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© Attention and Memory

Information from sensors

(e.g. eyes, ears) Problem: very long sequence
or an image
Sensory Memory mm)p Solution: pay attention on the

partial input object each time
Attention

Working Memory
Encodel T Retrieval

Long-term Memory




©® Attention and Memory

Information from sensors

(e.g. eyes, ears) Problem: very long sequence
or an image
Sensory Memory mm)p Solution: pay attention on the

partial input object each time

Working Memory Problem: larger memory implies
more parameters in RNN

_ ) Solution: long-term memory
Long-term Memory increases memory size without

increasing parameters




Information from sensors
(e.g. eyes, ears)

Sensory Memory

Attention

Atten tl O n O n Working Memory

Se N S O ry I N fo Encode‘ 1 Retrieval




G Machine Translation

® Sequence-to-sequence learning: both input and output are both sequences
with different lengths.

® E.g. FEEZE - deep learning
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Q Machine Translation with Attention

whatis :

0 » Cosine similarity of zand h

Z

» Small NN whose input is z
and h, output a scalar

» h3— h*

> a=hTWz

—

W — =
B —
I —

How to learn the parameters?

]




Machine Translation with Attention
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Q Machine Translation with Attention
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@ Machine Translation with Attention
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@ Machine Translation with Attention
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@ Machine Translation with Attention
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@ Dot-Product Attention

@® |Input: a query g and a set of key-value (k-v) pairs to an output
@® Output: weighted sum of values

Inner product of
guery and corresponding key

exp(q - k;) N
> exp(q - kj)|”

Query g is a dj-dim vector
Key k is a d;-dim vector
Value v is a d,,-dim vector

A(q, K, V) =

1




@ Dot-Product Attention in Matrix

@® Input: multiple queries g and a set of key-value (k-v) pairs to an output
@® Output: a set of weighted sum of values

exp(q - k;)
K, V)
q’ ZZ equ ]{73)

A(Q, K, V) = softmax(QK*)V

QI > di] x [di x | K] x [|K] x d]

softmax
row-wise

= [|Q] x d.]




@ Attention Applications
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@ Speech Recognition with Attention

Alignment between the Characters and Audio
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Chan et al., “Listen, Attend and Spell”, arXiv, 2015 .



@ Image Captioning

@ Input: image
@ Output: word sequence

A vector for
<END>
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@ Image Captioning with Attention

A vector for each region

CNN filter filter filter
filter  filter  filter

filter filter filter
filter  filter = filter




@ Image Captioning with Attention
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@ Image Captioning with Attention

Word 1 Word 2

A vector for each region

t weighted

CNN filter filter filter .
filter  filter  filter WEIghtEd sum

sum ‘

0.0 0.8 0.2

filter filter filter
filter  filter = filter




@ Image Captioning

® Good examples

A stop sign is on a road with a

mountain in the background.

\
g S

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



@ Image Captioning

@® Bad examples

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.



@ Video Captioning

Ref: A man and a woman ride a motorcvcle
A man and a woman are talking on the



@ Video Captioning

Ref: A woman is frying food
Someone is frying a fish in a



® Reading Comprehension

Extracted
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@ Reading Comprehension
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Memory Network

Extract information
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Compute attention




(28 Memory Network

@® Muti-hop performance analysis

Story (1: 1 supporting fact) Support| Hop1 | Hop 2 | Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03
Mary travelled to the hallway. 0.00 0.00 0.00
John went to the bedroom. 0.37 0.02 0.00
John travelled to the bathroom. yes 0.60

Mary went to the office. 0.01 0.00 0.00
Where is John? Answer: bathroom Prediction: bathroom

Story (16: basic induction) Support| Hop1 | Hop2 [ Hop 3
Brian is a frog. yes 0.00 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 -
Julius is green. 0.06 0.00 0.00
Greq is a froq. yes 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow




@ Conversational QA — CoQA, QUAC

Jessica went to sit in her rocking chair.
Today was her birthday and she was
turning 80. Her granddaughter Annie
was coming over in the afternoon and
Jessica was very excited to see her.
Her daughter Melanie and Melanie’s
husband Josh were coming as well.
Jessica had . ..

® The QA pairs are conversational

Q1: Who had a birthday?

Al: Jessica

Q2: How old would she be?

A2: 80

Q3: Did she plan to have any visitors?
A3: Yes

Q4: How many?

A4: Three

Q5: Who?

A5: Annie, Melanie, and Josh
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@ Neural Turing Machine

O,
@® Neural Turing Machine is an advanced RNN/LSTM.

Control Arithmetic

Unit Logic
Unit

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.


https://www.quora.com/How-does-the-Von-Neumann-architecture-provide-flexibility-for-program-development

€@ Concluding Remarks

ki)
Information from sensors Alq, K, V) Z exp( q
(e.g. eyes, ears)
A(Q,K,V) = SoftmaX(QKT)
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