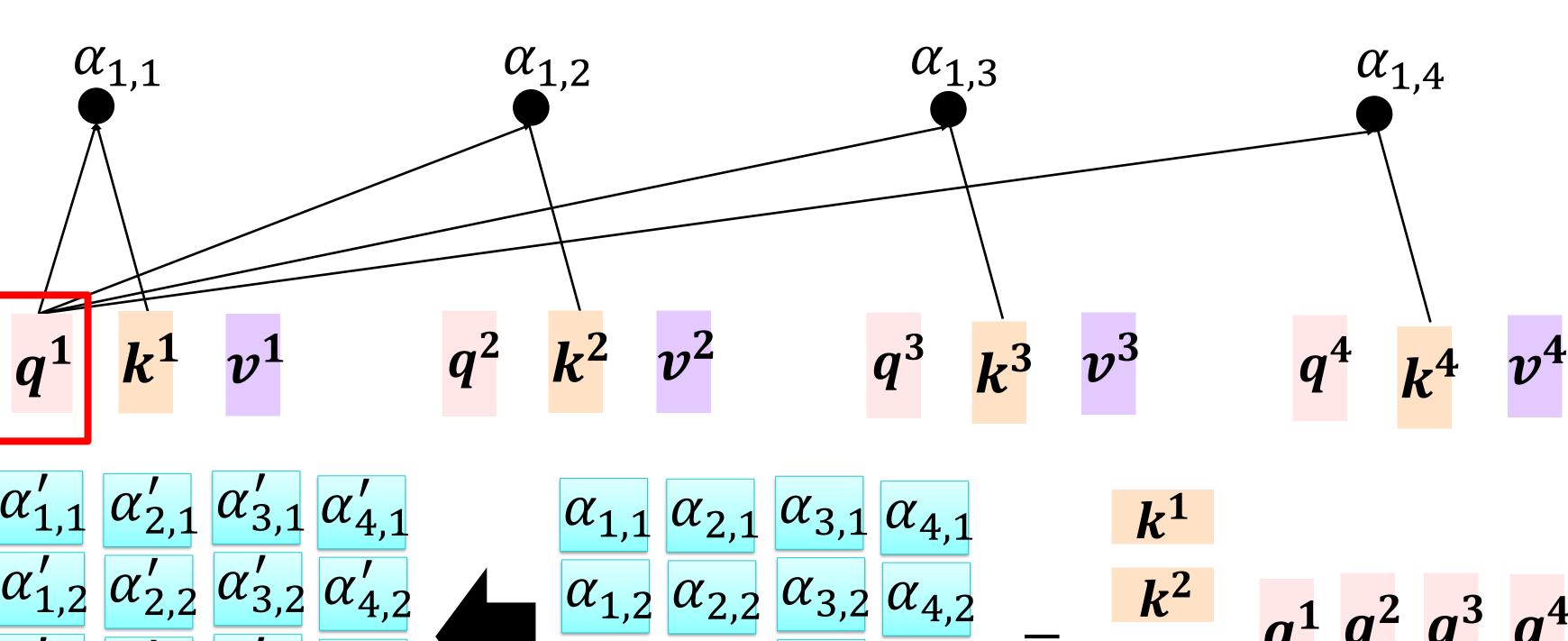


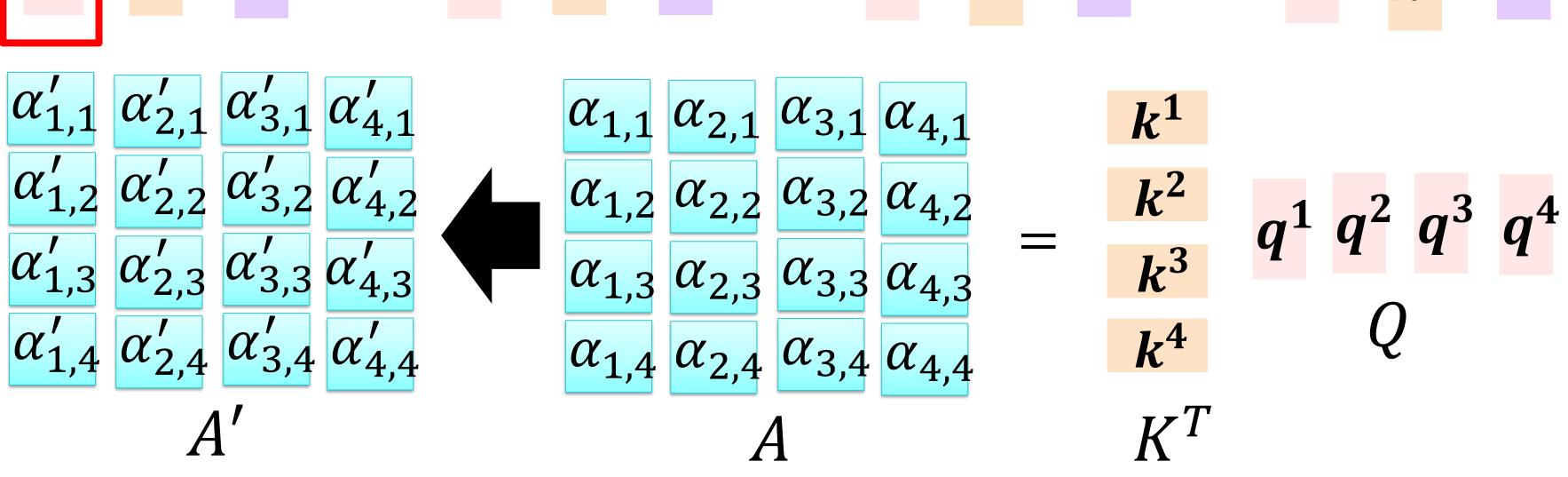


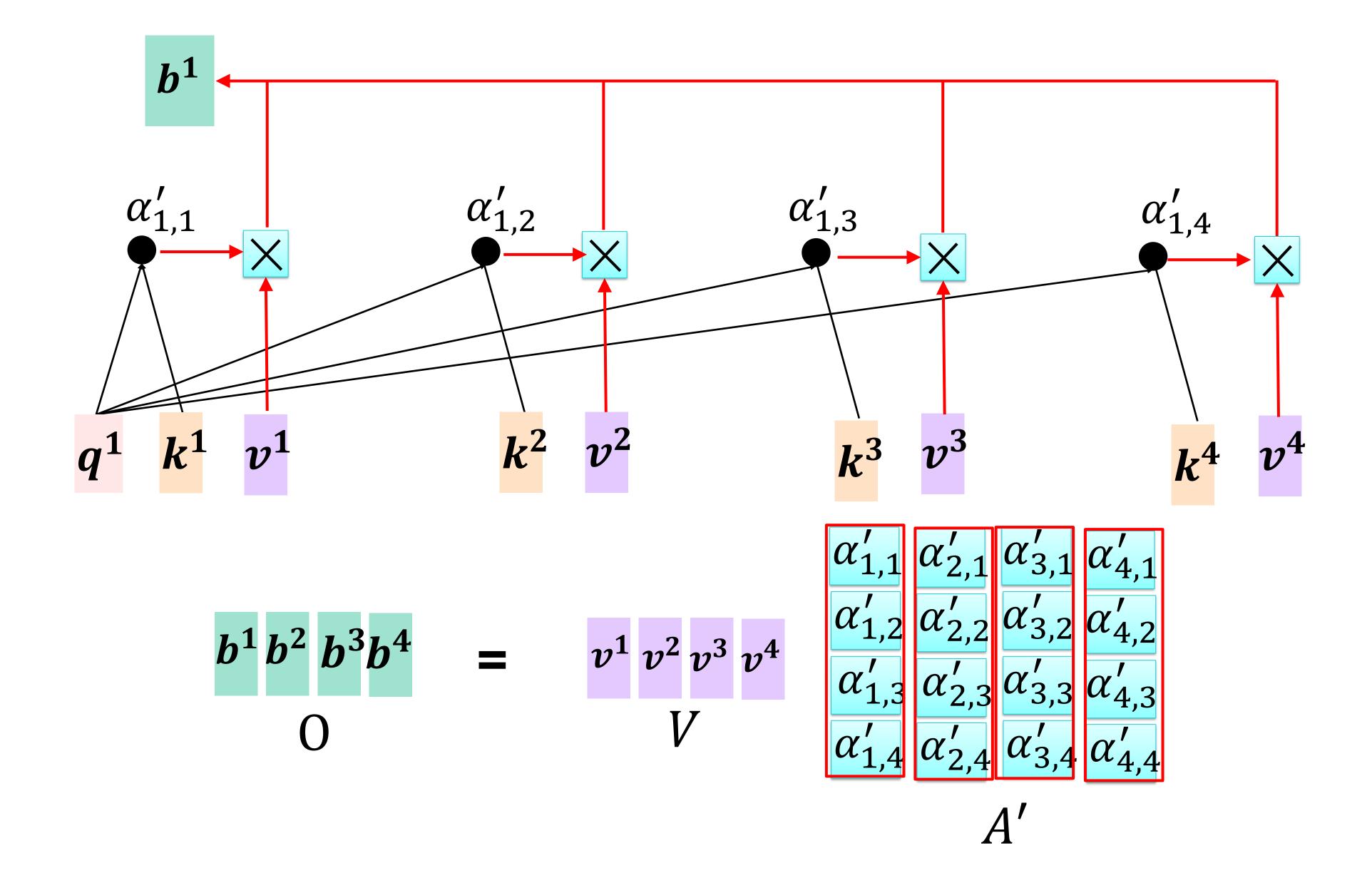
$$\alpha_{1,1} = k^1 q^1 \alpha_{1,2} = k^2 q^1$$

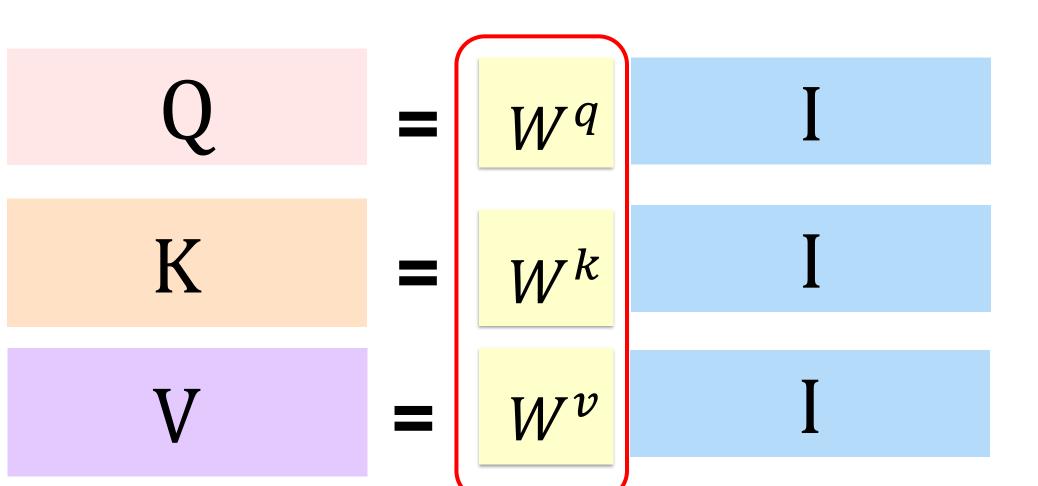
$$\alpha_{1,3} = k^3 q^1 \alpha_{1,4} = k^4 q^1$$



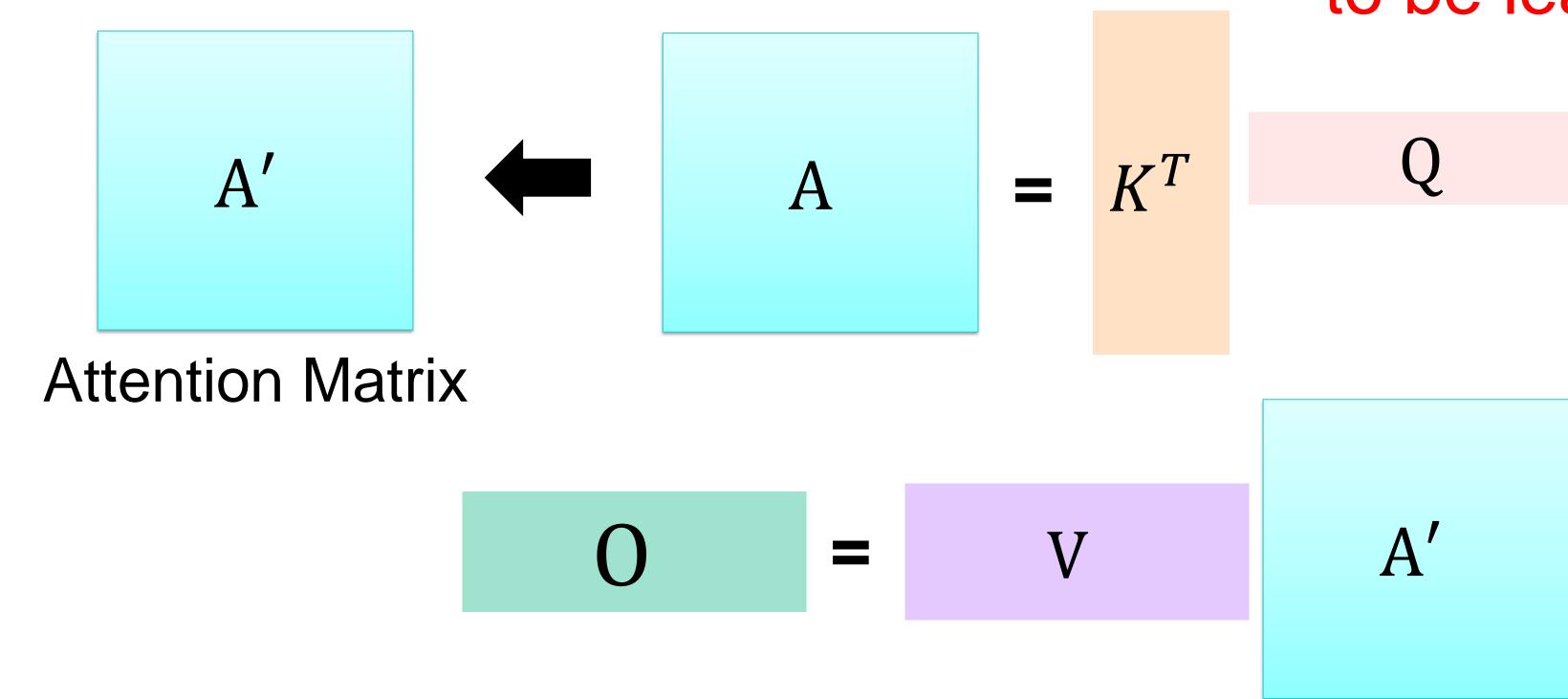




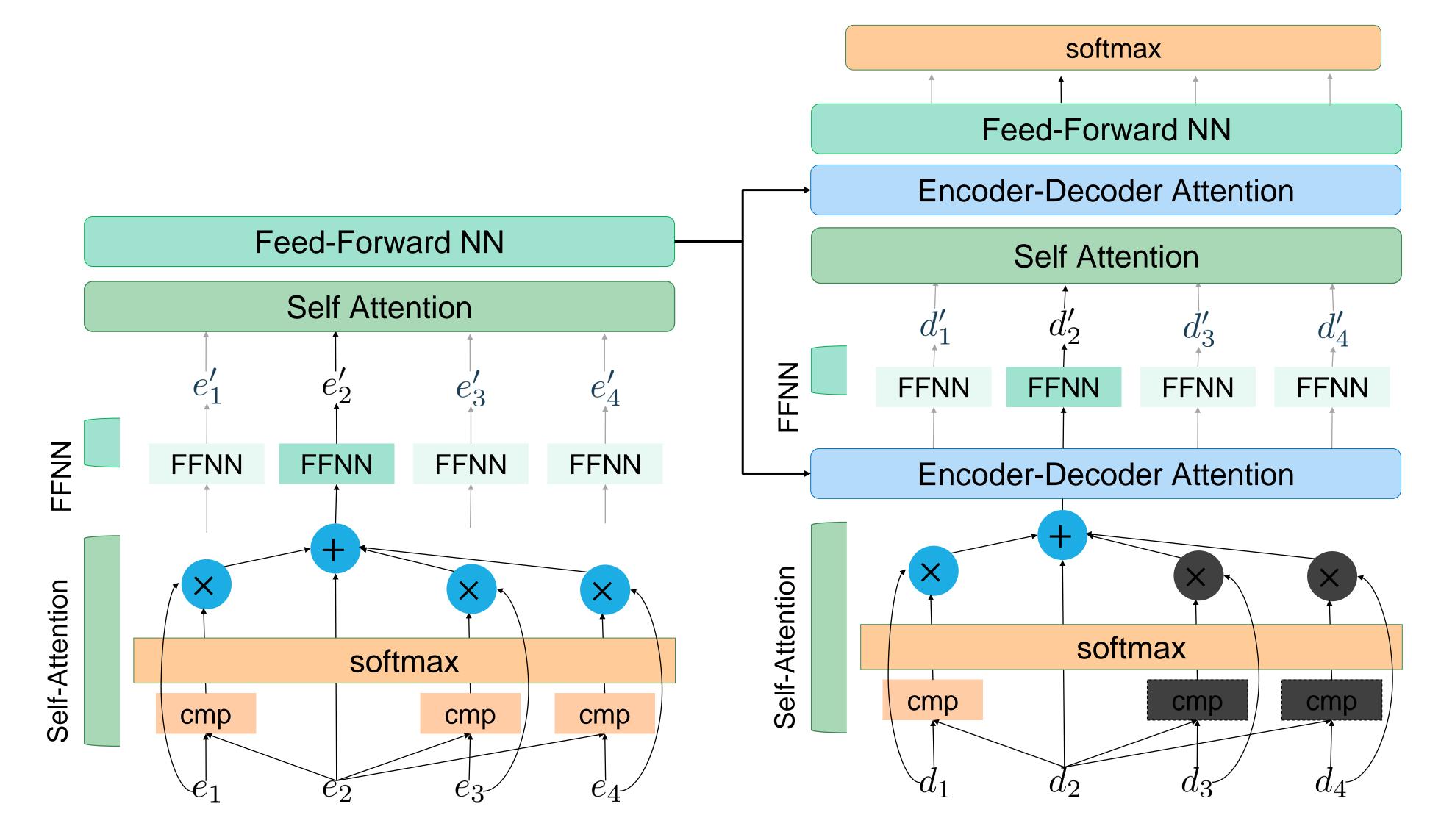




Parameters to be learned

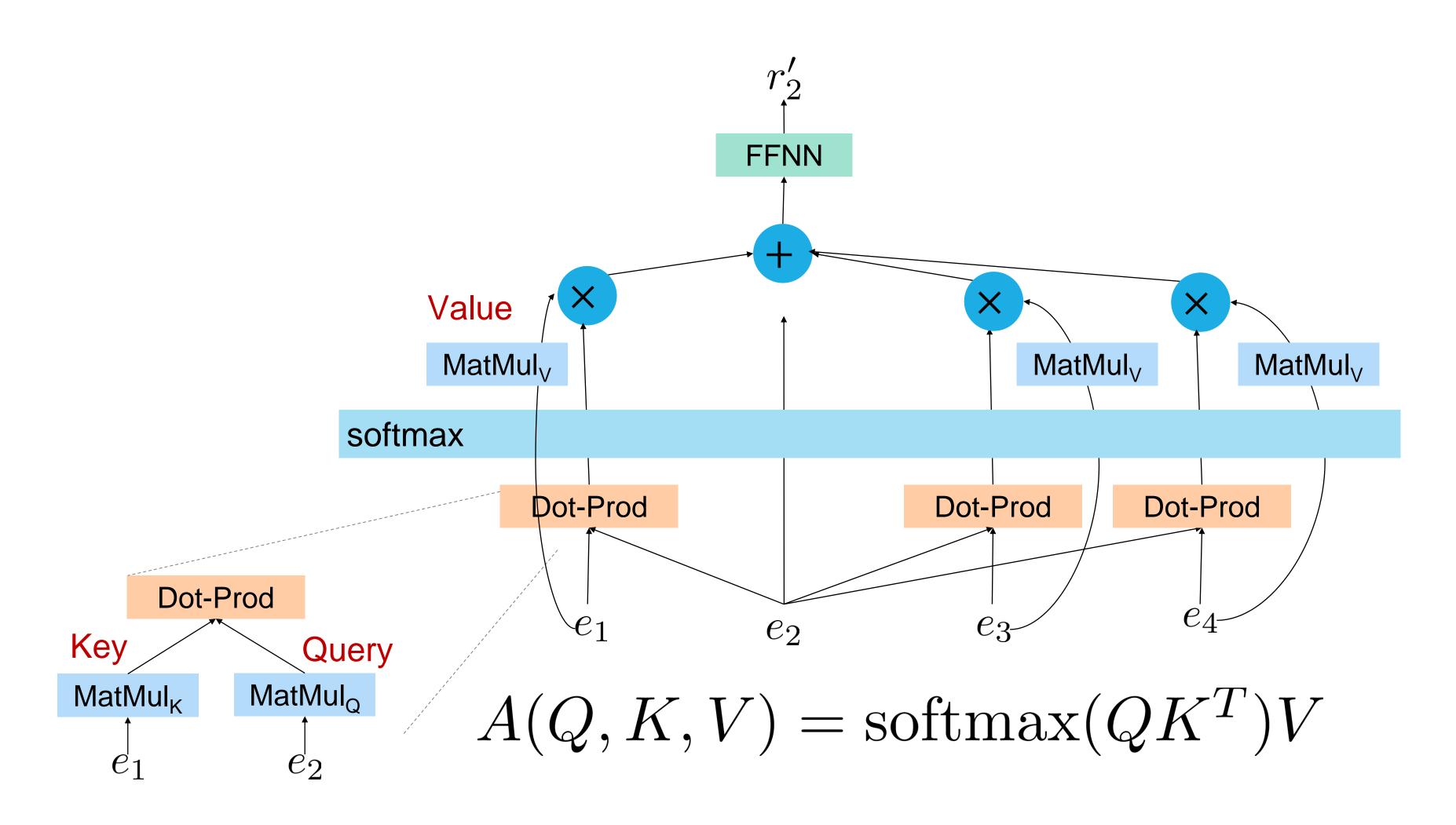


Transformer Idea



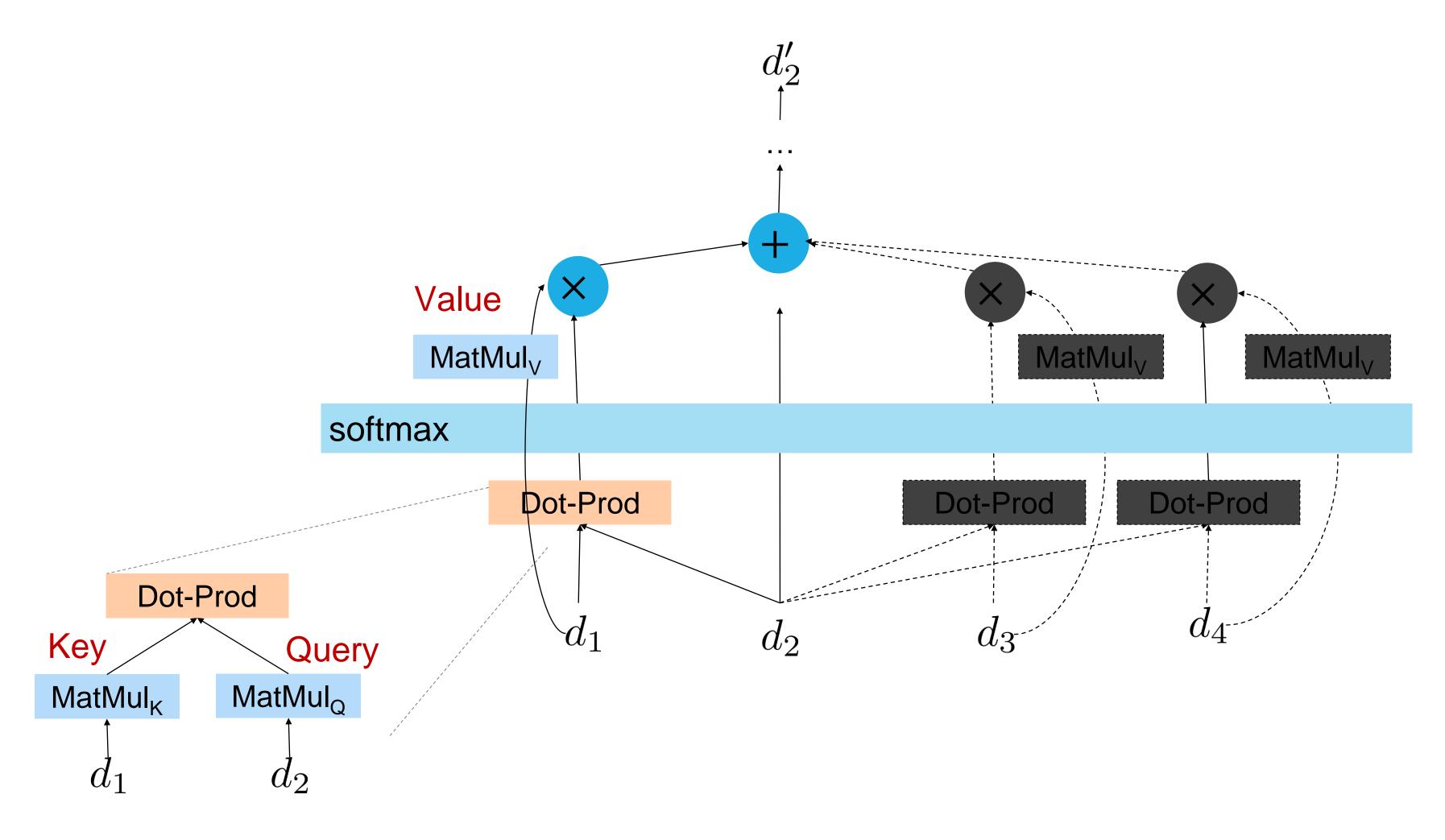
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

Encoder Self-Attention (Vaswani+, 2017)



Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

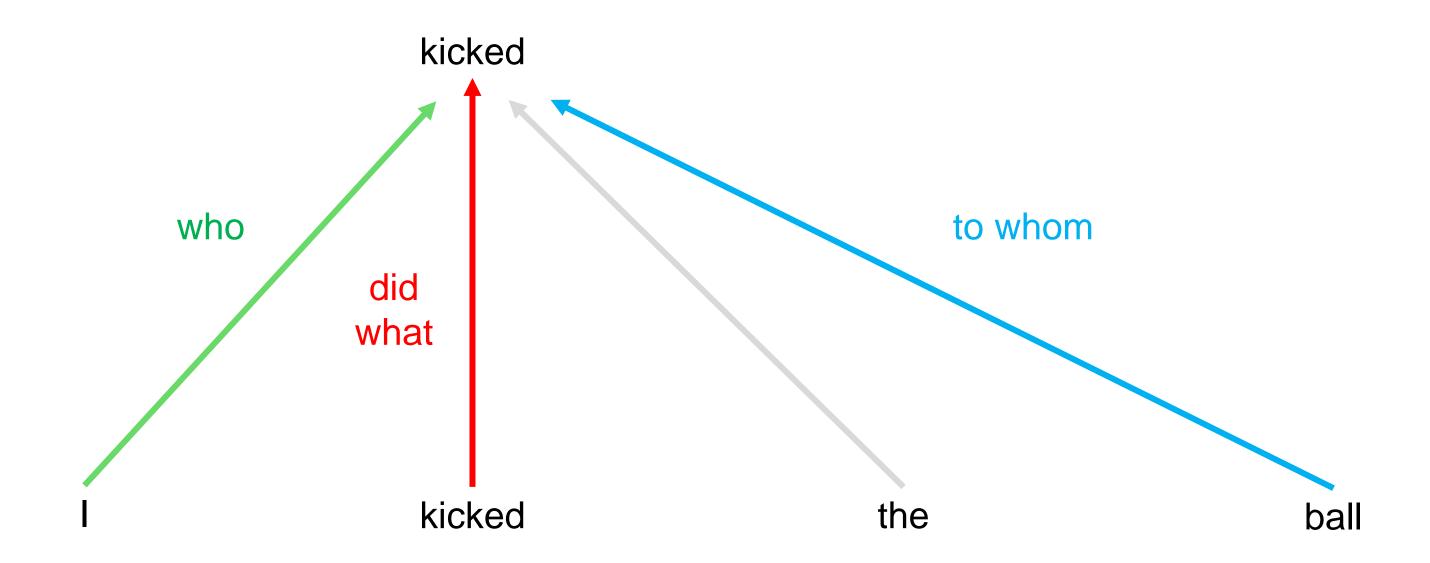
Decoder Self-Attention (Vaswani+, 2017)

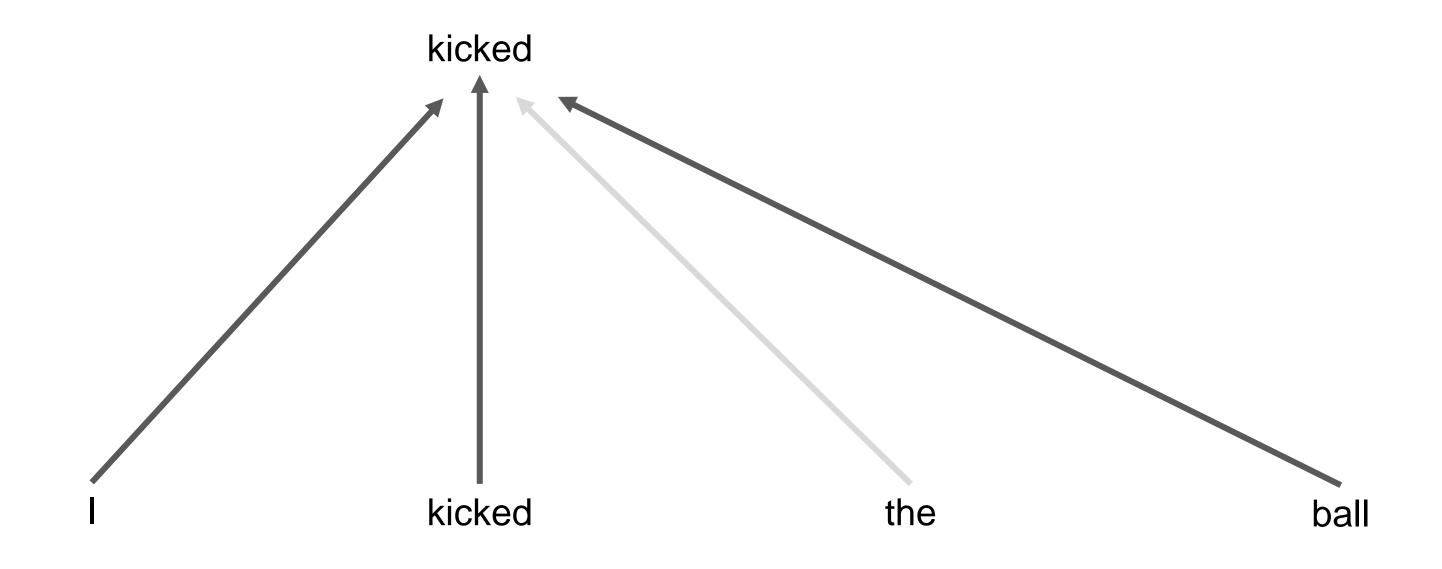


Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

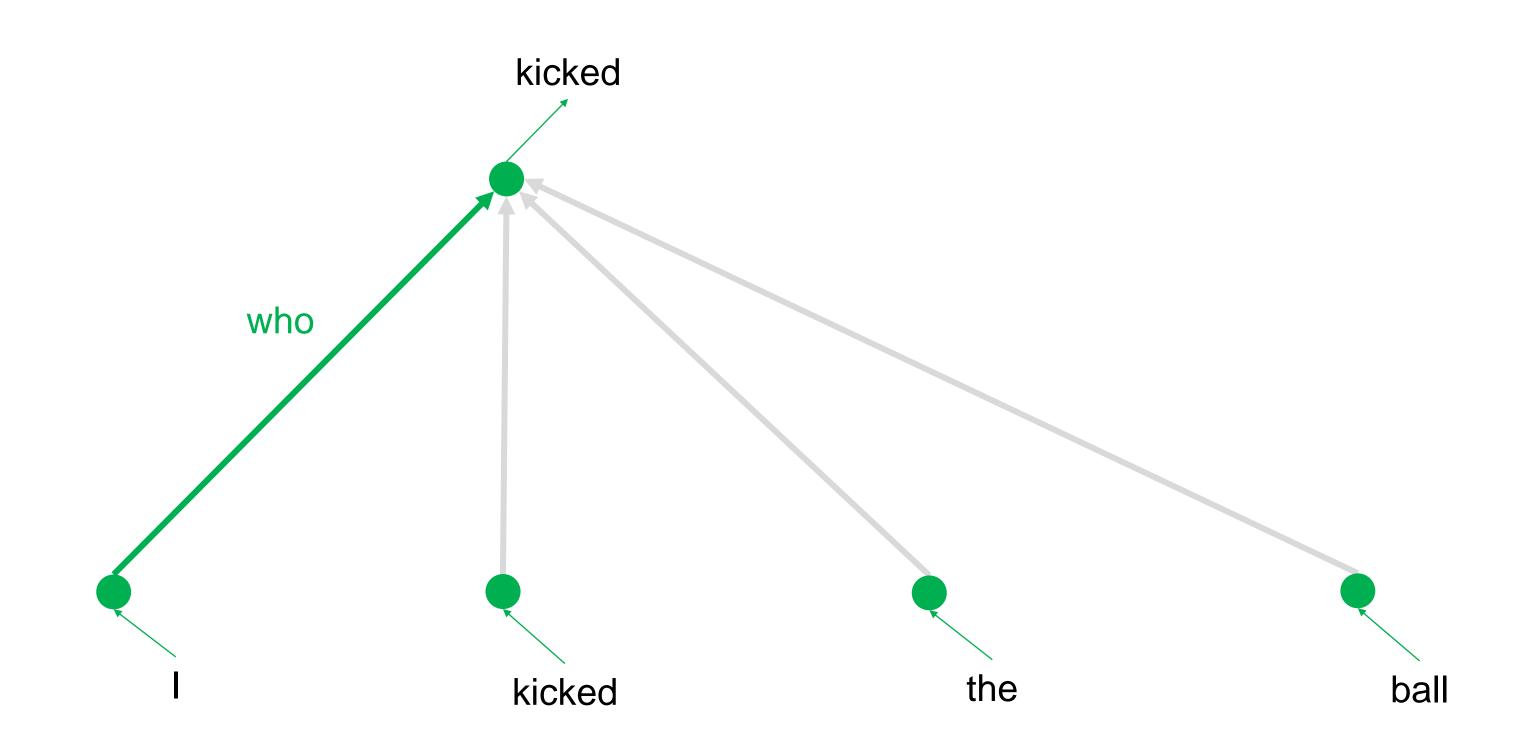
Sequence Encoding Multi-Head Attention

Convolutions

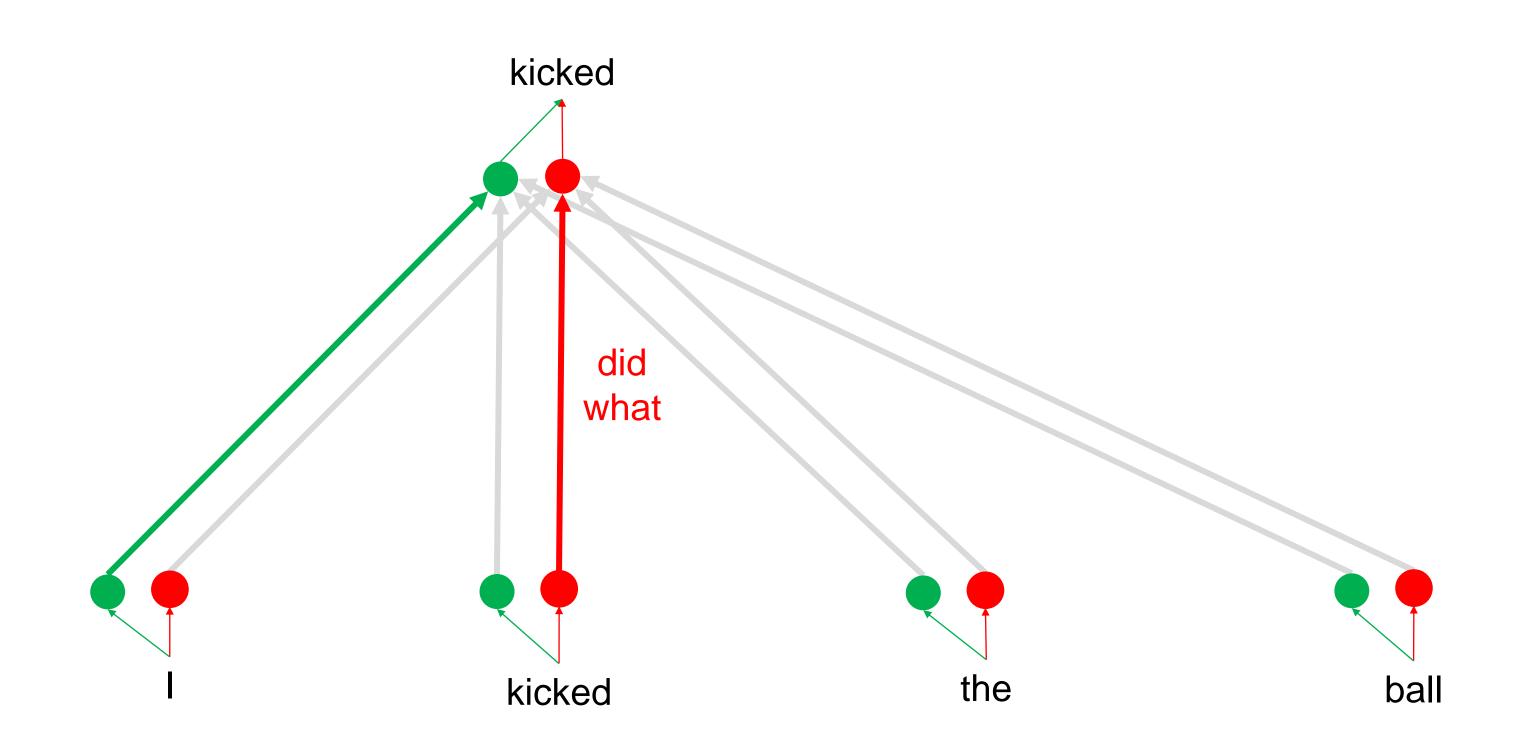




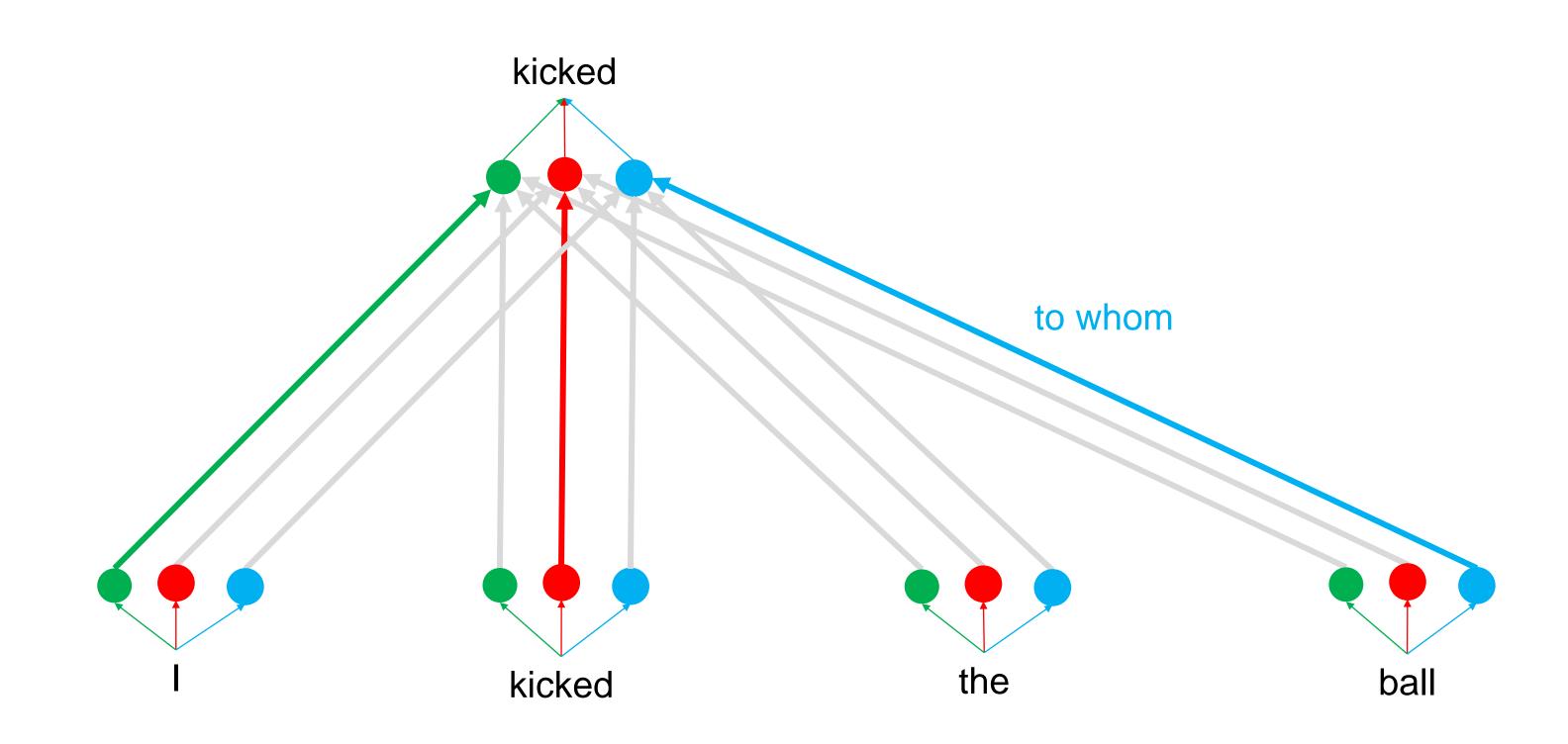
Attention Head: who



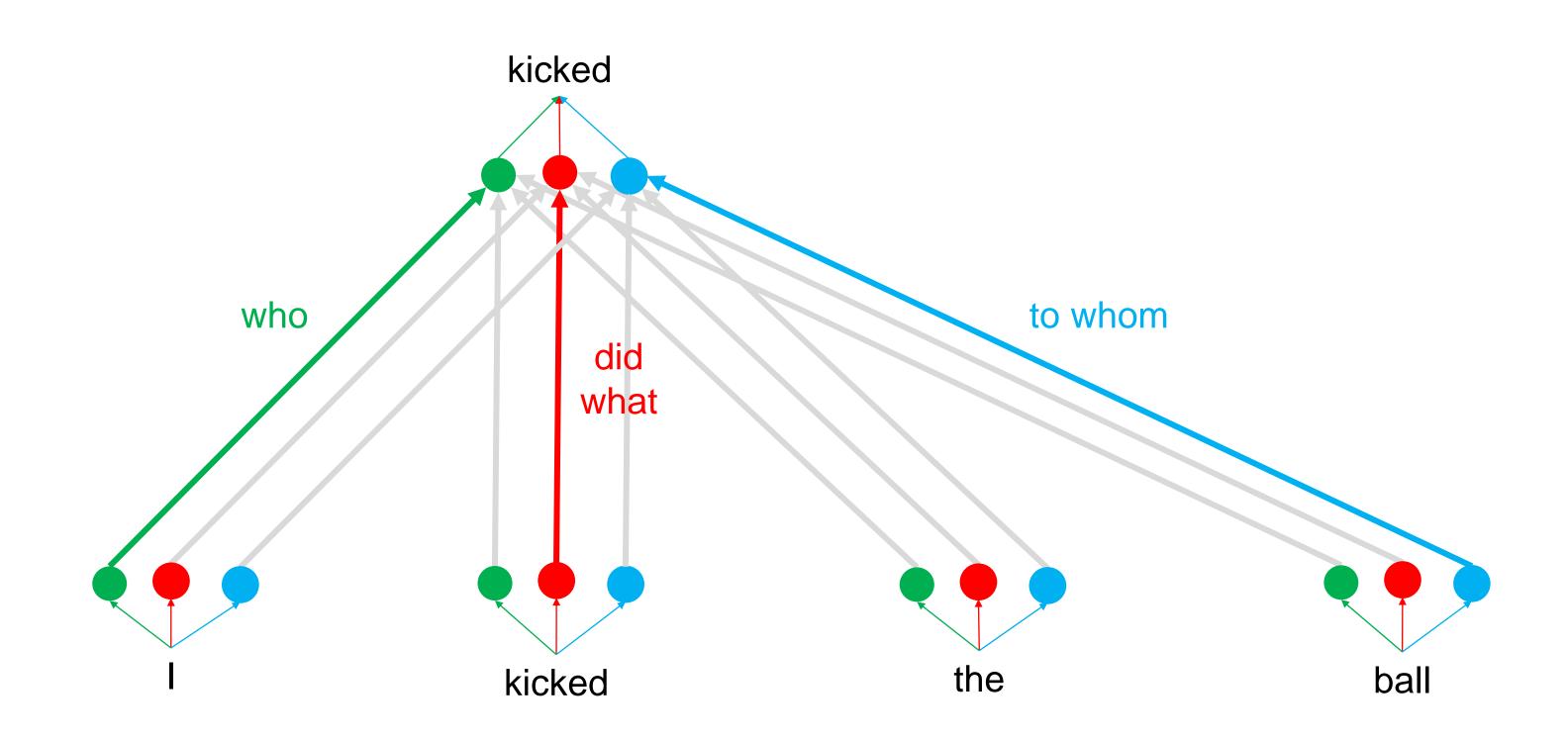
Attention Head: did what



Attention Head: to whom



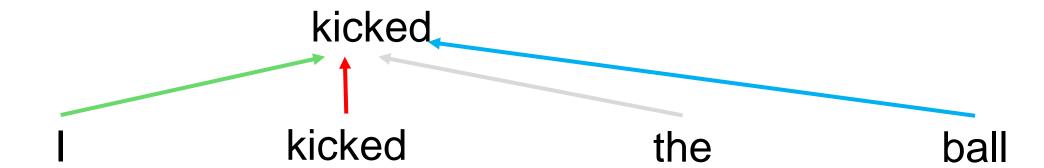
Multi-Head Attention



34

Comparison

Convolution: different linear transformations by relative positions



Attention: a weighted average

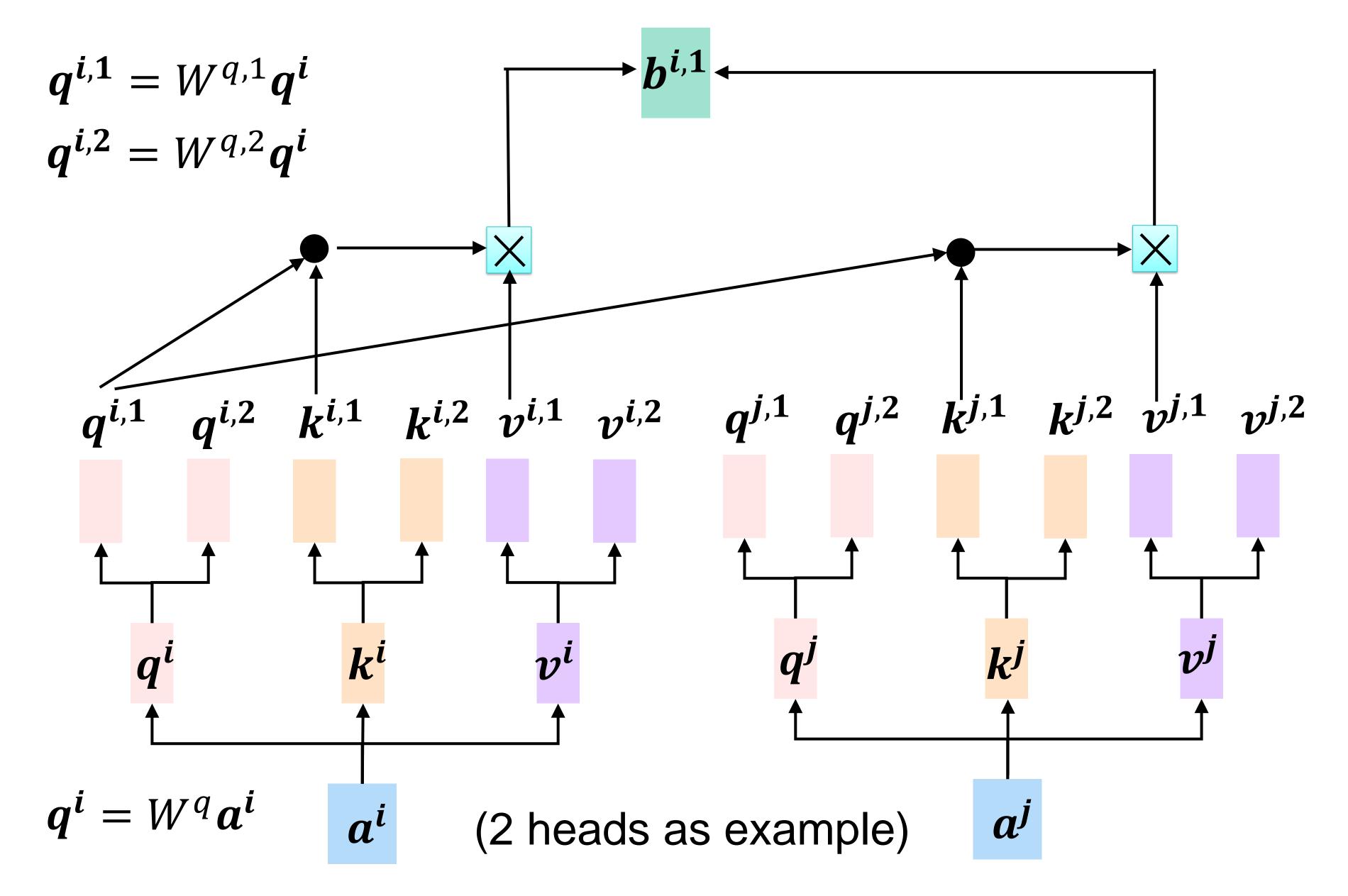
 Multi-Head Attention: parallel attention layers with different linear transformations on input/output
 _{kicked}

the

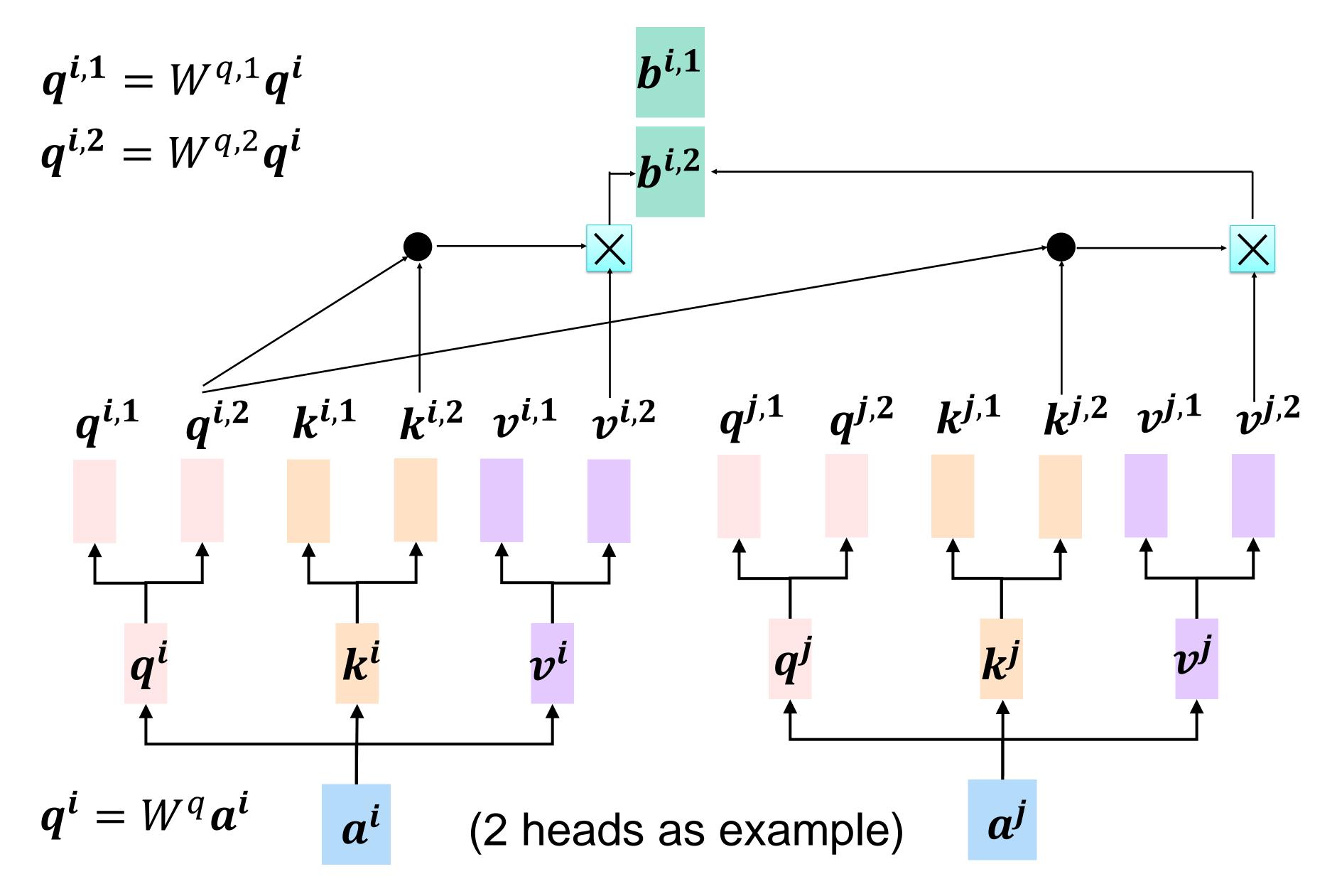
ball

kicked

Multi-Head Attention

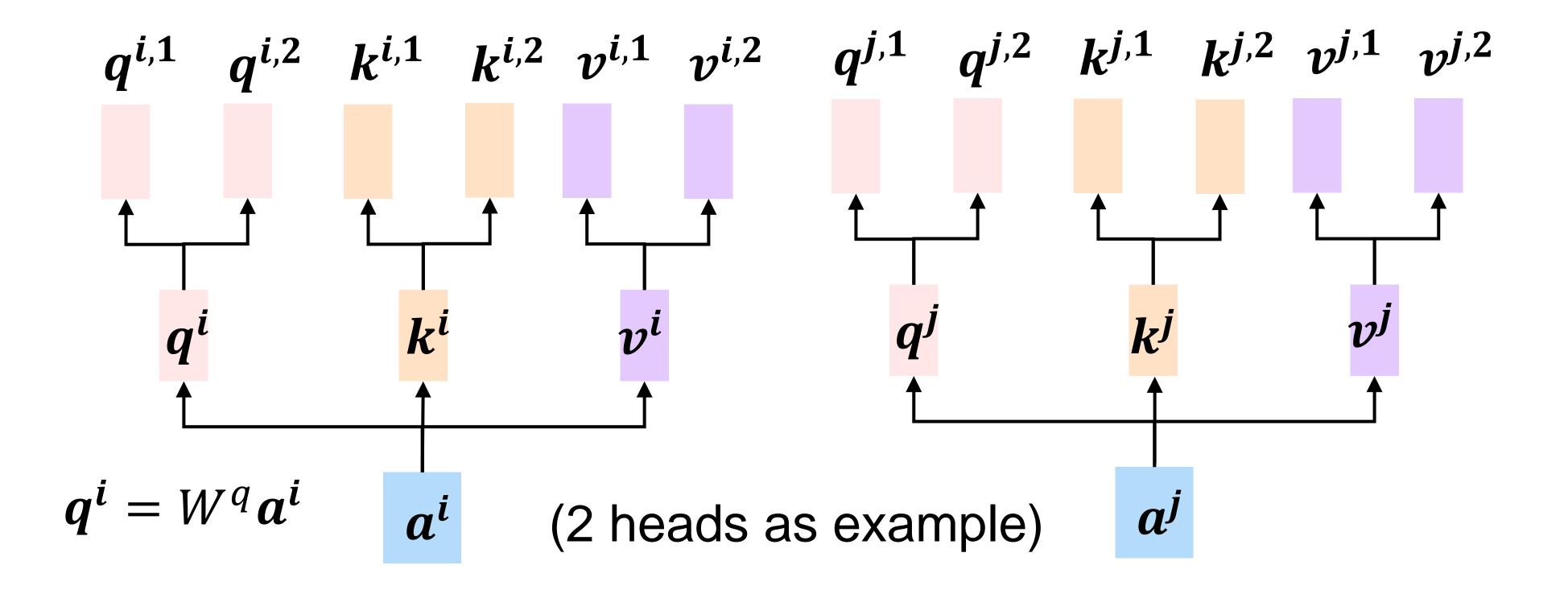


Multi-Head Attention



Multi-Head Attention

$$b^i = W^O$$
 $b^{i,1}$
 $b^{i,2}$

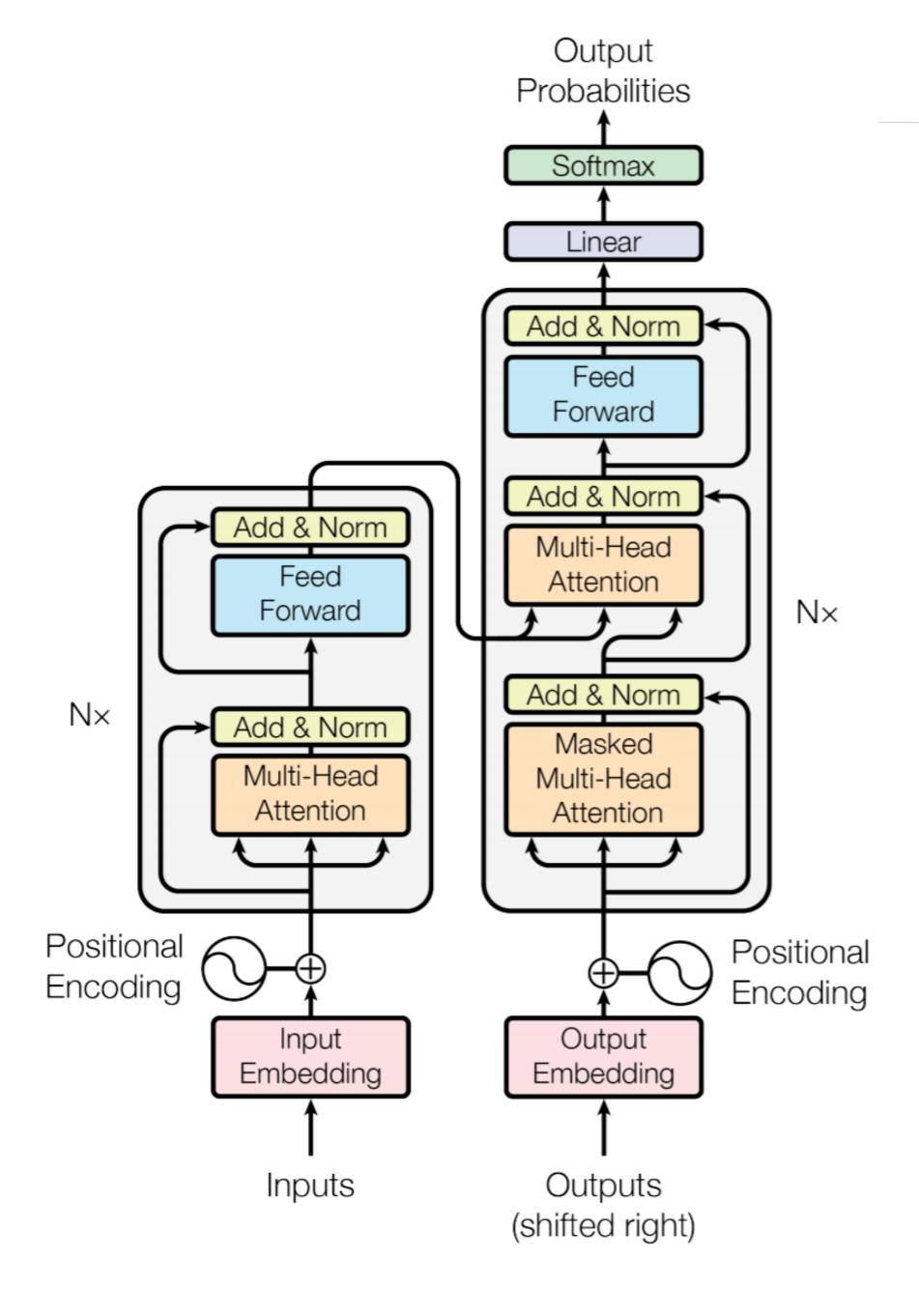


Sequence Encoding Transformer

Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

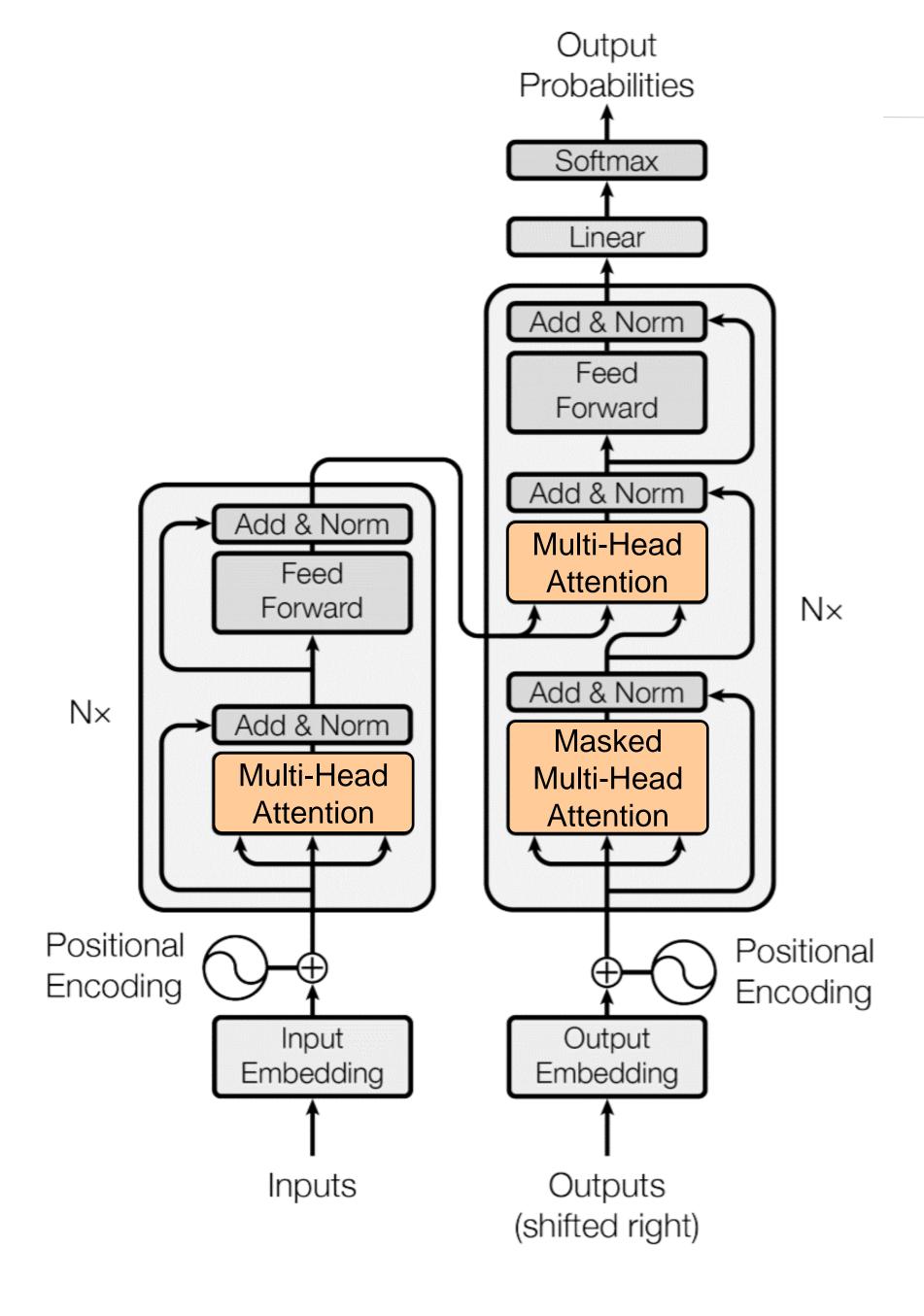
http://nlp.seas.harvard.edu/2018/04/03/attention.html



Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

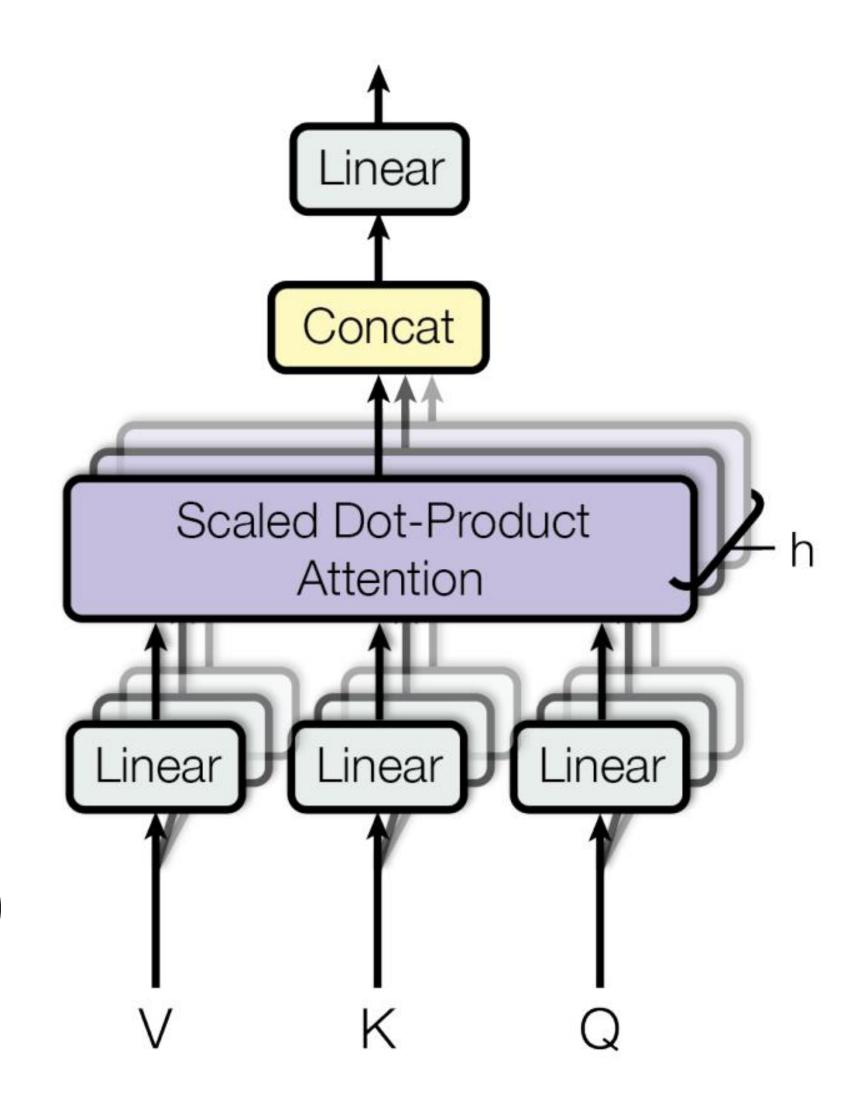
http://nlp.seas.harvard.edu/2018/04/03/attention.html



Multi-Head Attention

- Idea: allow words to interact with one another
- Model
 - Map V, K, Q to lower dimensional spaces
 - Apply attention, concatenate outputs
 - Linear transformation

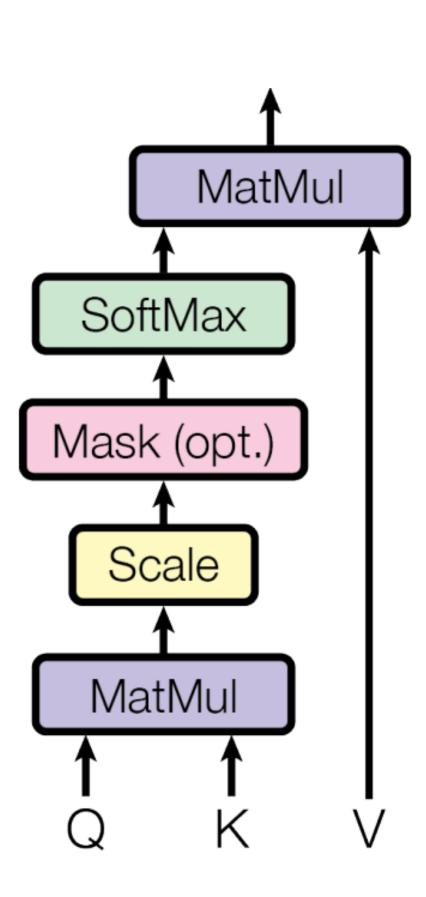
$$\begin{aligned} & \text{MultiHead}(Q, K, V) \\ &= \text{Concat}(\text{head}_1, \cdots, \text{head}_h) W^O \\ & \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$



Scaled Dot-Product Attention

- Problem: when d_k gets large, the variance of $q^T k$ increases
- $\rightarrow q$ and k are random variables with mean 0 and variance 1
- $\rightarrow q^T k$ has mean 0 and variance d_k
- variance 1 is preferred
- Solution: scale by $\sqrt{d_k}$

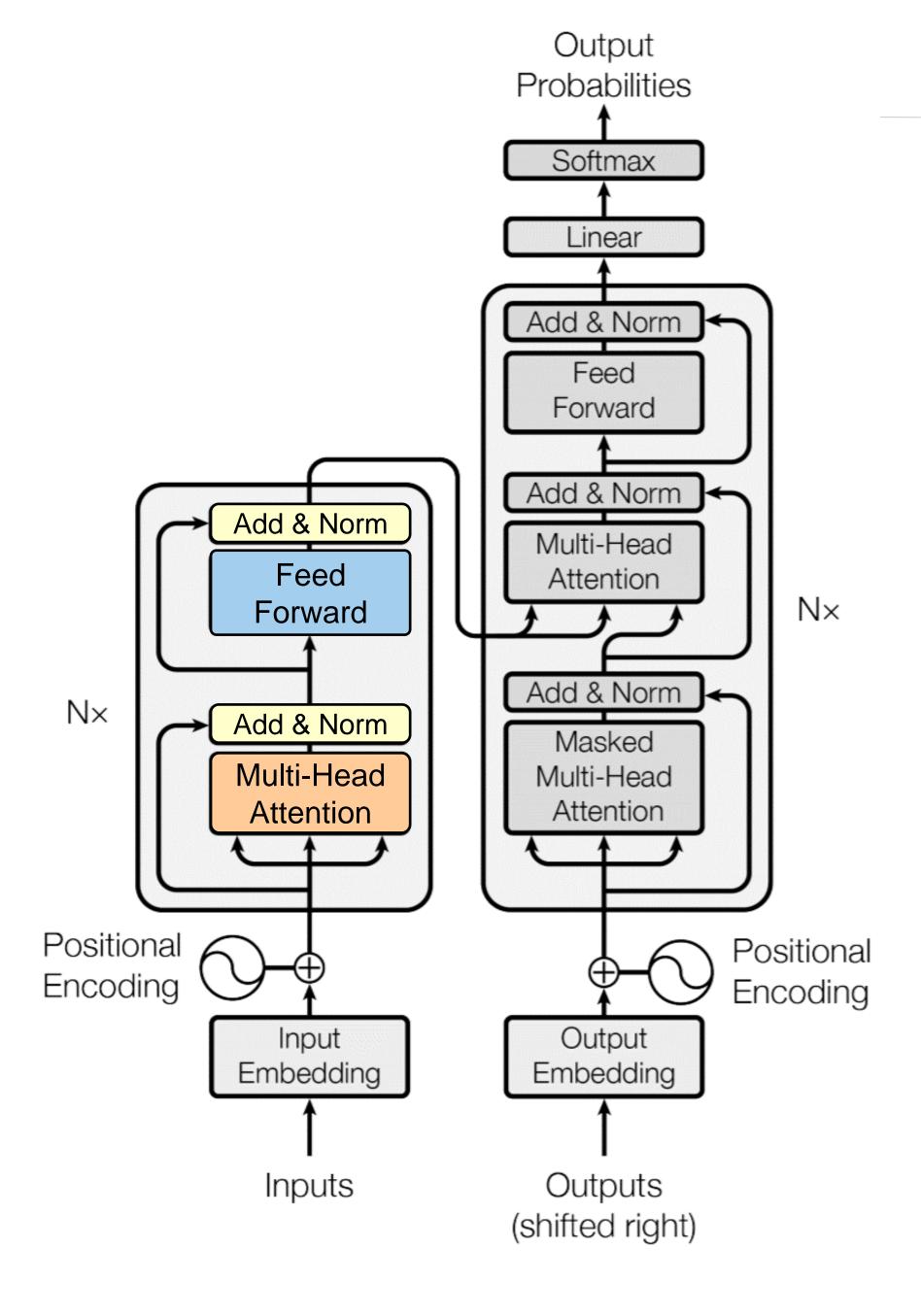
$$A(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$



Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

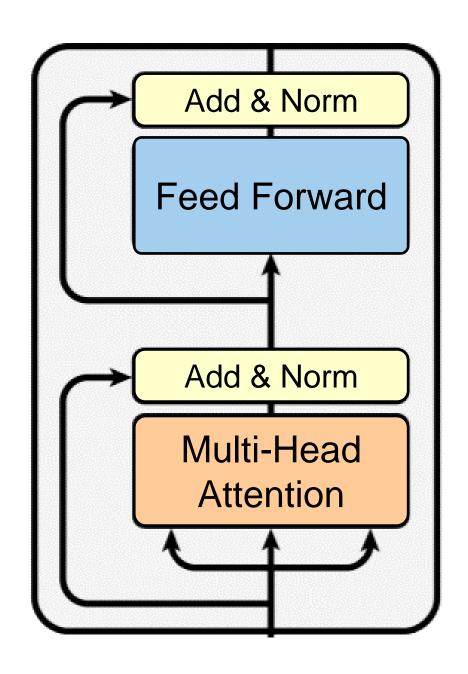
http://nlp.seas.harvard.edu/2018/04/03/attention.html



Transformer Encoder Block

- Each block has
 - multi-head attention
 - 2-layer feed-forward NN (w/ ReLU)
- Both parts contain
 - Residual connection
 - Layer normalization (LayerNorm)

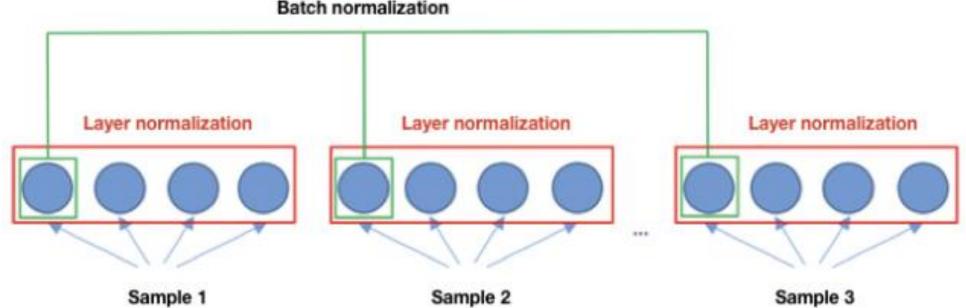
H(x) = g(x) = x + F(x) F(x) + F(x) + x



Change input to have 0 mean and 1 variance per layer & per training point

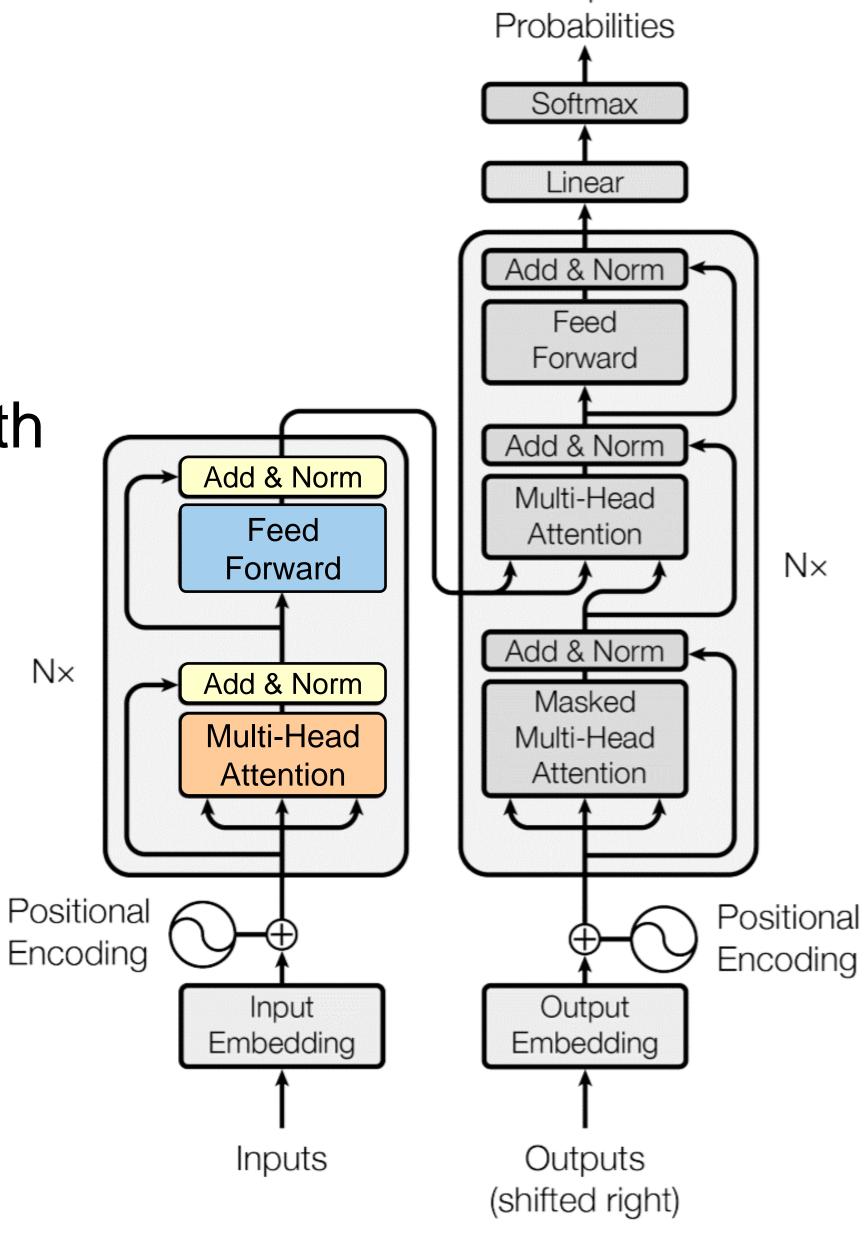
→ LayerNorm(x + sublayer(x))

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \quad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}} \quad h_{i} = f(\frac{g_{i}}{\sigma_{i}} (a_{i} - \mu_{i}) + b_{i})$$



Encoder Input

- Problem: temporal information is missing
- Solution: positional encoding allows words at different locations to have different embeddings with fixed dimensions



Output

- Criteria for positional encoding
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same
 - Model can easily generalize to longer sentences

- Criteria for positional encoding
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same
 - Model can easily generalize to longer sentences
- Idea 1: PE(pos) = pos
 - A value to indicate the word's position
 - Larger value (longer sentence) may not be easily generalized ②

- Criteria for positional embeddings
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same
 - Model can easily generalize to longer sentences
- Idea 2: 1-hot encoding
 - A d-dim vector to encode d positions
 - Cannot generalize to longer sentences (3)

- Criteria for positional encoding
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same
 - √o Model can easily generalize to longer sentences

Idea 3:
$$PE(pos) = \frac{pos}{len}$$

- The normalized value of the position (0~1)
- Distances may differ in sentences with different lengths

Sinusoidal Positional Encoding

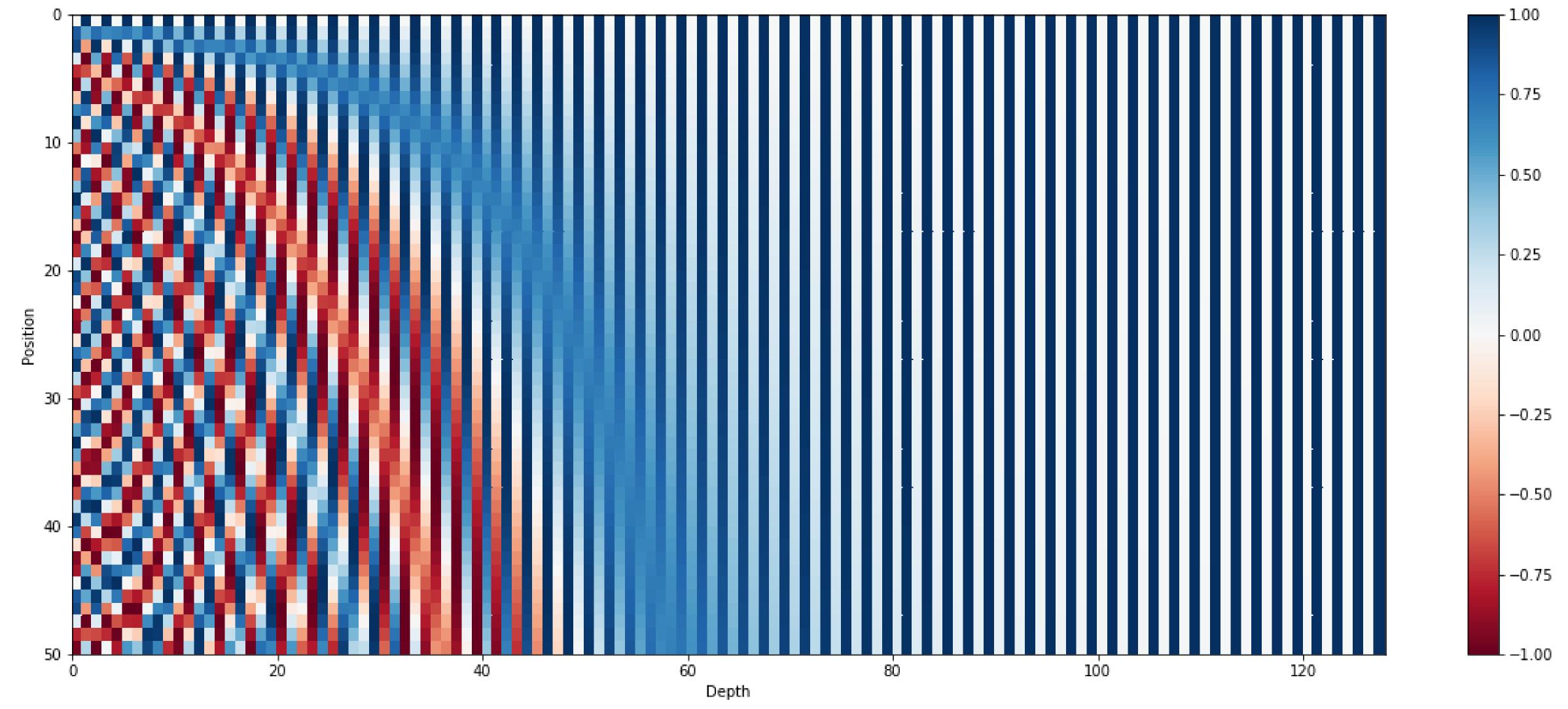
- Criteria for positional embeddings
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same
 - Model can easily generalize to longer sentences

• Idea:
$$PE(pos, 2i) = sin(\frac{pos}{100000^{2i/d}})$$

$$PE(pos, 2i + 1) = cos(\frac{pos}{100000^{2i/d}})$$

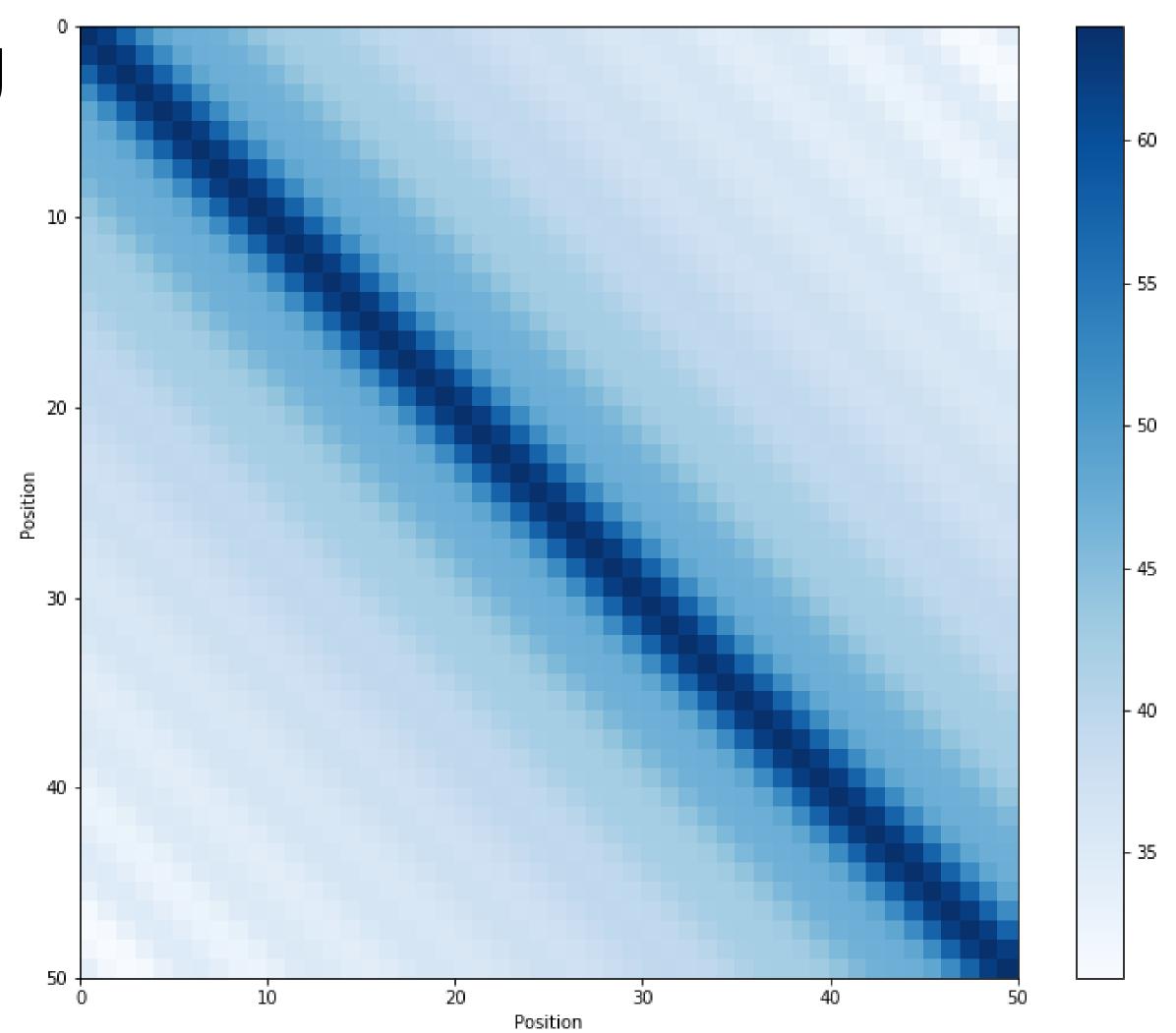
A d-dim vector to represent positions

Sinusoidal Positional Encoding



Sinusoidal Positional Encoding

- Distance between neighboring positions
 - symmetrical
 - decay nicely with time

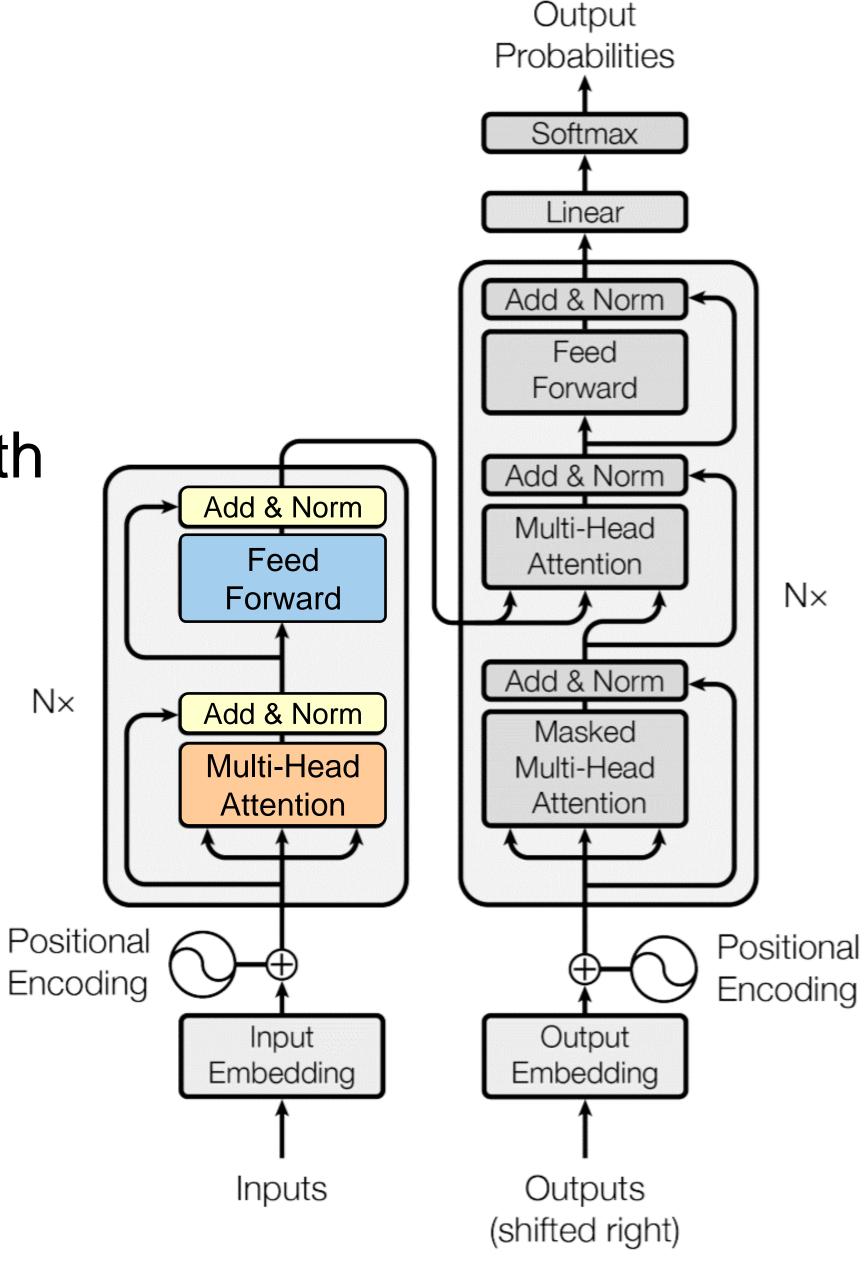


Dot product of position embeddings for all time-steps

53

Encoder Input

- Problem: temporal information is missing
- Solution: positional encoding allows words at different locations to have different embeddings with fixed dimensions



Multi-Head Attention Details

encoder self attention

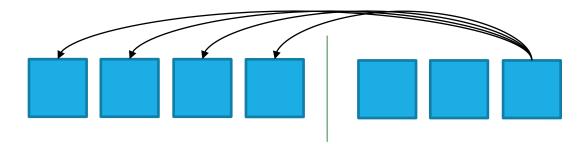
- 1. Multi-head Attention
- 2. Query=Key=Value

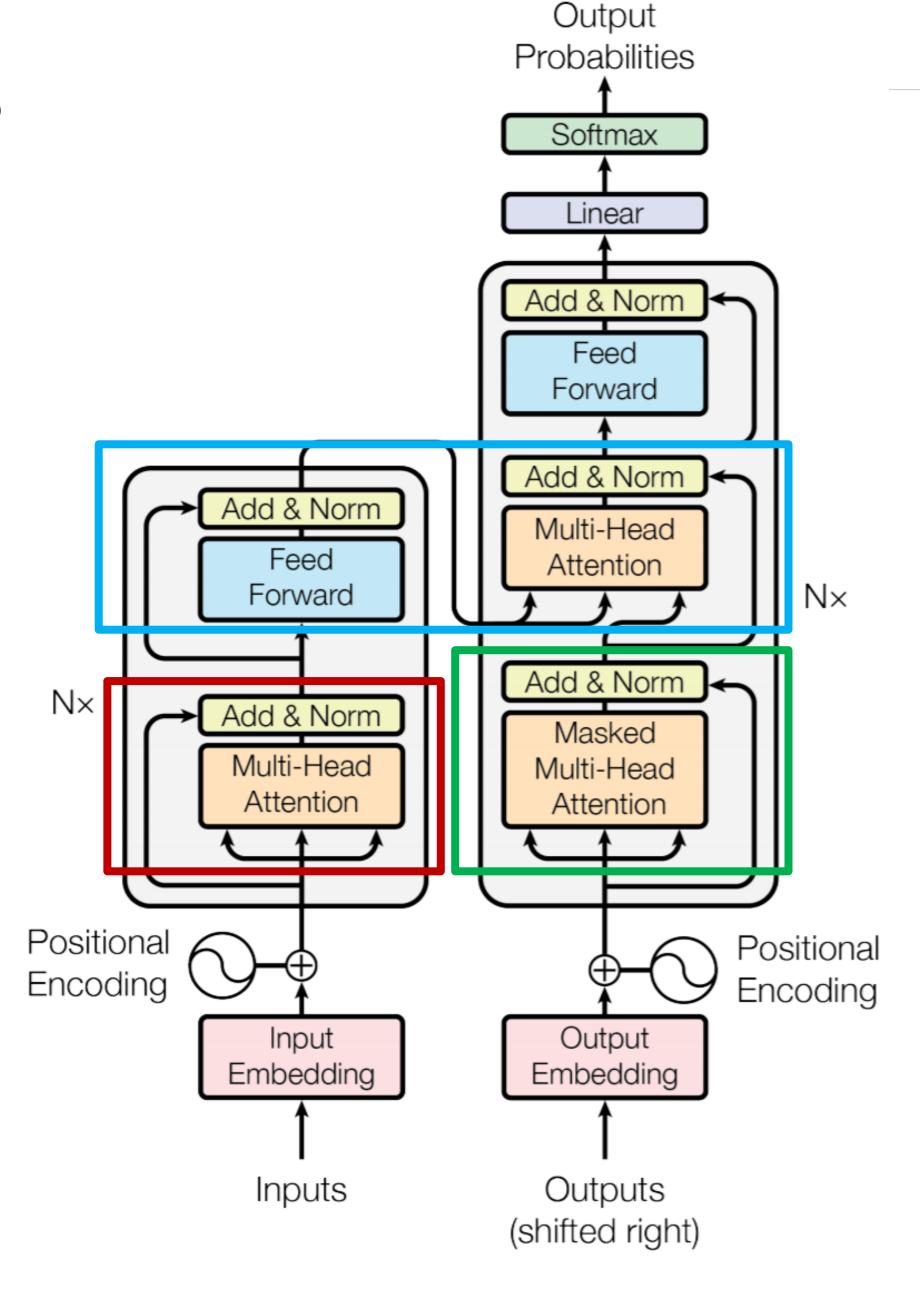
decoder self attention

- 1. Masked Multi-head Attention
- 2. Query=Key=Value

encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query





55

Training Tips

- Byte-pair encodings (BPE)
- Checkpoint averaging
- ADAM optimizer with learning rate changes
- Dropout during training at every layer just before adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties

MT Experiments

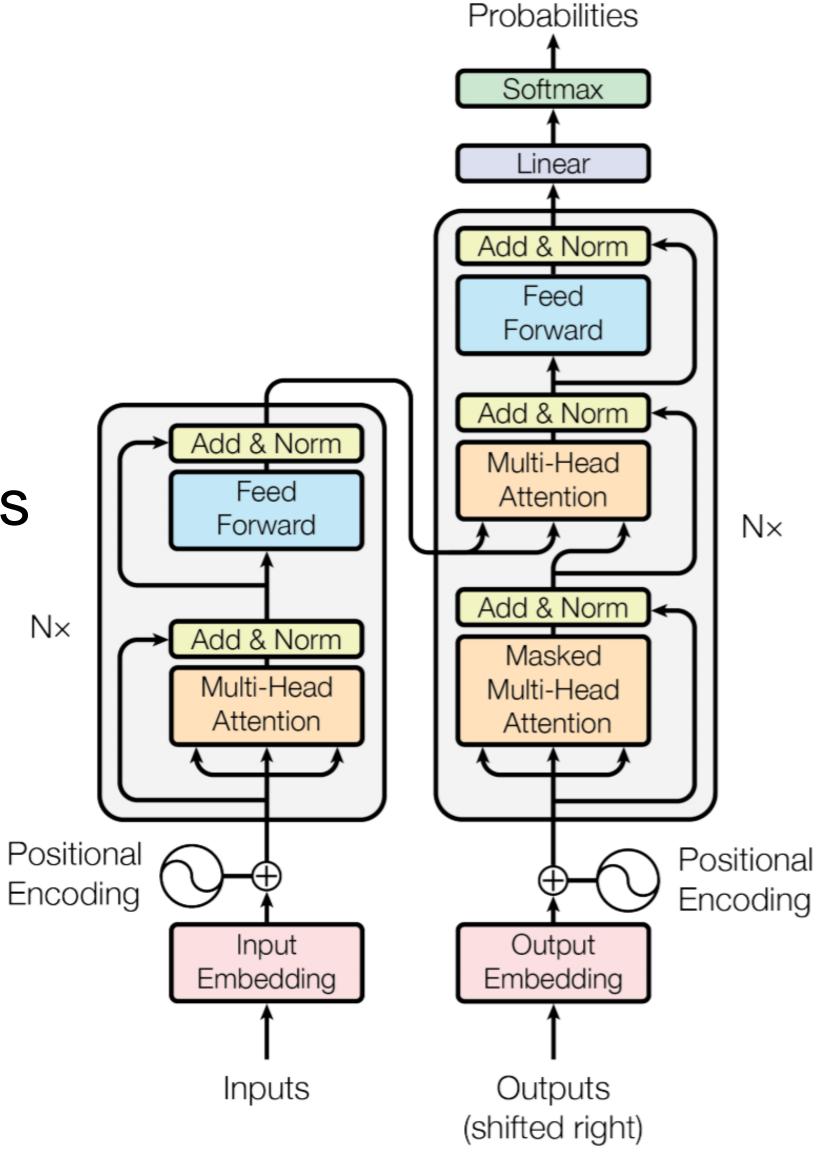
Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$\boldsymbol{3.3\cdot10^{18}}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Parsing Experiments

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

Concluding Remarks

- Non-recurrence model is easy to parallelize
- Multi-head attention captures different aspects by interacting between words
- Positional encoding captures location information
- Each transformer block can be applied to diverse tasks



Output

