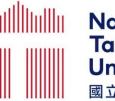
Applied Deep Learning

Prompt-Based Learning

June 13th, 2022 http://adl.miulab.tw



National Taiwan University 國立臺灣大學

Slides credited from Mohit Lyyer (Umass) and Hung-Yi Lee

(W)

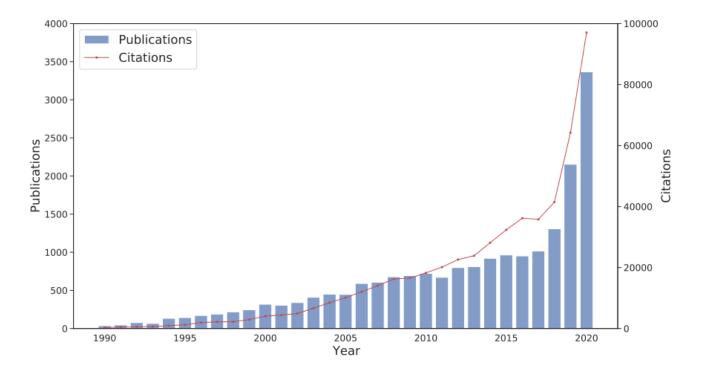
Fine-Tuning on Pretrained LMs

 (Standard) fine-tuning: use the pre-trained LMs for initialization and tuning the parameters for a downstream task

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Wide Usage of PLMs (Han et al., 2021)

Increasing usage of PLMs



Issue 1: Data Scarcity

Ownstream annotated data may not be large

Task	MNLI	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE
Size	391K	363K	108K	67K	8.5K	5.7K	3.5K	2.5K

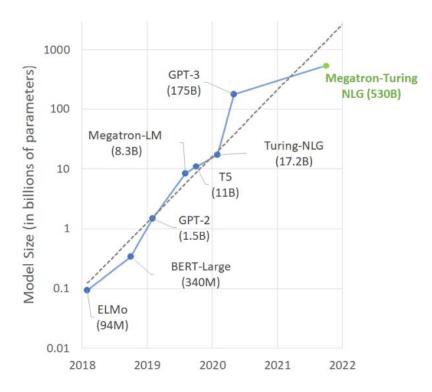
 \rightarrow More practical cases are few-shot, one-shot or even zero-shot settings

Issue 2: Large-Scale PLMs

• PLMs are larger and larger

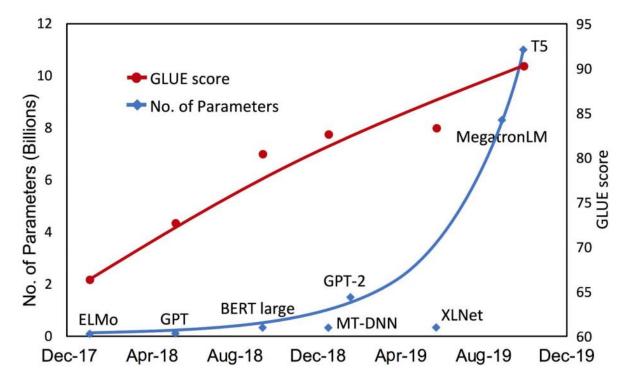
5

Model	#Params	#Layers
ELMo	93M	2 (BiLSTM)
BERT Base	110M	12
BERT Large	340M	24
GPT-3 Small	125M	12
GPT-3 Medium	350M	24
GPT-3 Large	760M	24
GPT-3 XL	1.3B	24
GPT-3 2.7B	2.7B	32
GPT-3 6.7B	6.7B	32
GPT-3 13B	13B	40
GPT-3 175B ("GPT-3")	175.0B	96



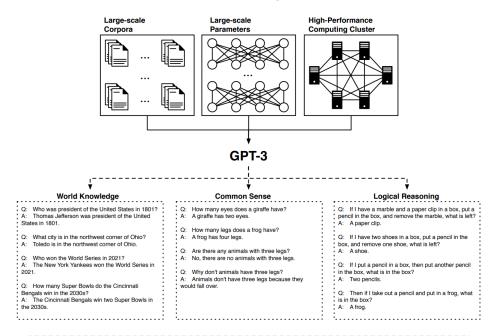
Better Performance from Larger Models

Language understanding performance (Ahmet & Abdullah, 2021)



Better Performance from Large Models

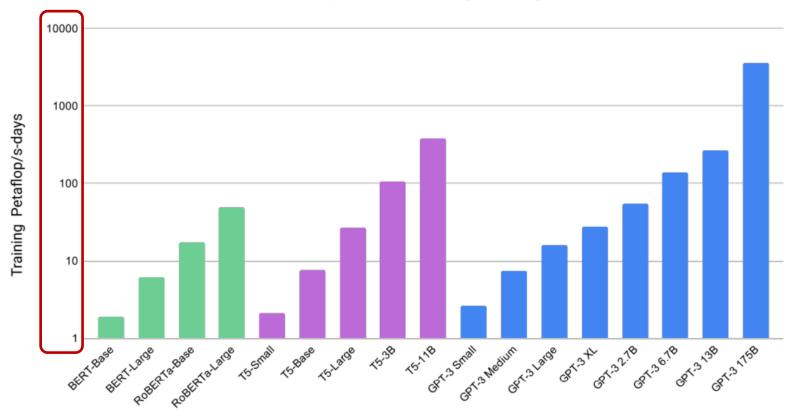
 \bigcirc More types of data for pre-training \rightarrow diverse capability



What is the problem of large PLMs?

Computing Cost of Large PLMs

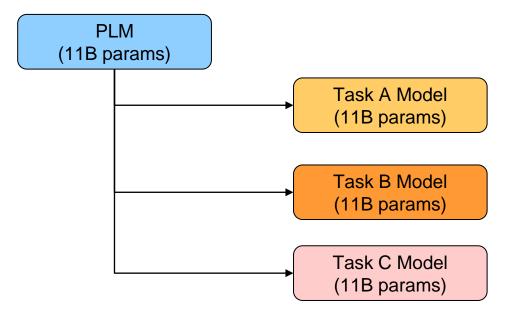
Total Compute Used During Training



8 -

9 Large Space Requirement

Each task requires a copy of a large model



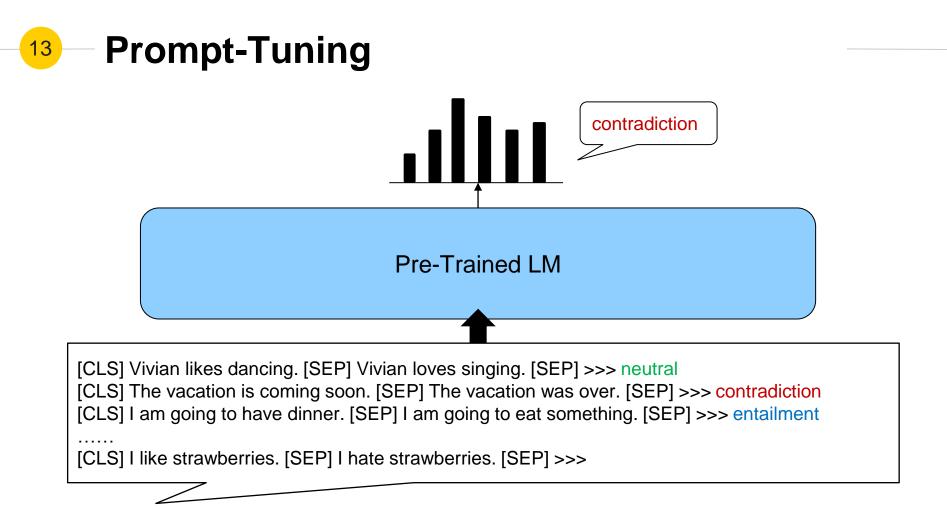
Practical Issues of PLMs

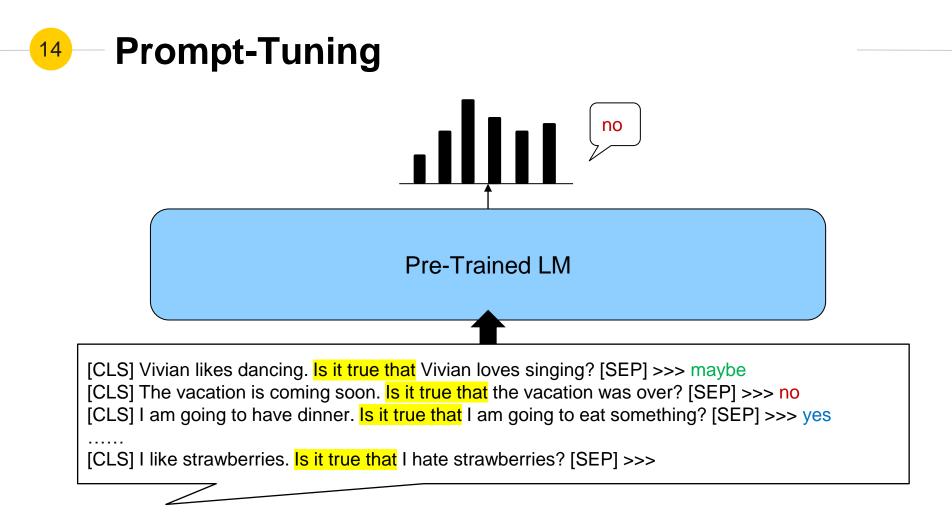
- 1) Data scarcity
- 2) Large PLMs
 - Higher training cost
 - Larger space requirement

→ Solution: Prompt-Based Learning

Leveraging big pre-trained models

GPT-3 "In-Context" Learning

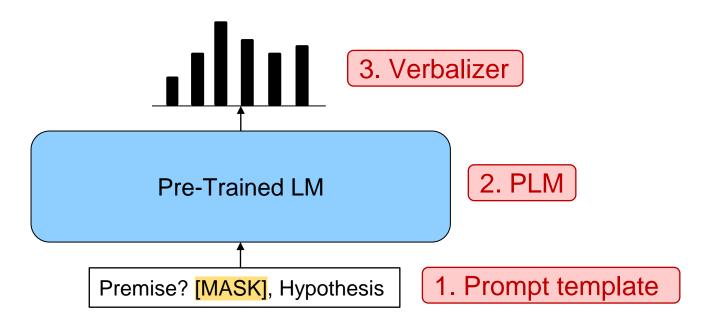




Prompt-Tuning

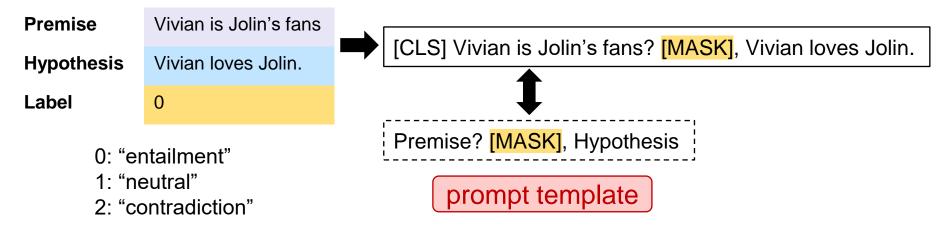
Idea: convert data into natural language prompts

 \rightarrow better for few-shot, one-shot, or zero-shot cases

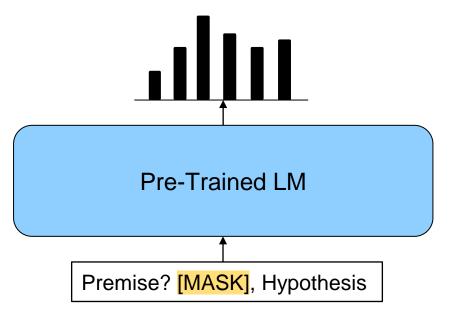


1. <u>Prompt template</u>: manually designed natural language input for a task

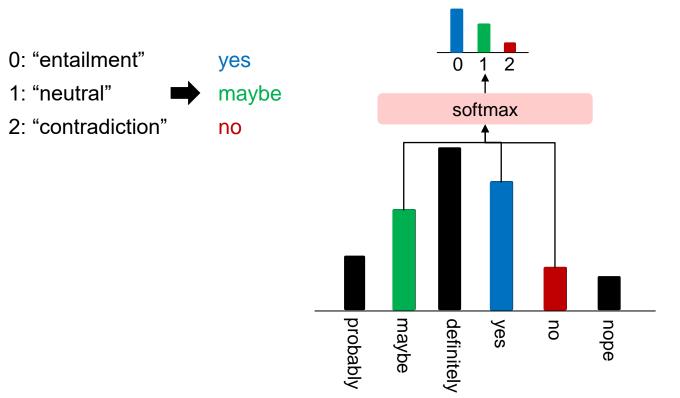
NLI sample datapoint



2. <u>PLM</u>: perform language modeling (masked LM or auto-regressive LM)



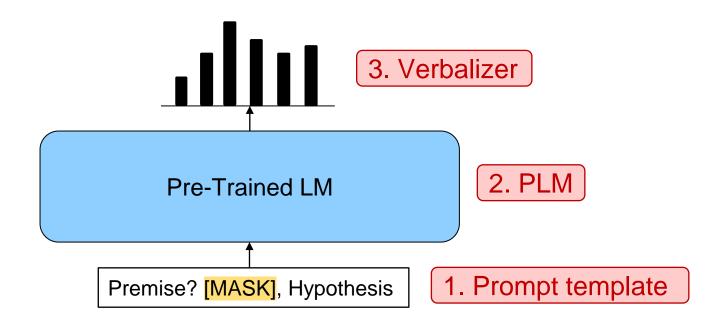
3. <u>Verbalizer</u>: mapping from the vocabulary to labels



Prompt-Tuning

• Fine-tuning PLMs based on few annotated data samples

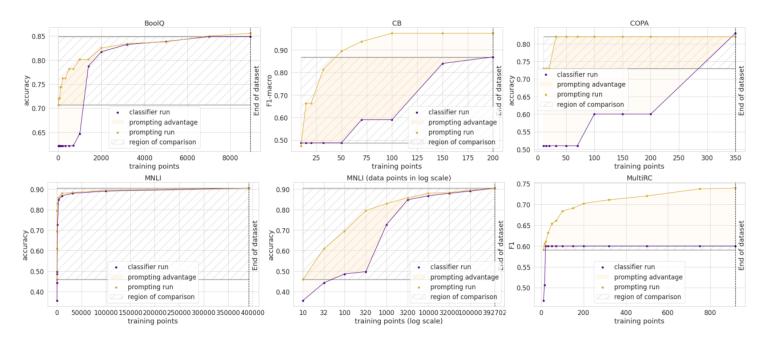
No parameter tuning when zero-shot settings



20 Prompt-Tuning

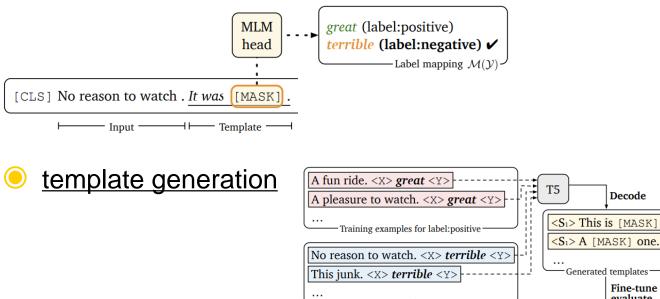
• Prompt-tuning is better under data scarcity (Le and Rush, 2021) due to

- It better leverages pre-trained knowledge
- Pre-trained knowledge can be kept



LM-BFF: Better Few-shot Fine-tuning of Language Models 21 (Gao et al., 2021)

Idea: prompt + demonstration for few-shot learning



Decode

Generated templates

LM-BFF: Better Few-shot Fine-tuning of Language Models-(Gao et al., 2021)

Performance with RoBERTa-Large

22

	SST-2 (acc)	SST-5 (acc)	MR (acc)	CR (acc)	MPQA (acc)	Subj (acc)	TREC (acc)	CoLA (Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	STS-B
	(acc)	(acc)	(acc)	(acc)	(acc)	(F1)	(F1)	(Pear.)
Majority [†]	32.7	33.0	33.8	49.5	52.7	81.2	0.0	-
Prompt-based zero-shot [‡]	50.8	51.7	49.5	50.8	51.3	61.9	49.7	-3.2
"GPT-3" in-context learning	52.0 (0.7)	53.4 (0.6)	47.1 (0.6)	53.8 (0.4)	60.4 (1.4)	45.7 (6.0)	36.1 (5.2)	14.3 (2.8)
Fine-tuning	45.8 (6.4)	47.8 (6.8)	48.4 (4.8)	60.2 (6.5)	54.4 (3.9)	76.6 (2.5)	60.7 (4.3)	53.5 (8.5)
Prompt-based FT (man)	68.3 (2.3)	70.5 (1.9)	77.2 (3.7)	64.5 (4.2)	69.1 (3.6)	74.5 (5.3)	65.5 (5.3)	71.0 (7.0)
+ demonstrations	70.7 (1.3)	72.0 (1.2)	79.7 (1.5)	69.2 (1.9)	68.7 (2.3)	77.8 (2.0)	69.8 (1.8)	73.5 (5.1)
Prompt-based FT (auto)	68.3 (2.5)	70.1 (2.6)	77.1 (2.1)	68.3 (7.4)	73.9 (2.2)	76.2 (2.3)	67.0 (3.0)	75.0 (3.3)
+ demonstrations	70.0 (3.6)	72.0 (3.1)	77.5 (3.5)	68.5 (5.4)	71.1 (5.3)	78.1 (3.4)	67.7 (5.8)	76.4 (6.2)
Fine-tuning (full) [†]	89.8	89.5	92.6	93.3	80.9	91.4	81.7	91.9

²³ Issues of Discrete/Hard Prompts

Oifficulty of manually designing prompts

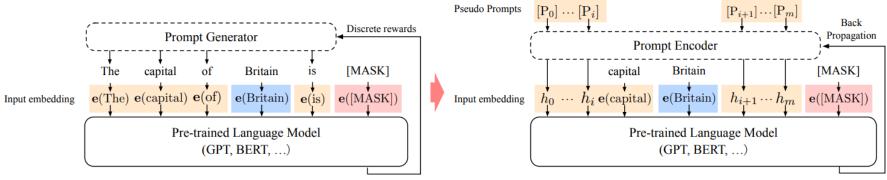
- Prompts that humans consider reasonable is not necessarily effective for LMs (<u>Liu et al., 2021</u>)
- Pre-trained LMs are sensitive to the choice of prompts (<u>Zhao et al., 2021</u>)

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

²⁴ **P-Tuning** (Liu et al., 2021)

Idea: direct optimize the <u>embeddings</u> instead of prompt tokens

prompt search for "The capital of Britain is [MASK]".



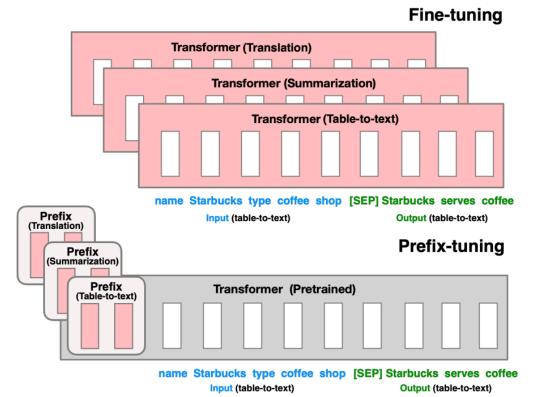
(a) Discrete Prompt Search

(b) P-tuning

Prompt	\mathcal{D}_{dev} Acc.	\mathcal{D}_{dev32} Acc.
Does [PRE] agree with [HYP]? [MASK].	57.16	53.12
Does [HYP] agree with [PRE]? [MASK].	51.38	50.00
Premise: [PRE] Hypothesis: [HYP] Answer: [MASK].	68.59	55.20
[PRE] question: [HYP]. true or false? answer: [MASK].	70.15	53.12
P-tuning	76.45	56.25

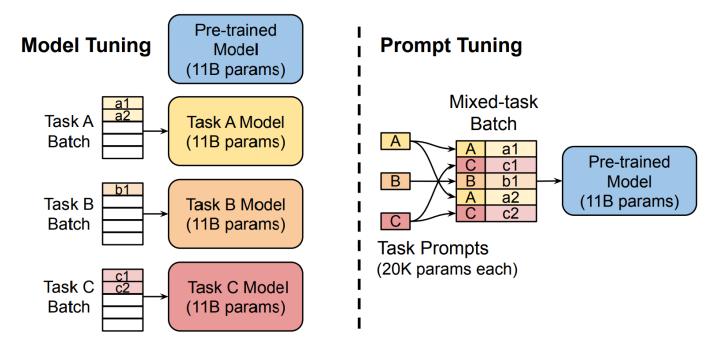
²⁵ Prefix-Tuning (Li and Liang, 2021)

• Idea: only optimize the prefix embeddings (all layers) for efficiency



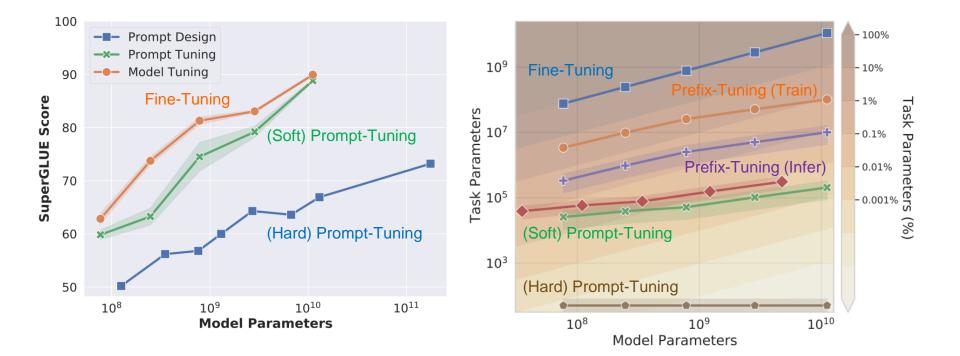
26 (Soft) Prompt-Tuning (Lester et al., 2021)

Idea: only require storing a small <u>task-specific prompt (one layer)</u> for each task and enables <u>mixed-task inference</u> using the original PLMs



27 (Soft) Prompt-Tuning (Lester et al., 2021)

Output time of the second s



28 Instruction Tuning (Wei et al., 2022)

Idea: improve model's capability of understanding the task description

LM for sentence completion

I went to Jolin's concert last night. I really loved her songs and dancing. It was _

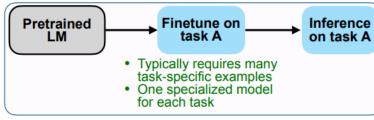
Detailed task instruction for LM generation

Decide the sentiment of the following sentences: I went to Jolin's concert last night. I really loved her songs and dancing. OPTIONS: - positive – negative - neutral

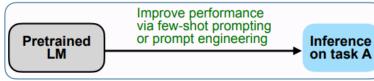
PLAN: Finetuned LANguage Models (Wei et al., 2022)

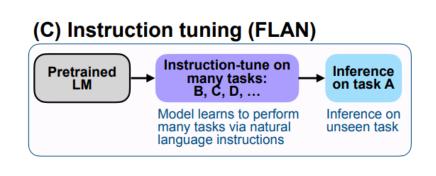
Idea: fine-tune LM to better understand task descriptions via <u>other</u> tasks

(A) Pretrain-finetune (BERT, T5)



(B) Prompting (GPT-3)

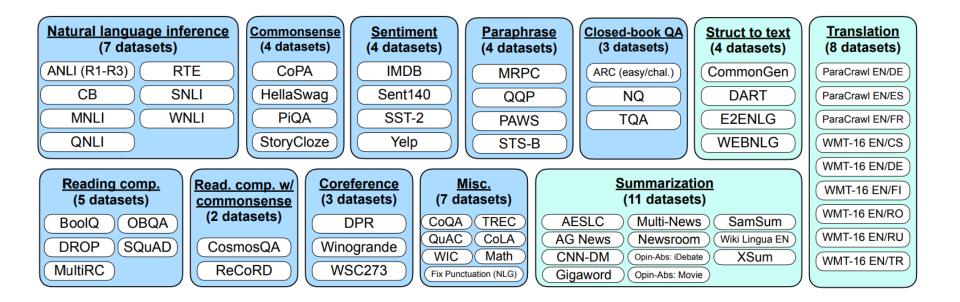




Prompt v.s. Instruction Tuning (Wei et al., 2022)

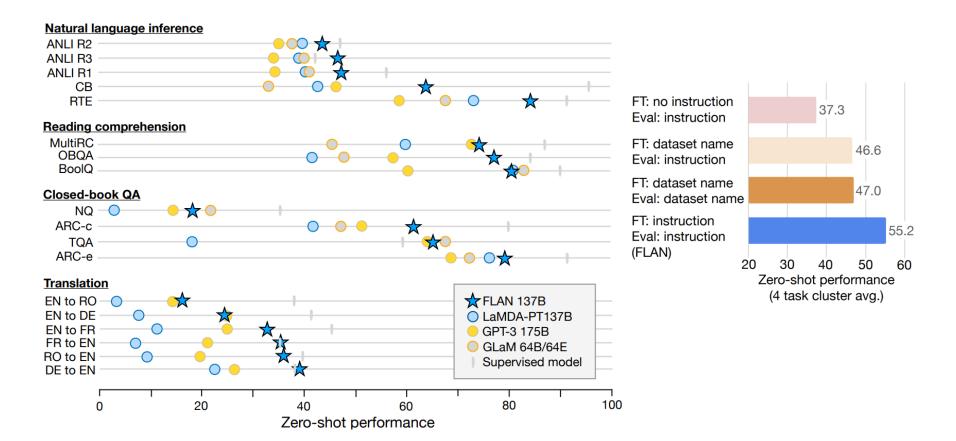
Prompt Instruction tuning Training Input (Commonsense Reasoning) Here is a goal: Get a cool sleep on summer days. How would you accomplish this goal? **OPTIONS:** -Keep stack of pillow cases in fridge. -Keep stack of pillow cases in oven. Target IM keep stack of pillow cases in fridge Fine-tuning Inference Input (Translation) Input (Translation) Translate this sentence to Spanish: The new office Translate this sentence to Spanish: The new office building was built in less than three months. building was built in less than three months. Target Target El nuevo edificio de oficinas se construyó en tres El nuevo edificio de oficinas se construyó en tres meses. meses.

³¹ Task Clusters (Wei et al., 2022)



Zero-Shot Performance of FLAN

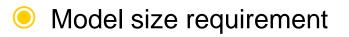
32

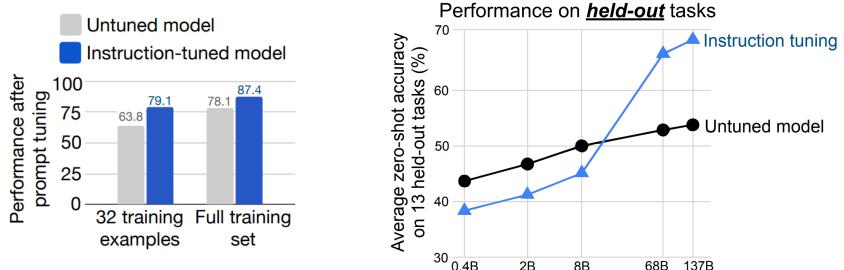


Zero-Shot Performance of FLAN

Ombine with prompt-tuning

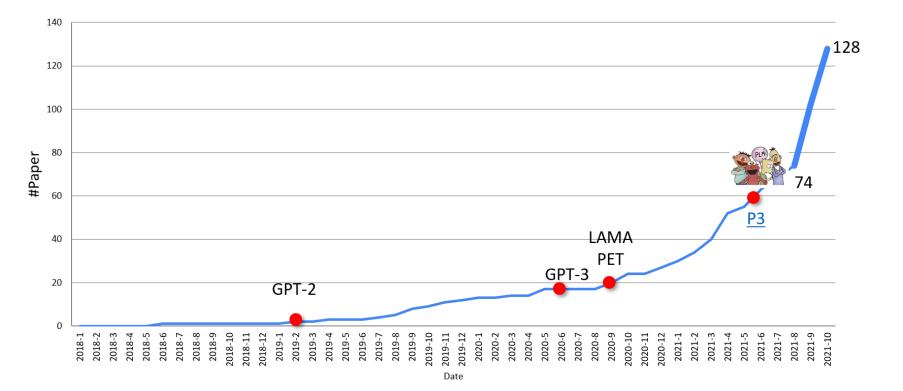
33





Model Size (# parameters)

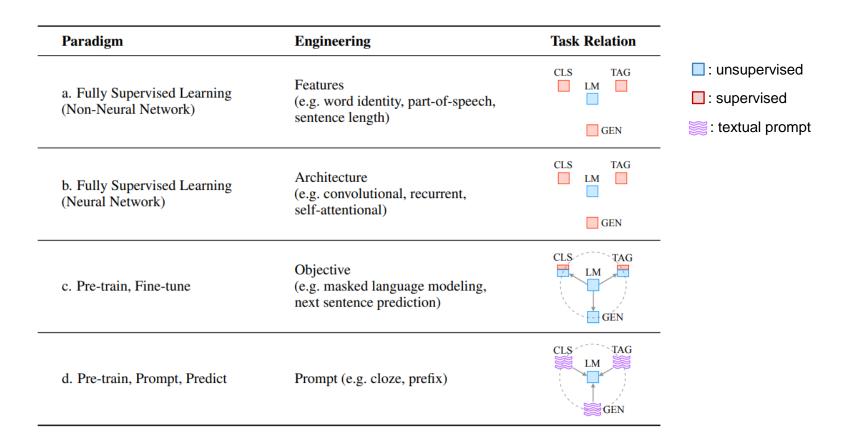
³⁴ Trend of Prompt-Based Research

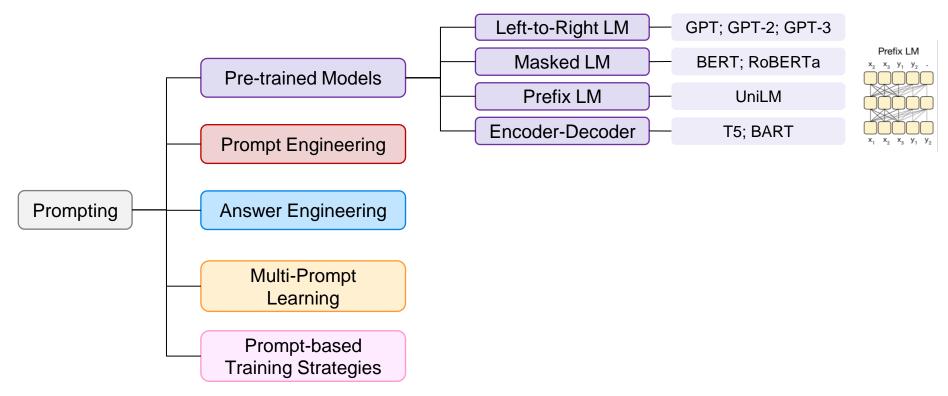


http://pretrain.nlpedia.ai/

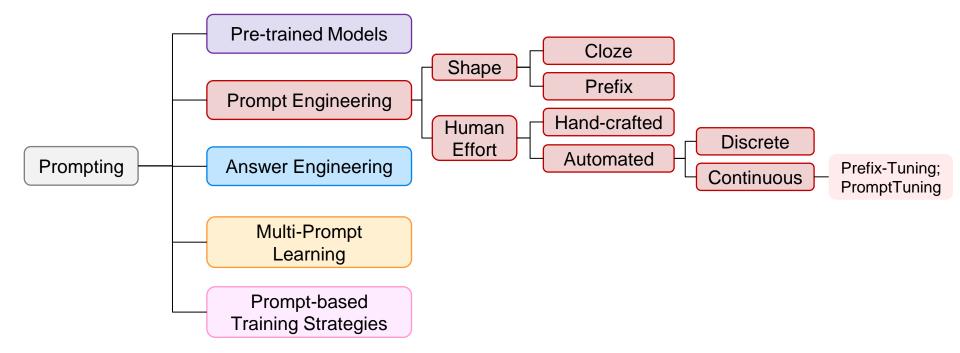
- Prompting Paradigm (Liu et al., 2021)

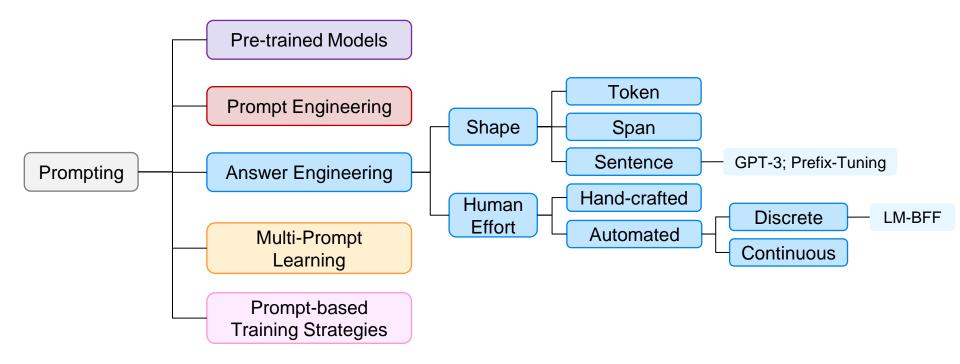
35



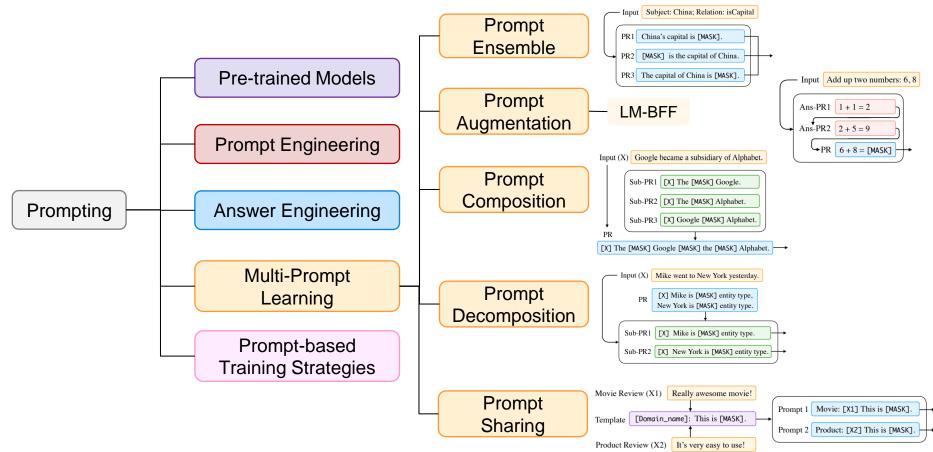


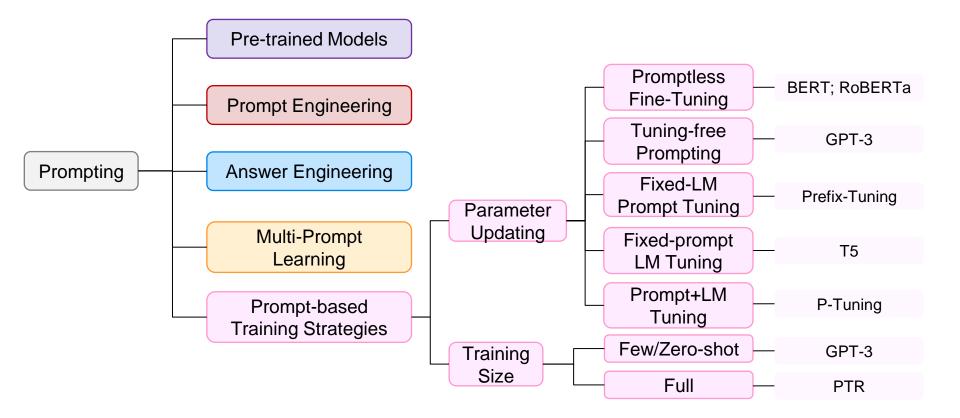
³⁷ Prompting Typology (Liu et al., 2021)

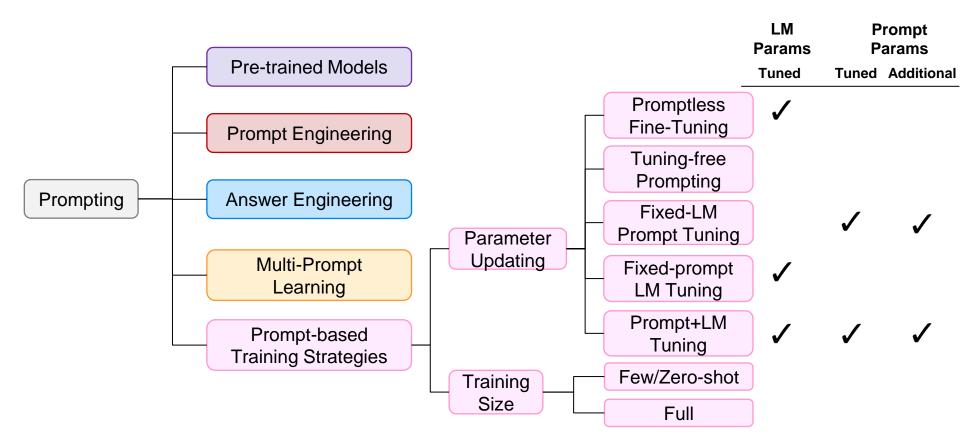




39







42 Concluding Remarks

Prompt-Tuning: manually designed natural language prompts

- Human-understandable prompts
- Sensitive to choices of prompts
- Also work for one-shot/zero-shot settings
- LM-BFF: prompt-tuning + demonstration + template generation
 - Better performance
- **P-Tuning**: tuning the input (prompt) embeddings
 - Better performance via soft prompts
- Prefix-Tuning: only optimize the prefix embeddings (all layers)
 - Better training time/space efficiency
- **(Soft) Prompt-Tuning**: store task prompt and mixed-task learning
 - Updating less parameters
 - Better robustness
- Instruction Tuning: tuning LMs for understanding task instructions
 - Better zero-shot performance