Applied Deep Learning

Beyond Supervised Learning

December 1st, 2022

http://adl.miulab.tw

National Taiwan University 國立臺灣大學

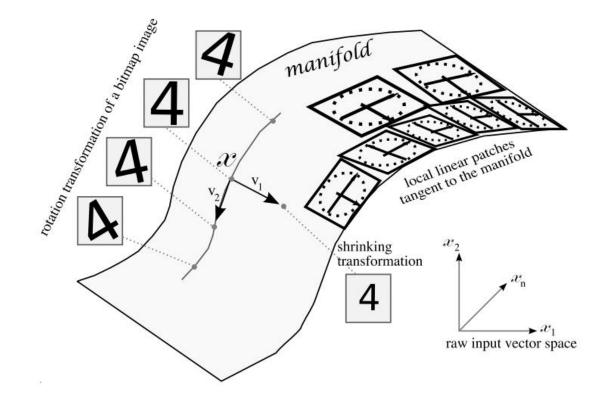
2 Introduction

- Big data \neq Big annotated data
- Machine learning techniques include:
 - Supervised learning (if we have labelled data)
 - Reinforcement learning (if we have an environment for reward)
 - Unsupervised learning (if we do not have labelled data)

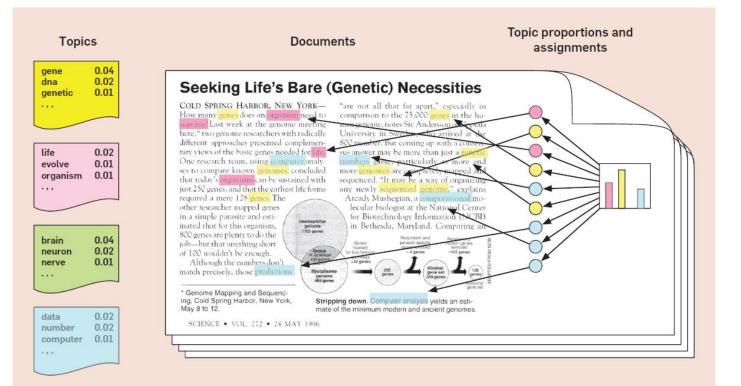
Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

3 Latent Factors for Handwritten Digits

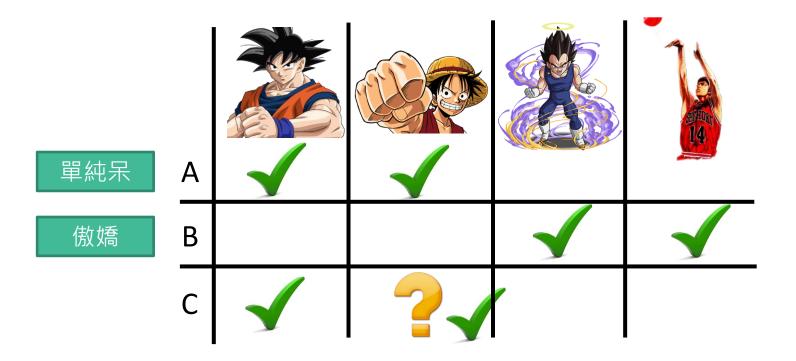


Latent Factors for Documents



4

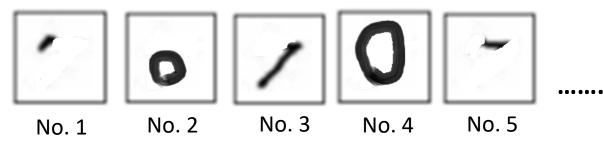
5 Latent Factors for Recommendation System



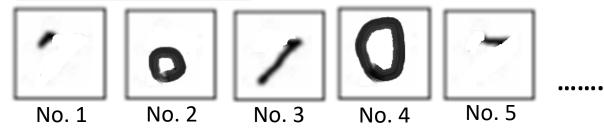
• Handwritten digits

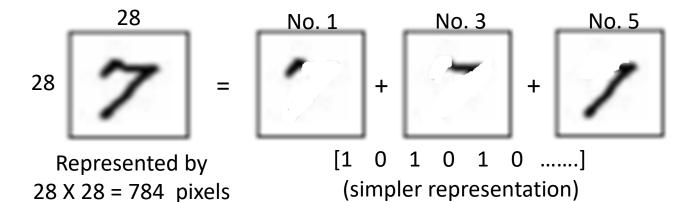
The handwritten images are composed of **strokes**

Strokes (Latent Factors)



Strokes (Latent Factors)





Discriminative v.s. Generative

- **Discriminative**: calculate the probability of output given input P(Y|X)
- Generative: calculate the probability of a variable P(X), or multiple variables P(X, Y)

9— Variable Types

- Observed vs. Latent:
 - Observed: something we can see from our data, e.g. *X* or *Y*
 - Latent: a variable that we assume exists without a given value
- Deterministic vs. Random:
 - Deterministic: variables calculated directly via deterministic functions
 - Random (stochastic): variables obeying a probability distribution
- A latent variable model is a probability distribution over two sets of variables

$$p(\boldsymbol{x}, \boldsymbol{z}; \theta)$$

Observed Latent

10— Latent Variable Types $p(x, z; \theta)$

Latent

- Latent continuous vector
 - Auto-encoder
 - Variational auto-encoder
- Latent discrete vector
 - Topic model
- Eatent structure
 - HMM
 - Tree-structured model

Representation Learning

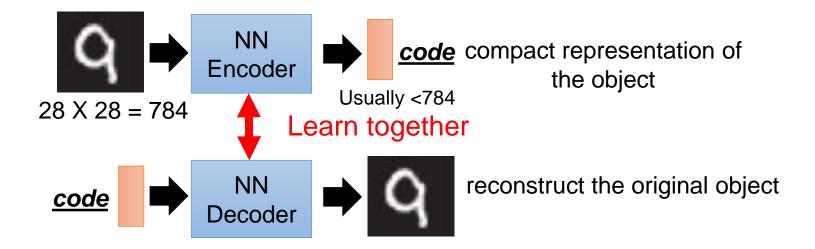
- An observed output x
- A latent variable z
- A function (network) f parameterized by θ maps from z to x

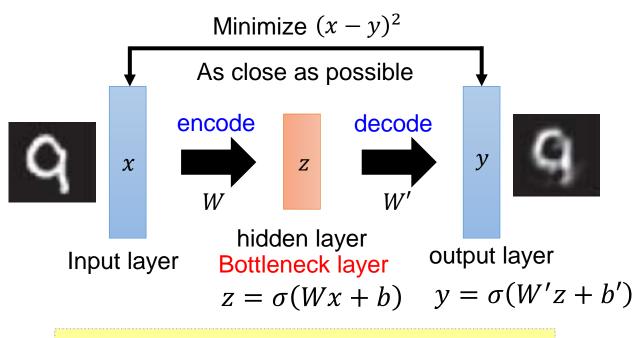
$$oldsymbol{x} = f(oldsymbol{z}; oldsymbol{ heta})$$

Idea: represent the output in a more compact way (latent codes)

- Represent a digit using 28 X 28 dimensions
- Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way

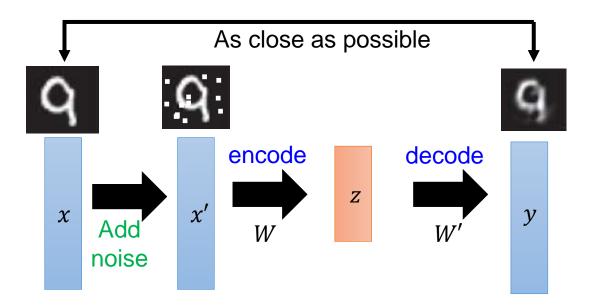




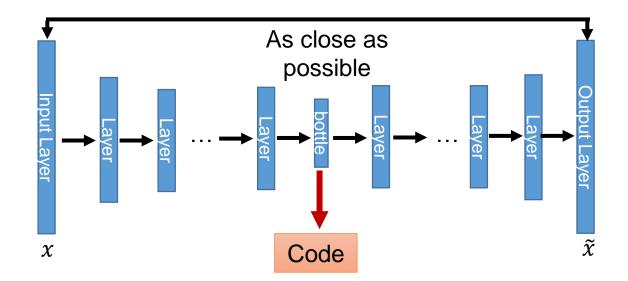
Output of the hidden layer is the code

15 Denoising Auto-Encoder

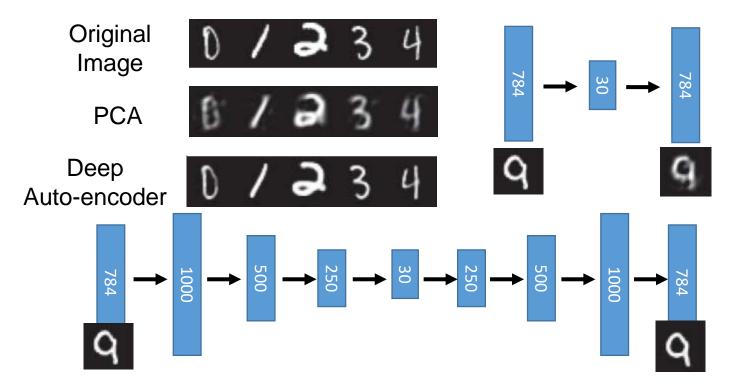
Improve robustness of a latent variable



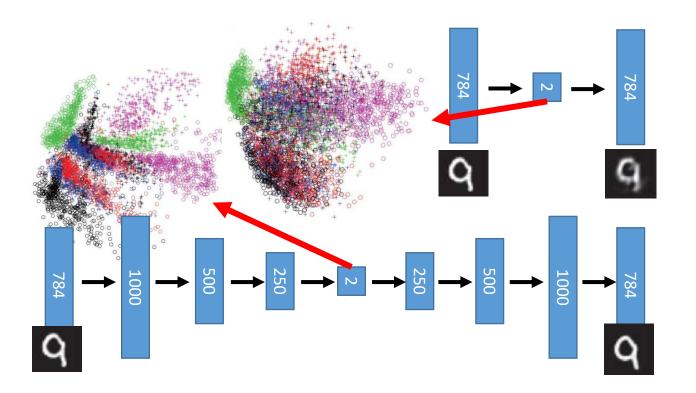
Rifai, et al. "Contractive auto-encoders: Explicit invariance during feature extraction," in ICML, 2011.



Hinton and Salakhutdinov. "Reducing the dimensionality of data with neural networks," Science, 2006.



18 Feature Representation

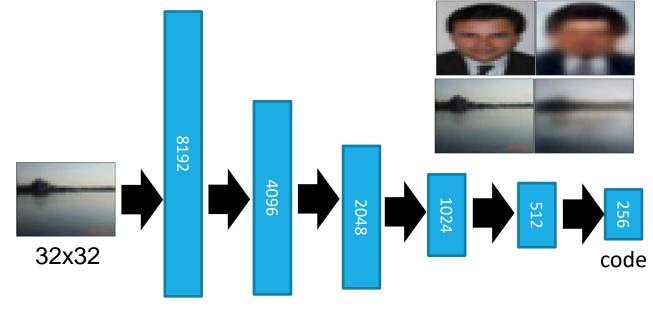


19 Auto-Encoder – Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

Krizhevsky et al. "Using very deep autoencoders for content-based image retrieval," in ESANN, 2011.

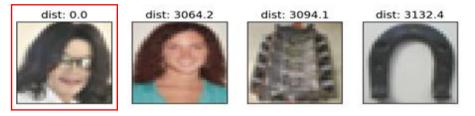
20 Auto-Encoder – Similar Image Retrieval



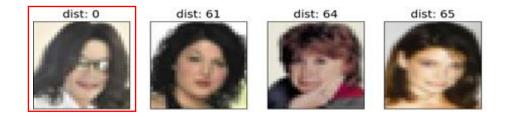
(crawl millions of images from the Internet)

21 Auto-Encoder – Similar Image Retrieval

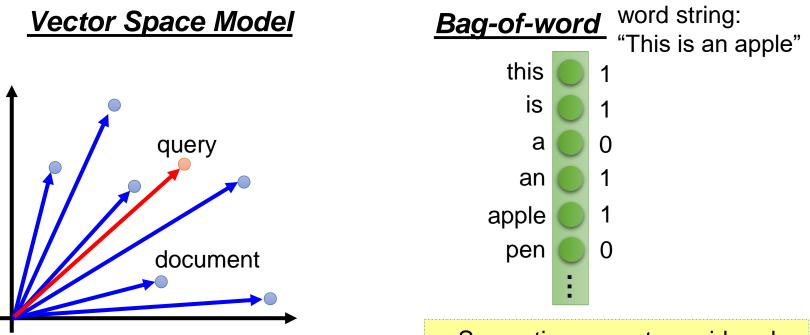
• Images retrieved using Euclidean distance in pixel intensity space



Images retrieved using 256 codes



Learning the useful latent factors



Semantics are not considered

Auto-Encoder – Text Retrieval



Bag-of-word (document or query)

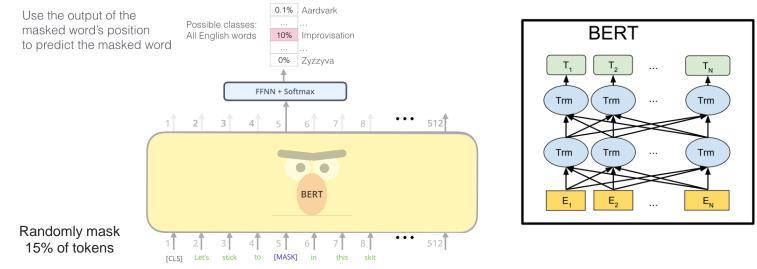
The documents talking about the same thing will have close code

24 Denoising Auto-Encoding

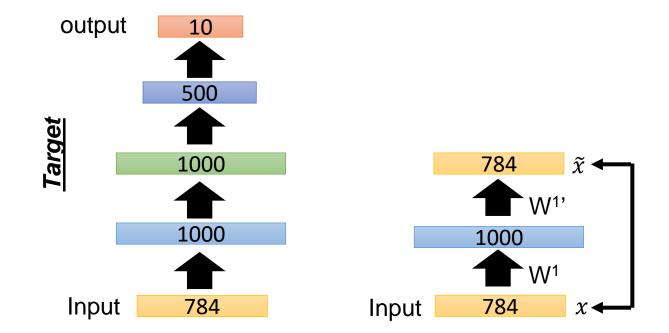
• Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_t \log p_{\theta}(x_t \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_t \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x')\right)}$$

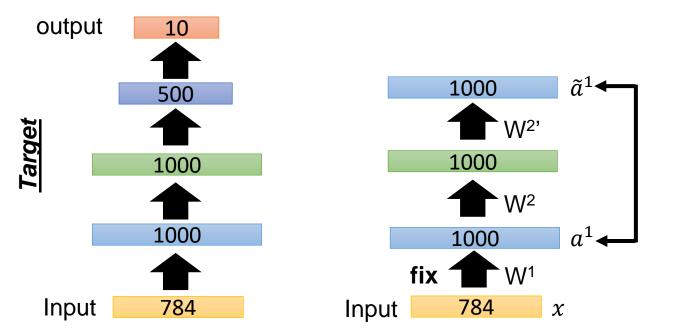
dimension reduction or denoising (masked LM)



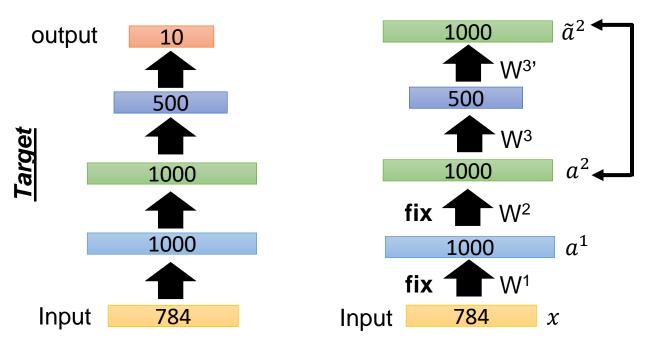
25 Auto-Encoder Layer-Wise Pre-Training



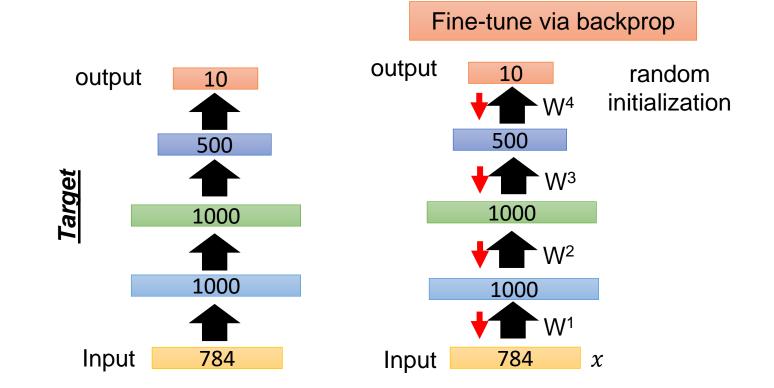
26 Auto-Encoder Layer-Wise Pre-Training



27—Auto-Encoder Layer-Wise Pre-Training

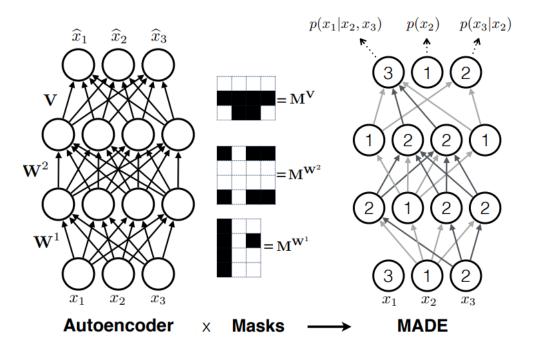


Auto-Encoder Layer-Wise Pre-Training



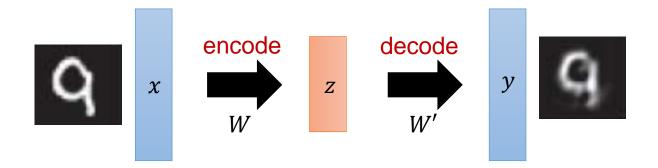
29 Masked Auto-Encoder (Germain et al., 2015)

MADE: masked auto-encoder for distribution estimation
 Reconstruction in a given ordering



Representation Learning and Generation

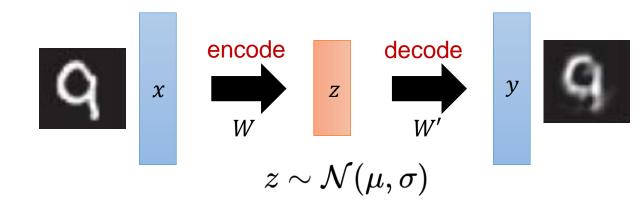
31 Generation from Latent Codes



How can we set a latent code for generation?

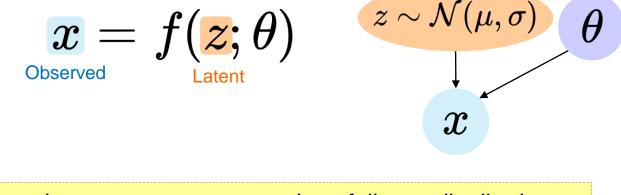
32— Latent Code Distribution Constraints

- Constrain the data distribution for learned latent codes
- Generate the latent code via a prior distribution



33 Variational Auto-Encoder

- An observed output *x*
- A latent variable *z* generated from a Gaussian
- A function (network) f parameterized by θ maps from z to x



Idea: the compact representations follow a distribution

34 Variational Auto-Encoder
$$x = f(z; \theta)$$

(b) Served Userved Userved

35 Variational Auto-Encoder

• The marginal likelihood of a single datapoint x

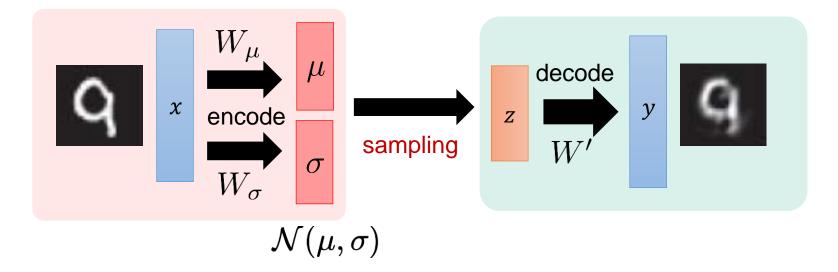
$$P(x; heta) = \int P(x \mid z; heta) P(z) dz$$

• Approximation by sampling z

$$P(x; heta) pprox \sum_{z \sim P(z)} P(x \mid z; heta)$$

36 Variational Auto-Encoder

- Two tasks
 - Learn to generate data from the latent code: $p_{ heta}(x \mid z)$
 - Learn the distribution of latent factors: $p_{\theta}(z \mid x)$



37 Variational Auto-Encoder

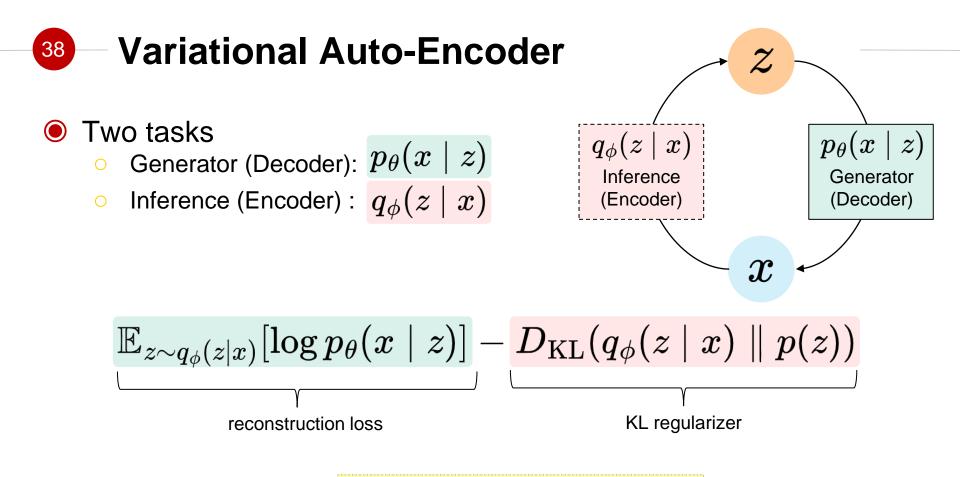
Two tasks

- Learn to generate data from the latent code: $p_{ heta}(x \mid z)$
- Learn the distribution of latent factors: $p_{ heta}(z \mid x)$

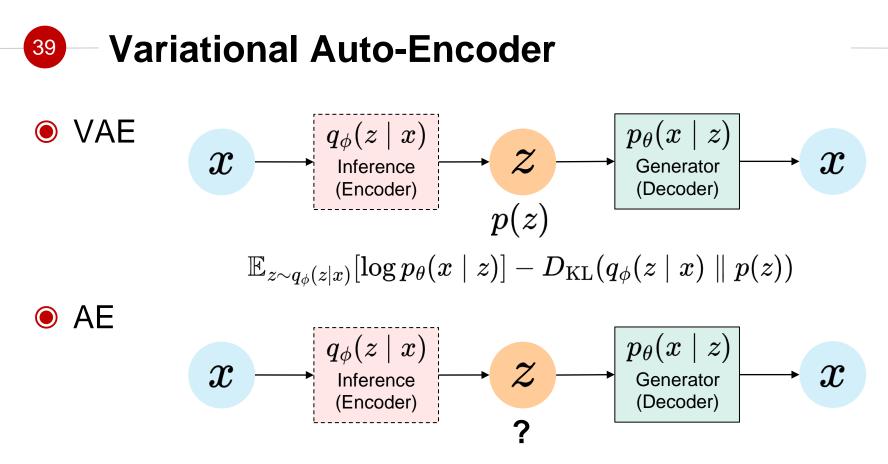
$$p_{ heta}(z \mid x) = rac{p_{ heta}(x \mid z)p(z)}{p(x)} _{=} \int _{p(z)p_{ heta}(x \mid z)dz}$$
 intractable

• Variational inference approximates the true posterior $p_{\theta}(z \mid x)$ with a family of distributions $q_{\phi}(z \mid x)$

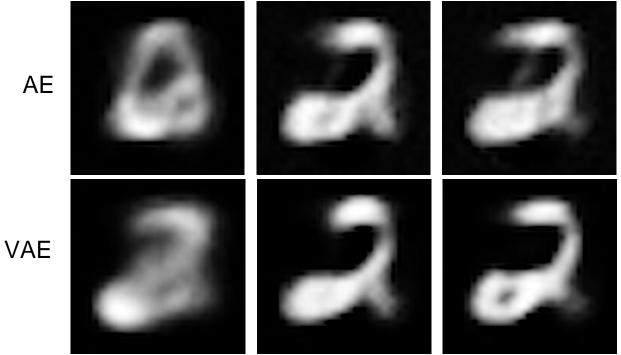
minimize
$$\operatorname{KL}(q_\phi(z \mid x) \parallel p_ heta(z \mid x))$$



Regularized Auto-Encoder



AE is not generative model: (1) Can't sample new data from AE (2) Can't compute the log likelihood of data x



• AE: standard encoder-decoder

embedding interpolation	i went to the store to buy some groceries . <i>i store to buy some groceries</i> . <i>i were to buy any groceries</i> . <i>horses are to buy any groceries</i> . <i>horses are to buy any animal</i> . <i>horses the favorite any animal</i> . <i>horses the favorite favorite animal</i> . horses are my favorite animal .
-------------------------	---

.

VAE

embedding interpolation	"i want to talk to you ." "i want to be with you ." "i do n't want to be with you ." i do n't want to be with you . she did n't want to be with him .	
	he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .	

42—VAE Training Tips

• Posterior collapse issue

 KL divergence is easier to learn, so model learning relies solely on decoder and ignore latent variable

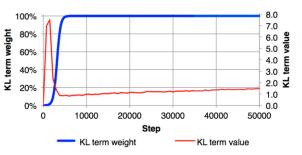
$$\mathbb{E}_{z \sim q_{\phi}(z \mid x)}[\log p_{ heta}(x \mid z)] - rac{D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p(z))}{D_{\mathrm{KL}}(q_{\phi}(z \mid x) \parallel p(z))}$$

requires good generative model

set the mean/variance of q to be the same as p

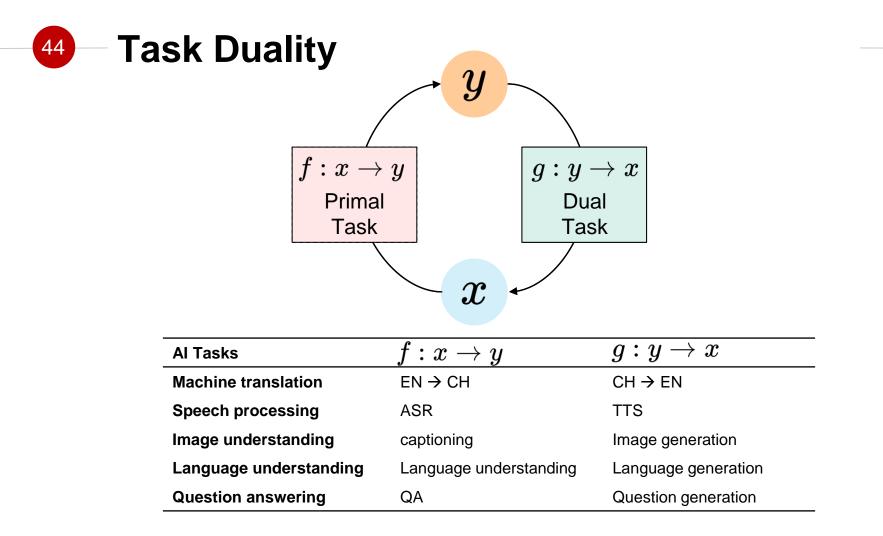
Solutions

- KL divergence annealing: an increasing constant to weight KL term
- KL thresholding $\sum_{i} \max[\lambda, D_{\mathrm{KL}}(q_{\phi}(z_{i}|x)||p(z_{i}))]$



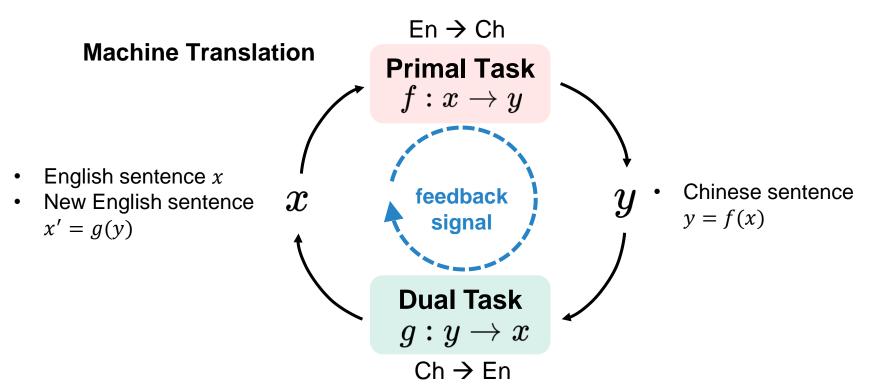
Learning Two Tasks via Duality

Slides credited from ACML 2018 Tutorial

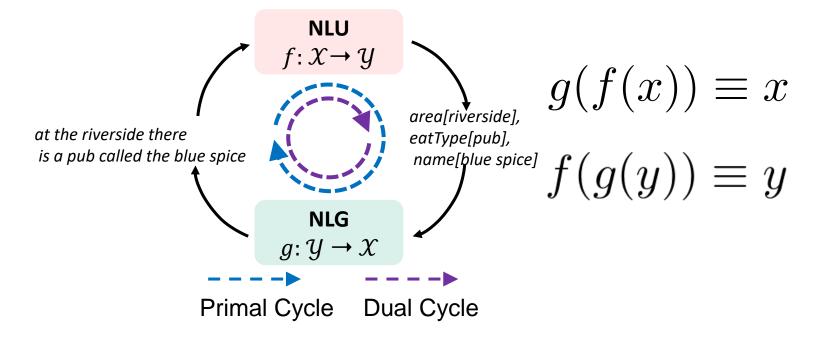


45 Dual Unsupervised Learning

Idea: improve tasks by leveraging feedback signal via RL etc.



Idea: perfectly reconstructing the input via two models



Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, "Towards Unsupervised Language Understanding and Generation by Joint Dual Learning," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

Joint Dual Learning Objective

Explicit

47

Reconstruction Likelihood $\int \log p(x \mid f(x_i; \theta_{x \to y}); \theta_{y \to x})$ Primal

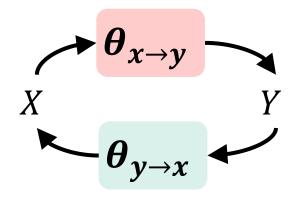
 $\begin{cases} \log p(x \mid f(x_i; \theta_{x \to y}); \theta_{y \to x}) & \mathbf{Prim} \\ \log p(y \mid g(y_i; \theta_{y \to x}); \theta_{x \to y}) & \mathbf{Dual} \end{cases}$

- Automatic Evaluation Score
 - BLEU and ROUGE for language (NLG)
 - F-score for semantic (NLU)
- Implicit
 - Model-based methods estimating data distribution
 - Language modeling (LM) for language
 - Masked autoencoder (MADE) for semantics

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, "Towards Unsupervised Language Understanding and Generation by Joint Dual Learning," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

48 Dual Supervised Learning (Xia et al., 2017)

- Proposed for machine translation
- Consider two domains X and Y, and two tasks $X \to Y$ and $Y \to X$



We have
$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

Ideally $P(x, y) = P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., "Dual supervised learning," in *Proc. of the 34th International Conference on Machine Learning*, 2017.

49 Dual Supervised Learning

• Exploit the duality by forcing models to follow the probabilistic constraint $P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Objective function

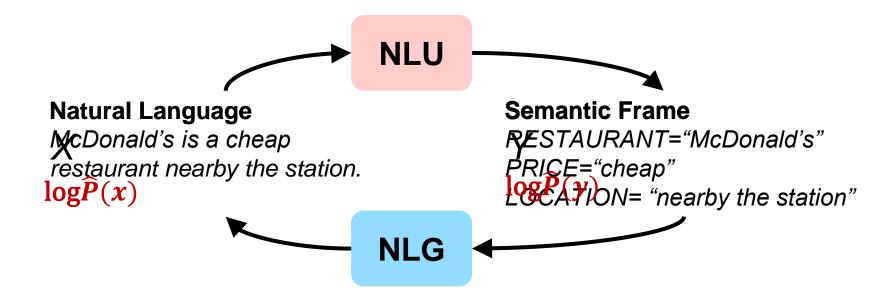
$$\begin{cases} \min_{\theta_{x \to y}} \mathbb{E} [l_1(f(x; \theta_{x \to y}), y)] + \lambda_{x \to y} \ l_{duality} \\ \min_{\theta_{y \to x}} \mathbb{E} [l_2(g(y; \theta_{y \to x}), x)] + \lambda_{y \to x} \ l_{duality} \\ l_{duality} = (\log \hat{P}(x)) + \log P(y \mid x; \theta_{x \to y}) - \log P(x \mid y; \theta_{y \to x}))^2 \\ \end{cases}$$

How to model the marginal distributions of *X* and *Y*?

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T.Y., "Dual supervised learning," in *Proc. of the 34th International Conference on Machine Learning*, 2017.

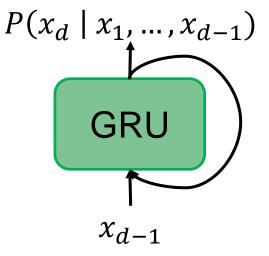
50 Dual Supervised Learning

Considering NLU and NLG



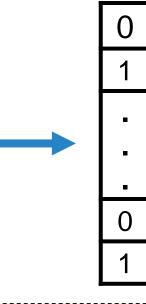
51 Natural Language $\log \hat{P}(x)$

• Language modeling $p(x) = \prod_{d}^{D} p(x_d \mid x_1, ..., x_{d-1})$



- We treat NLU as a multi-label classification problem
- Each label is a slot-value pair

RESTAURANT="McDonald's" PRICE="cheap" LOCATION= "nearby the station"



How to model the marginal distributions of y?

53 Semantic Frame $\log \hat{P}(y)$

Naïve approach

- Calculate prior probability for each label $\hat{P}(y_i)$ on training set.
- $\circ \ \widehat{P}(y) = \prod \widehat{P}(y_i)$

Assumption: labels are independent

Restaurant: "McDonald's"	Price: "cheap"	Food: "Pizza"
Restaurant: "KFC"	Price: "expensive"	Food: "Hamburger"
Restaurant: "PizzaHut"		Food:"Chinese"

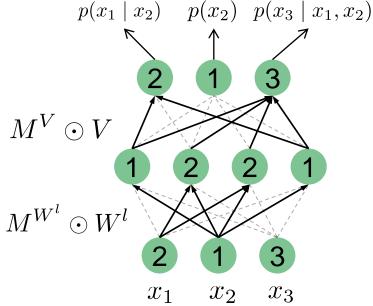
54 Semantic Frame $\log \hat{P}(y)$

Masked autoencoder for distribution estimation (MADE)
 Introduce sequential dependency among $p(x_1 \mid x_2)$ labels by masking certain connections

$$M = \begin{cases} 1 & \text{if } m^{l}(k') \ge m^{l-1}(k) \text{ or } m^{L}(d) > m^{L-1}(k) \\ 0 & \text{otherwise} \end{cases}$$

$$p(x) = \prod_{d}^{D} p(x_d \mid S_d)$$

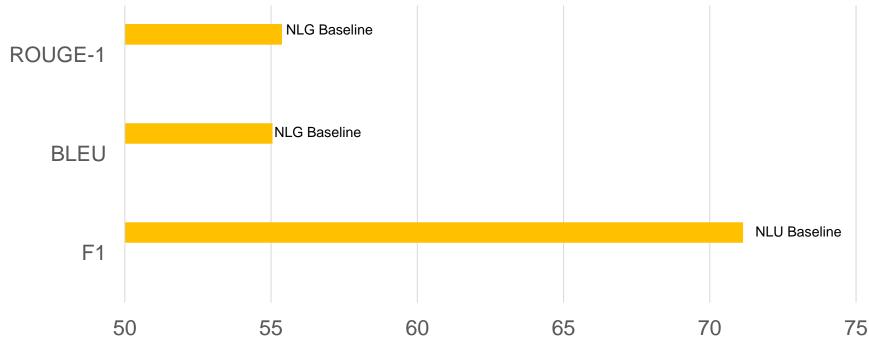
 \rightarrow marginal distribution of y



Germain, M., Gregor, K., Murray, I., & Larochelle, H., "MADE: Masked autoencoder for distribution estimation," in *Proceedings of International Conference on Machine Learning*, 2015.

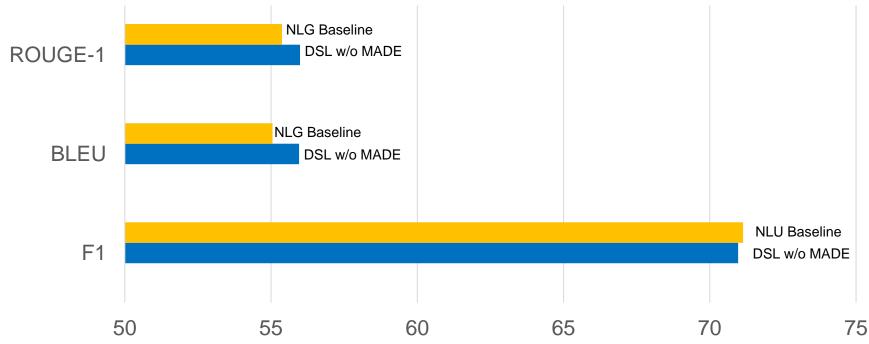
• E2E NLG data: 50k examples in the restaurant domain

• NLU: F-1 score; NLG: BLEU, ROUGE



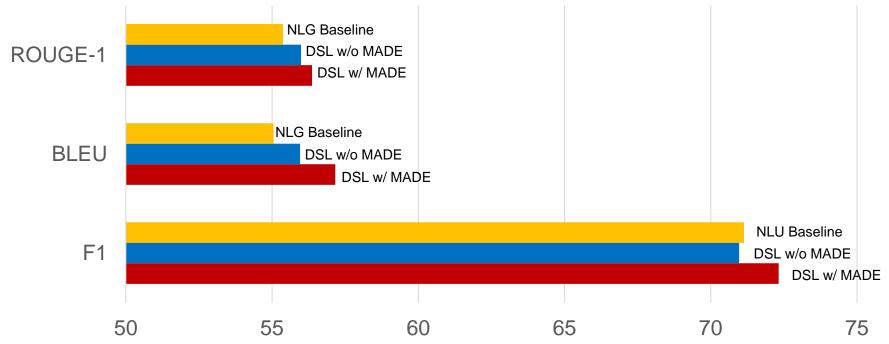
• E2E NLG data: 50k examples in the restaurant domain

• NLU: F-1 score; NLG: BLEU, ROUGE



• E2E NLG data: 50k examples in the restaurant domain

• NLU: F-1 score; NLG: BLEU, ROUGE



Unsupervised/semi-supervised learning: only one task; no feedback signals for unlabeled data

Co-training: only one task; different feature sets provide complementary information about the instance

Multi-task learning: multiple tasks share the same representation

Transfer learning: use auxiliary tasks to boost the target task

Dual learning: multiple tasks involved; automatically generate reinforcement feedback for unlabeled data,

Dual learning: multiple tasks involved; no assumption on feature sets

Dual learning: don't need to share representations, only when the closed loop

Dual learning: all tasks are mutually and simultaneously boosted

Self-Supervised Learning

Self-Prediction and Contrastive Learning

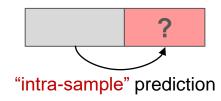
Slides credited from NeurIPS 2021 Tutorial

Self-Supervised Learning

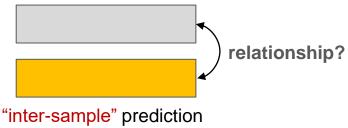
- Self-supervised learning (SSL): a special type of representation learning via unlabeled data
- Idea: constructing supervised tasks out of unsupervised data
 - High cost of data annotation
 - Limited annotated data
 - Good representation makes it easier to transfer to diverse downstream tasks

61 Self-Supervised Learning

- Self-Prediction
 - Given an individual data sample, the task is to predict one missing part of the sample given the other part

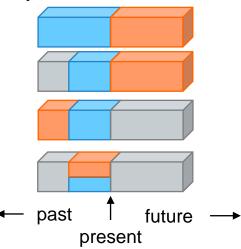


- Contrastive Learning
 - Given multiple data samples, the task is to predict their relationship



Assume: a part of the input is unknown and predict it

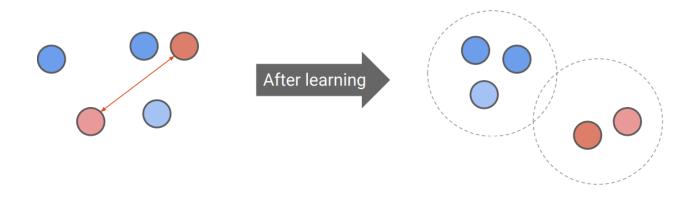
- Predict the future from the past
- Predict the future from the recent past
- Predict the past from the present
- Predict the top from the bottom
- Predict the occluded from the visible



Adapting Embedding Spaces

64 Contrastive Learning

- Idea: learn an embedding space where similar sample pairs stay close to each other while dissimilar ones are far apart
 - Inter-sample classification
 - Feature clustering
 - Multi-view coding



65 Inter-Sample Classification

- Task: given both similar ("positive") and dissimilar ("negative") candidates, identifying which is similar to the anchor datapoint
- Datapoint candidates
 - 1. The original input and its distorted version
 - 2. Data capturing the same target from different views

66 Inter-Sample Classification

• Triplet loss (Schroff et al., 2015)

 minimize the distance between the anchor x and positive x⁺ and maximize the distance between the anchor x and negative x⁻ at the same time

$$\mathcal{L}_{\text{triplet}}(x, x^+, x^-) = \sum_{x} \max(0, \|f(x) - f(x^+)\|_2^2 - \|f(x) - f(x^-)\|_2^2 + \epsilon)$$

as close as possible as far as possible
$$(\text{LEARNING})$$

67 Inter-Sample Classification

• **N-pair loss** (Sohn, 2016)

generalizes to include comparison with multiple negative samples

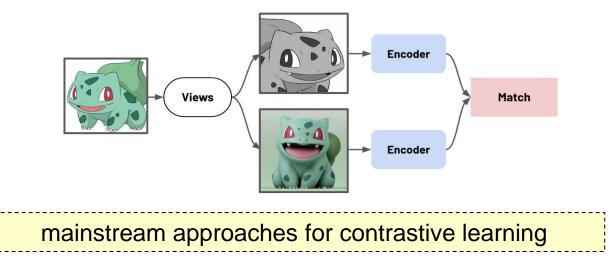
$$\mathcal{L}_{ ext{N-pair}}(x,x^+,\{x^-_i\}) = \log igg(1+\sum_i \expig(f(x)^T f(x^-_i) - f(x)^T f(x^+)ig)igg)$$

68 Feature Clustering

● Idea: cluster similar datapoints based on learned features
 → assign pseudo labels to samples for intra-sample classification

Idea: apply the InfoNCE objective to different views of input

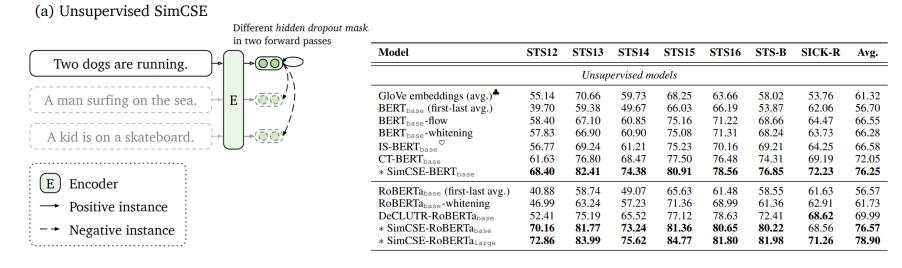
- Data augmentation is adopted for generating different views
- "views" can come from different modalities



Ontrastive Learning in NLP

SimCSE (Gao et al., 2021): simple contrastive learning of sentence embeddings

• Unsupervised: predict a sentence from itself with only dropout noise

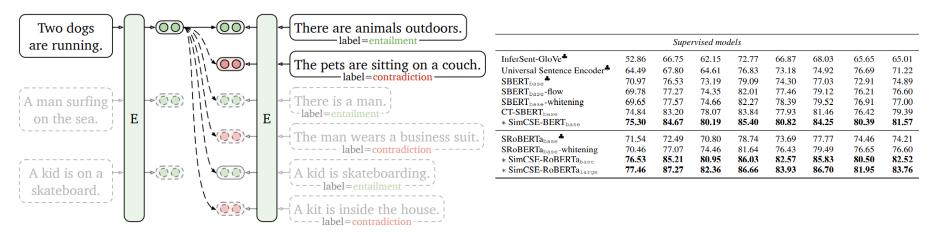


Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "SimCSE: Simple Contrastive Learning of Sentence Embeddings." in *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, 2021.

Contrastive Learning in NLP

- SimCSE (Gao et al., 2021): simple contrastive learning of sentence embeddings
 - *Supervised*: further adapt embeddings based on labels

(b) Supervised SimCSE

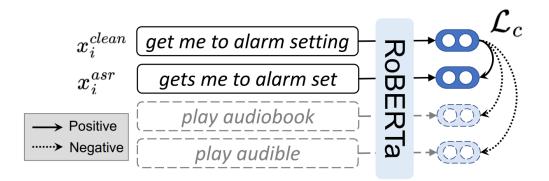


Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "SimCSE: Simple Contrastive Learning of Sentence Embeddings." in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.

Contrastive Learning in NLP

• **SpokenCSE** (Chang & Chen, 2022): improve ASR robustness

• Unsupervised: learning with the paired clean/noisy sentences



Model	SLURP	ATIS	TREC6
RoBERTa	83.97	94.53	84.08
Phoneme-BERT [†]	83.78	94.83	85.96
SimCSE	84.47	94.07	84.92
Proposed (pre-train only)	84.51	95.02	85.20

Ya-Hsin Chang and Yun-Nung Chen, "Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding," in arXiv:2205.00693, 2022.

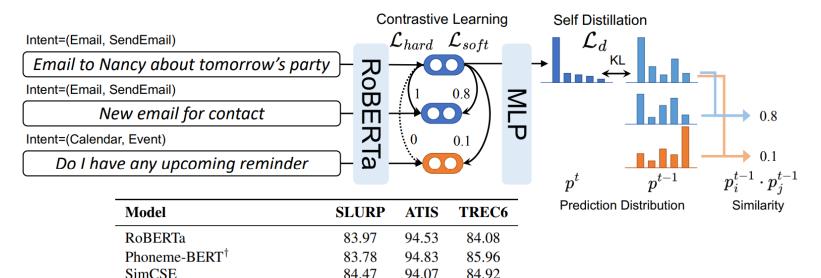
Contrastive Learning in NLP

• **SpokenCSE** (Chang & Chen, 2022): improve ASR robustness

Supervised: learning with self-distillation

Proposed (pre-train only)

Proposed (pre-train + fine-tune)



Ya-Hsin Chang and Yun-Nung Chen, "Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding," in arXiv:2205.00693, 2022.

95.02

95.10

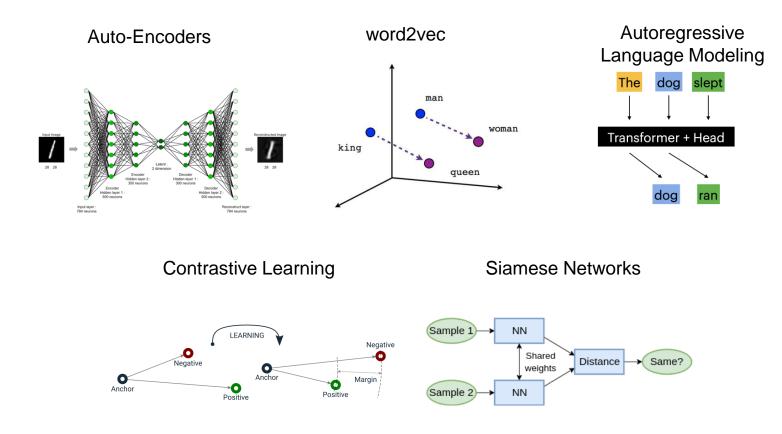
84.51

85.26

85.20

86.36

Oiverse Approaches and Applications



75— Concluding Remarks

- Labeling data is expensive, but we have large unlabeled data
- AE / VAE
 - exploits unlabeled data to learn latent factors as representations
 - learned representations can be transfer to other tasks
- Dual Learning
 - utilize the duality of two tasks
 - towards semi-supervised learning / unsupervised learning
- Self-Prediction
 - predict one missing part of the sample given the other part
- Ontrastive Learning
 - positive pairs have similar embeddings