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© Introduction

@ Big data # Big annotated data

@ Machine learning techniques include:
Supervised learning (if we have labelled data)
Reinforcement learning (if we have an environment for reward)
Unsupervised learning (if we do not have labelled data)



Latent Factors for Handwritten Digits
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Q Latent Factors for Documents

Topics

gene 0.04
dna 0.02
genetic 0.01
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life 0.02
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brain 0.04

neuron 0.02
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data 0.02

number 0.02
computer 0.01
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© Latent Factors for Recommendation System
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© Latent Factor Exploitation

® Handwritten digits

-t & The handwritten images are
- composed of strokes
v b=+

Strokes (Latent Factors)

‘o || Z||Q| -

No. 1 No. 2 No. 3 No. 4 No. 5




Latent Factor Exploitation

Strokes (Latent Factors)
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No. 1 No. 2 No. 3 No. 4 No. 5
28 No. 1 No. 3 No. 5
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Represented by 1 01 0 1 0 ...]

28 X 28 = 784 pixels (simpler representation)



© Discriminative v.s. Generative

@ Discriminative: calculate the probability of output given input P(Y|X)

@ Generative: calculate the probability of a variable P(X), or multiple
variables P(X,Y)



© Variable Types

@ Observed vs. Latent:
Observed: something we can see from our data, e.g. X orY
Latent: a variable that we assume exists without a given value

@ Deterministic vs. Random:
Deterministic: variables calculated directly via deterministic functions
Random (stochastic): variables obeying a probability distribution

@ A latent variable model is a probability distribution over two sets of
variables

p(z, z; 6)

Observed Latent



@ Latent Variable Types p(z, 2; 6)

Latent

@ Latent continuous vector
Auto-encoder
Variational auto-encoder

@ Latent discrete vector
Topic model

@ Latent structure
HMM
Tree-structured model



o Auto-Encoder

Representation Learning




@ Auto-Encoder

@ An observed output x
@ A latent variable z
@ A function (network) f parameterized by 8 maps from z to x

z = f(2;0)

Observed Latent



® Auto-Encoder

@® Represent a digit using 28 X 28 dimensions
@ Not all 28 X 28 images are digits

NN :
» » code compact representation of

| the object
28 X 28 = 784 t Jsually <784

Learn together

NN reconstruct the original object
code
» Decoder »n




@ Auto-Encoder

Minimize (x — y)?

As close as possible

encode decode
m Z

hidden Iayer
Input layer  Bottleneck layer ~ OUtPut layer

z=cWx+b) y=c(W'z+b")




@ Denoising Auto-Encoder

@ Improve robustness of a latent variable

1 As close as possible 1
encode decode
m) = =
X add 5w w2

noise



@ Deep Auto-Encoder

As close as
possible
>
S N~ 3
= —>— 5 —_— ... #%—
m }

Hinton and Salakhutdinov. “Reducing the dimensionality of data with neural networks,” Science, 2006.



@ Deep Auto-Encoder

Original
Image

PCA

Deep
Auto-encoder
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@ Auto-Encoder — Similar Image Retrieval

@® Retrieved using Euclidean distance in pixel intensity space




@ Auto-Encoder — Similar Image Retrieval

»

(crawl millions of images from the Internet)

32x32




@ Auto-Encoder — Similar Image Retrieval

@ Images retrieved using Euclidean distance in pixel intensity space

dist: 0.0

P o

' &

dist: 3064.2 dist: 3094.1 dist: 3132.4

¥

@ Images retrieved using 256 codes

dst: 7

Learning the useful latent factors




@ Auto-Encoder — Text Retrieval

Vector Space Model Bag-of-word Word string:
“This is an apple”

document pen & O

—p> O




@ Auto-Encoder — Text Retrieval
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The documents talking about the same thing will have close code




@ Denoising Auto-Encoding

@ Objective: reconstructing x from x

g pa(x | %) = 3" mslogpa(as | 2) = 3 m log 2 10000 e
max logpg(X | X) ~ mys log pe(xy | X) = m; log X

0 P — S exp (Hg(x)] e(z))
dimension reduction or denoising (masked LM)

Use the output of the - 01% | Aardvark

masked word's pos'\ﬂon iﬁsérgzllfsﬁli/sjr%z 10% Ibmprowsat\om BERT

to predict the masked word o
0% | Zyzzyva

[ FFNN + Softmax ]

BERT

Randomly mask
15% of tokens
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Auto-Encoder Layer-Wise Pre-Training
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Auto-Encoder Layer-Wise Pre-Training
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Auto-Encoder Layer-Wise Pre-Training
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Auto-Encoder Layer-Wise Pre-Training

Fine-tune via backprop
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@ Masked Auto-Encoder (Germain et al., 2015)

® MADE: masked auto-encoder for distribution estimation
Reconstruction in a given ordering

P($1|Tz z3) (Tz) p( ?s|1"z)

folole

CD \@CD
@f\%\@

T 1 J“z I3

Autoencoder x Masks ——> MADE




@ Variational Auto-Encoder

Representation Learning and Generation



@ Generation from Latent Codes




@ Latent Code Distribution Constraints

@ Constrain the data distribution for learned latent codes
@® Generate the latent code via a prior distribution

encode decode
x‘z‘y
W W'

z~N(p,0)



© Variational Auto-Encoder

@ An observed output x
@ A latent variable z generated from a Gaussian
@ A function (network) f parameterized by 8 maps from z to x

Obgfved: f(L’tzat 9) c NAI(;‘L,} 0



@ Vvariational Auto-Encoder & = f(z2; 6)

Observed Latent

@ For each datapoint i N (4, 0)
Draw latent variables =i ~ P(Z) “ hd 9

Draw a datapoint x; ~ pe(fB \ Z) l /
L

@ Joint probability distribution over data and latent variables
p(z,z) = p(2)ps(z | 2)

prior posterior
@ Learning objective: maximize the corpus log likelihood

log P(X) = Z log P(x;0)

reX



© Variational Auto-Encoder

@ The marginal likelihood of a single datapoint x
P(x;0) = /P(a: | 2;0)P(z)dz

O, Approximation by sampling Z

Z P(z | z;0)



@ Variational Auto-Encoder

@ Two tasks
Learn to generate data from the latent code: P9(33 | Z)

Learn the distribution of latent factors: pg(z | ;c)

Wy
—w_}zd;dey

samplin /
o pling W




€ Variational Auto-Encoder

@ Two tasks
Learn to generate data from the latent code: P9(33 | Z)

Learn the distribution of latent factors: pg(z | ;c)
) — po(z | 2)p(2)
p(a:) = /p(z)pg(m | z)dz Intractable

po(z | x

@ Variational inference approximates the true posterior pg(2 | )
with a family of distributions g4(z | x)

minimize KL(Q¢(Z | .GU) ” pg(z | :C))



© Variational Auto-Encoder

@ Two tasks T ;
Generator (Decoder): PB(CE | Z) qlif(jelléz)
Inference (Encoder) : q¢(z | x) ' (Encoder) !

po(z | 2)
Generator
(Decoder)

Ezwqqg(z\a:) [logpg(zc ‘ Z)] o DKL(Q¢(Z ‘ 33‘) H p(Z))

\ ] |

| |

reconstruction loss KL regularizer




© Variational Auto-Encoder

® VAE

® AE

AE is not generative model: (1) Can’t sample new data from AE

———————————————————

qp(z ] 2) |

— Inference — A& >

(Encoder)

po(z | 2)
Generator
(Decoder)

_>a;'

p(2)

EZNq¢(z\x) [lOg’pg(.’B ' Z)] _ DKL(Q¢(Z | .’L‘) || p(Z))

———————————————————

qp(z | ) |

— Inference T Z >

(Encoder)

po(z | 2)
Generator
(Decoder)

_>a;'

L oo 1 ?

(2) Can’t compute the log likelihood of data x



@ Image Reconstruction
-
AE ‘
2 - -
VAE ' !




® Text Reconstruction

@ AE: standard encoder-decoder

i went to the store to buy some groceries .
i store to buy some groceries .
L . 1 were to buy any groceries .

embedding interpolation horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

® VAE

“ i want to talk to you . ”

“ want to be with you . ”

“ do n’t want to be with you .
i do n’t want to be with you .
she did n’t want to be with him .

»

embedding interpolation

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .




® VAE Training Tips

@ Posterior collapse issue

KL divergence is easier to learn, so model learning relies solely on
decoder and ignore latent variable

EZN%(Z\:B) logpa(z | 2)] — DKL(Q¢(Z | ) || p(2))
requires good generative model set the mean/variance of g to be the same as p
@ Solutions
KL divergence annealing: an increasing constant to weight KL term
KL thresholding $™ max[), Dk (g (zil2) ()] . 7o

5 80% 60 3
£ eo% 50 §
40 E
40% 30 8
-
20% 20 %

1.0

0% 0.0

0 10000 20000 30000 40000 50000
Step
= KL term weight —KL term value



@ Dual Learning

Learning Two Tasks via Duality


https://taoqin.github.io/DualLearning_ACML18.pdf

@ Task Duality

/TEN

f:x—y g:y—=x
Primal Dual
Task Task

Nl

Al Tasks f:x—y g:y—z
Machine translation EN -> CH CH -> EN
Speech processing ASR TTS

Image understanding captioning Image generation

Language understanding

Question answering

Language understanding

QA

Language generation

Question generation




® Dual Unsupervised Learning

@ Idea: improve tasks by leveraging feedback signal via RL etc.

En - Ch
Primal Task

f:x—uy
I,,’—-~\\\

Machine Translation

« English sentence x /j \‘ o
- New English sentence L A feedback Y inese sentence
x'=g(y) \ signal [} y=f(x)
\\h__f,/
Dual Task
g:y—x

Ch 2 En



® Joint Dual Learning

@ Idea: perfectly reconstructing the input via two models

NLU
f =y
i N g(f(w) =x
1, \ areda[riverside],
at the riverside there i 1 eatType[pub],
is a pub called the blue spice \\\ W, ,' namelblue spice] o
\s~__—’, f g y — y
NLG
g:Yy—-XxX
——=—> et 2

Primal Cycle Dual Cycle

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Towards Unsupervised Language Understanding and Generation by Joint Dual Learning,” in Proceedings of The 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.



@ Joint Dual Learning Objective

@ Explicit
Reconstruction Likelihood

logp(x | f(zi;602-y);0y—z) Primal
log p(y | 9(vi; 0y—2); 02—y) Dual

Automatic Evaluation Score
BLEU and ROUGE for language (NLG)
F-score for semantic (NLU)

@ Implicit
Model-based methods estimating data distribution

Language modeling (LM) for language
Masked autoencoder (MADE) for semantics

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Towards Unsupervised Language Understanding and Generation by Joint Dual Learning,” in Proceedings of The 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.



® Dual Supervised Learning (xia et al., 2017)

@ Proposed for machine translation
@ Consider two domains X and Y, andtwotasks X - YandY - X

Py
X Y

y—X

We have P(x,y) = P(x [ y)P(y) = P(y | x)P(x)
Idea”y P(x, Y) = P(x | Y eyex)P(Y) = P(y | x; 0x—>y)P(x)

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N, & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine Learning, 2017.



® Dual Supervised Learning

@ Exploit the duality by forcing models to follow the probabilistic constraint
P(x |y; Hyﬁx)P(y) =Py | x; 9x—>y)P(x)

Objective function

ming, E[l(f(%; 0x-y ), M)] + Aeoy lauatity
mingy_mIE[lz (g (y; 9y—>x)i X) + )ly—>x lduality

Lauatity =|logP(z) f-1ogP(y | x;0,—,) {logP(y) } logP(z | y;0y—z))?

_______________________________________________________________________________________________

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N, & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine Learning, 2017.



@ Dual Supervised Learning

@ Considering NLU and NLG

_—> NLU —

Natural Language Semantic Frame

KoDona/d’s IS a cheap f?’/ESTA URANT="McDonald’s”
restaurant nearby the station. ﬁg? =“cheap”

logP(x) JION= nearby the station”

‘\NLG¢

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natual Language Understanding and
Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



@ Natural Language iogp(x)

@ Language modeling
D

p(ﬂf) — Hp(‘rd | L1, "'7ajd_1) P(xd | X1, "'de—l)
d

GRU

Xd—1

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natual Language Understanding and
Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



@ Semantic Frame 10g5(y)

@ We treat NLU as a multi-label classification problem

@ Each label is a slot-value pair 0
1
' RESTAURANT=“McDonald’s”
' PRICE="“cheap” | m—
' LOCATION= “nearby the station” | _
0
1

__________________________________________________________________________________________

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natual Language Understanding and
Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



® Semantic Frame log A(y)

@ Naive approach
Calculate prior probability for each label P(y;) on training set.

Piy)=T1P(y)

Restaurant: “McDonald’s” Price: “cheap” Food: “Pizza”
Restaurant: “KFC” Price: “expensive” Food: “Hamburger”
Restaurant: “PizzaHut” Food:”Chinese”

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natual Language Understanding and
Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



@ Semantic Frame log A(y)

@ Masked autoencoder for distribution estimation (MADE)

Introduce sequential dependency among plzy | z2)  p(za) plas |z, x2)
labels by masking certain connections AN 1 e
M= 1 if mi(k") > m!=(k) or mE(d) > mE~1(k) 2 1 3
10 otherwise MV © vV %
D 1 2 (2 (1
p(z) =] [ p(za | Sa)
e MYV o w! \
> marginal distribution of y 2 1 3

Germain, M., Gregor, K., Murray, l., & Larochelle, H., “MADE: Masked autoencoder for distribution estimation,” in Proceedings of
International Conference on Machine Learning, 2015.



©® NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain
@ NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline

ROUGE-1

NLG Baseline

BLEU

F1

50 55 60 65

70

NLU Baseline

75



@ NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain
@ NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline

ROUGE-1 | 05 /o MA0E

NLG Baseline

BLEU I os. vwio MADE

NLU Baseline

F 1 DsL wio MADE

50 55 60 65 70 75



@ NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain
@ NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline
ROUGE-1 DSL w/o MADE
DSL w/ MADE

NLG Baseline

BLEU DSL w/o MADE
DSL w/ MADE
NLU Baseline
F1 DSL w/o MADE
DSL w/ MADE

50 55 60 65 70 75



@ Comparison

4 . . . .
Unsupervised/semi-supervised learning:

only one task; no feedback signals for
\unlabeled data

Co-training: only one task; different feature
sets provide complementary information
about the instance

p
Multi-task learning: multiple tasks share
\the same representation

J

-

AN

e

Dual learning: multiple tasks involved;
automatically generate reinforcement
feedback for unlabeled data,

Dual learning: multiple tasks involved; no

e

| \assumption on feature sets

Dual learning: don’t need to share

Krepresentations, only when the closed loop

p
Transfer learning: use auxiliary tasks to

. boost the target task

e

Dual learning: all tasks are mutually and

| simultaneously boosted




@ >Seli-Supervised Learning

Self-Prediction and Contrastive Learning



https://nips.cc/media/neurips-2021/Slides/21895.pdf

@ Self-Supervised Learning

@ Self-supervised learning (SSL): a special type of representation
learning via unlabeled data

@ Idea: constructing supervised tasks out of unsupervised data
High cost of data annotation

Limited annotated data

Good representation makes it easier to transfer to diverse
downstream tasks



@ Self-Supervised Learning

@ Self-Prediction
Given an individual data sample, the task is to predict one missing
part of the sample given the other part

?

N

“‘intra-sample” prediction

@ Contrastive Learning
Given multiple data samples, the task is to predict their relationship

:> relationship?

“‘inter-sample” prediction




@ Sel f- P I ed | Ctl ON (illustration from Yann LeCun)

@ Assume: a part of the input is unknown and predict it
Predict the future from the past ’

Predict the future from the recent past ’

Predict the past from the present

Predict the top from the bottom

Predict the occluded from the visible <— past P future —»
present



@ Contrastive Learning

Adapting Embedding Spaces




@ Contrastive Learning

@ Idea: learn an embedding space where similar sample pairs stay
close to each other while dissimilar ones are far apart
Inter-sample classification
Feature clustering
Multi-view coding

o © @9
@/ODO

o ©



® Inter-Sample Classification

@ Task: given both similar (“positive”) and dissimilar (“negative”)
candidates, identifying which is similar to the anchor datapoint
@ Datapoint candidates
The original input and its distorted version
Data capturing the same target from different views



® Inter-Sample Classification

@ Triplet loss (Schroff et al., 2015)

minimize the distance between the anchor x and positive x* and maximize
the distance between the anchor x and negative x~ at the same time

Lusper(@,@ ",z ) =Y max(0, | f(z) = f=)|; — [ £(z) = )|, +e)

as close as possible as far as possible

LEARNING
Negative
\

Negative
Anchor
Anchor

Positive

I
Margin j
!

Positive



@ Inter-Sample Classification

@ N-pair loss (Sohn, 2016)

generalizes to include comparison with multiple negative samples

L-pair(z, 2", {2 })10g(1+zexp (2)" f(z;) - f(-’B)Tf(f)))



® Feature Clustering

@ Idea: cluster similar datapoints based on learned features
—> assign pseudo labels to samples for intra-sample classification

. \
\

. . e Y
9y ~
iy

A
’ I \

°

Contrastive style classification




® Multiview Coding

@ Idea: apply the InfoNCE objective to different views of input
Data augmentation is adopted for generating different views
“views” can come from different modalities

‘.
‘ \ ‘S\ > Encoder
= Match
—>  Encoder
|

__________________________________________________________________________________________

_________________________________________________________________________________________



@ Contrastive Learning in NLP

@® SImCSE (Gao et al., 2021): simple contrastive learning of

sentence embeddings

Unsupervised: predict a sentence from itself with only dropout noise

(a) Unsupervised SimCSE

Different hidden dropout mask
in two forward passes

[ Two dogs are running.

A man surfing on the sea.

A kid is on a skateboard.

Encoder
. —* DPositive instance
i —— Negative instance !

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SImCSE:

Language Processing, 2021.

Model STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R  Avg.
Unsupervised models
GloVe embeddings (avg.)* 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT:.:. (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT}.c.-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT}.5.-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT:...” 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERT:.cc 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
* SIMCSE-BERT: <. 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTap. <. (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTa.s.-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTasase 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
* SimCSE-RoBERTa: . . 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
* SimCSE-RoBERTa1 2z 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

Simple Contrastive Learning of Sentence Embeddings

."in Proceedings of the 2021 Conference on Empirical Methods in Natural



@ Contrastive Learning in NLP

@® SImCSE (Gao et al., 2021): simple contrastive learning of
sentence embeddings

Supervised: further adapt embeddings based on labels

(b) Supervised SimCSE

Two dogs [ ‘ There are animals outdoors.
are mnning. label=entailment Supervised models
Th - h InferSent-GloVe® 5286 6675 6215 7277 6687  68.03  65.65  65.01
€ pets are Slttlng_ O_n a couch. Universal Sentence Encoder® 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
label=contradiction SBERT,...* 7097 7653 7319  79.09 7430  77.03 7291  74.89
SBERT ;. -flow 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERT:.....-whitening 69.65 77.57 7466 8227 7839 7952 7691  77.00
label= CT-SBERT}..... 7484 8320 78.07 8384 7793 8146 7642  79.39
* SimCSE-BERT, ... 7530 84.67 80.19 8540 8082 8425 8039  81.57
SROBERTay,..* 7154 7249 7080 7874 7369 7777 7446 7421
label= SROBERTay, co-whitening 7046  77.07 7446 81.64 7643 7949 7665  76.60
* SiMCSE-RoBERTa,.... 7653 8521 8095 8603 8257 8583 8050 8252
+ SimCSE-RoBERTa, .. 7746 8727 8236 8666 8393 8670 8195 8376

label=

~— — label=

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SImCSE: Simple Contrastive Learning of Sentence Embeddings." in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021.



@ Contrastive Learning in NLP

® SpokenCSE (Chang & Chen, 2022): improve ASR robustness
Unsupervised: learning with the paired clean/noisy sentences

e,
os
e
s
)

clean get me to alarm setting ]_ m

—— — —— ———— ——— —————,

[
2 asT [ gets me to alarm set ]— o
|

i L — TV
—> posiive || PIOVOUAIObOOK T TS
: e -
------- > Negative |l play audible J|— Q "(’\)’\,‘)‘
Model SLURP ATIS TRECe6
RoBERTa 83.97 94.53 84.08
Phoneme-BERT' 83.78 94383 85.96
SimCSE 84.47 94.07 84.92
Proposed (pre-train only) 84.51 95.02 85.20

Ya-Hsin Chang and Yun-Nung Chen, “Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding,” in arXiv:2205.00693, 2022.



@ Contrastive Learning in NLP

® SpokenCSE (Chang & Chen, 2022): improve ASR robustness
Supervised: learning with self-distillation

Contrastive Learning Self Distillation
Intent=(Email, SendEmail) Lhard Lsoft

| Email to Nancy about tomorrow’s party m
Intent=(Email, SendEmail)
( New email for contact ]— m

Intent=(Calendar, Event)

d1A

My N
J.]lL 0.8
sl

0.1

[ Do | have any upcoming reminder ]— F

t -1 t—1 t—1
p p' b; D,
Model SLURP ATIS TRECS Prediction Distribution Similarity
RoBERTa 83.97 94.53 84.08
Phoneme-BERT' 83.78 9483 8596
SimCSE 84.47 94.07 84.92
Proposed (pre-train only) 84.51 95.02 85.20

Proposed (pre-train + fine-tune) 85.26 95.10 86.36

Ya-Hsin Chang and Yun-Nung Chen, “Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding,” in arXiv:2205.00693, 2022.



Auto-Encoders

Contrastive Learning
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@ Diverse Approaches and Applications

Autoregressive
Language Modeling

The dog -
man l 1 l
h S woman
i Transformer + Head

dog .

Siamese Networks

Sample 1—» NN

Shared

weights
L J /’

Sample 2—» NN

Distance —» Same?




@ Concluding Remarks

@ Labeling data is expensive, but we have large unlabeled data

® AE/VAE
exploits unlabeled data to learn latent factors as representations
learned representations can be transfer to other tasks

@ Dual Learning
utilize the duality of two tasks
towards semi-supervised learning / unsupervised learning

@ Self-Prediction
predict one missing part of the sample given the other part

@ Contrastive Learning
positive pairs have similar embeddings



