Applied Deep Learning

Policy Gradient
& Actor-Critic

@ November 3rd, 2022 http://adl.miulab.tw

illllintly -~ Nationat
Taiwan

chve £ P

http://adl.miulab.tw/

©® Reinforcement Learning Approach

@® Value-based RL)
Estimate the optimal value function Q (S, a)

@® Policy-based RL
Search directly for optimal policy 7T

@® Model-based RL
Build a model of the environment
Plan (e.g. by lookahead) using model

©® RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor

@ Policy-Based Approach

Learning an Actor

©® Policy

@® A policy is the agent’s behavior

@ A policy maps from state to action
Deterministic policy: @ = W(S)
Stochastic policy: w(a) = P(a | s)

©® Policy Networks

@® Represent policy by a network with parameters v

a=m(als,0) a=m(s,0)
stochastic policy deterministic policy

@® Obijective is to maximize total discounted reward by SGD

O(0) = Elr1 +yr2 +7%rs + -+ [w(-, 0)]

©® On-Policy v.s. Off-Policy

@® On-policy: The agent learned and the agent interacting with the environment is
the same

@® Off-policy: The agent learned and the agent interacting with the environment is
different

©® Goodness of Actor

@® An episode is considered as a trajectory t

T = {Sla ai,ri, 52,042,712, , 8T, aTarT}
Reward: R(t) =3/, 7' r,
P(r|0) =
p(Sl)p(al \ 31,9)]?(7"1,32 \ 31,611)19(&2 \ 3279)}9(""2733 \ 82,&2) e
T left 0.1
— p(Sl) Hp(a’t | St 9)p(rrt7 St+41 | St at) Actor right .
=t Sump) —— 0.2
fire
not related to your actor | control by your actor — (.7

play = fire | s4,0) = 0.7

© Goodness of Actor

@® An episode is considered as a trajectory t
T = {Sla ai,r1,S82,a2,1r2, - ,ST,4ar, TT}
Reward: R(t) =3/, 7' r,

@ Goodness of Actor

@® An episode is considered as a trajectory t
T ={s1,a1,7r1,82,a2,72, -+ , ST, a7, T}
Reward: R(t) =3/, 7' r,
® We define R(f) as the expected value of reward
If you use an actor to play game each T has P(7|@) to be sampled

ZR P(r|0)~ ZR

Use g to play the game N times, obtaln {1, 72, , 7V}
Sampling 7 from P(z|0) N times

@ Deep Policy Networks

@® Represent policy by deep network with weights
@ Objective is to maximize total discounted reward by SGD

R(0) = E[T1 + yrg + ')/27“3 + - | (e 6’)]

@® Update the model parameters iteratively

6* = arg max R(9)

0« 6 +nVR(H)

@ Policy Gradient R(9) =3 R(T)P(r | 6)
@® Gradient assent to maximize the expected reward

VR ZR)VP(r | §) = ZR T|9VIE§T‘|9§)

do not have to be dlfferentlable
can even be a black box

dlog f(z) 1 df(z)

=Y R(r)P(r|0)Viog P(7 | 0) dv f(x) do

use my to play the game N times, obtain {z}, 72, -+, 7V}

—ZR)V log P(7™ | 6)

® Policy Gradient Vlog P(7 | 0)

@ An episode trajectory 7 = {31, ai,71,82,a2,72, -+ ,ST,0aT, TT}
T
P(7|0) =p(s1) “p(at | 5t,0)p(Te, Se41 | e, at)
t=1
T
log P(7 | 0) =logp(s1) > logp(as | st,0) + log p(re, set1 | se, ae)
t=1

T
Vv log P(T | 9) = Z Vv log p(at ’ St, 9) ignore the terms not related to 6
t=1

@ Policy Gradient

@® Gradient assent for iteratively updating the parameters

VR(0) ~ % S R(-)Vlog P(r" | 0)
1

N T,
= % 2 SR ogplar | 570

n=1t=1
If £ machine takes al'! when seeing s{*
R(™™) >0 I:> Tuning 6 to increase p(a?’ ‘ 8?)
R(™™) < 0 ====) Tuning 6 to decrease p(a?’ ‘ 8?)

Important: use cumulative reward R(t™) of the whole trajectory t"
instead of immediate reward r/*

@ Policy Gradient

Given actor parameter 9

(53,0a3)

i (s, aq) R(TH) 7% (s
1 .1 (s

data collection

model update

0 — 0+ nVR(H)

—

n=1 t=1

| N
:NZZR)V logp(ay | si,0)

0 < 0+ nVR(H)

N T
1 mn
R(O) =+ > > R(r")Vlogp(a | s7,0)

. . . n=1 t=1
@® Treat it as a classification problem

@ Implementation

> left @ — a;’}

» » E"’ right <—Q

> fire ¢—(

+3

-

TF, PyTorch ..

.

N
Z Vlogp(ay | sy)

2| =
E
ZI*—‘

logp(ay | s7)
1

N
|
—_
[
I

—
'—L

3

.
=

i

N
R(7™)logp(ay | st) Z R(t™)Vlogp(a} | s})

1 n=

= =
™=

S
I
=
&~
I
—
[3
I
.

@ Improvement: Adding Baseline

0 < 0+ nVR(Y)

1NT

VR(0) = R(r™)CD)V log p(al | s7,0)

nltl

it is probability
Ideally -
not
sampled
Sampling -

Issue the probab|llty of the actlons not sampled WI|| decrease

@ Actor-Critic Approach

Learning an Actor & A Critic

@ Actor-Critic (Value-Based + Policy-Based)

@® Estimate value function Q7 (s, a), V™(s)
@ Update policy based on the value function evaluation

VR Z ZR)V logp(ar' | 57,07

n=1t=1 l T interacts with

QW(S”’ an) the environment
t Yt

T IS an actual function that maximizes the value T=Tn TD or MC

may work for continuous action

Update actor from Learning
’ based on
7TQ;)(Z,), V™ (s) Q™(s,a),V™(s)

7 interacts with
(20 .
Advantage Actor-CritiC == -

@® Learning the policy (actor) using the value evaluated by critic
0™ «— 0™ + VRO

VR(") = ~-

Advantage function:rf* — (V"T(S?) — V’T(S?Jrl))

the reward r* we truly obtain expected reward r/* we
when taking action a! obtain if we use actor

Positive advantage function < increasing the prob. of action a!
Negative advantage function < decreasing the prob. of action af

@ Advantage Actor-Critic

® Tips

The parameters of actor m(s) and critic V™(s) can be shared

/ Network
Network \

Network

—» |eft
—» right
—» fire

—>V7(s)

Use output entropy as regularization for m(s)

exploration

(22 Asynchronous Advantage Actor-Critic (A3C)

@® Asynchronous

Copy global parameters
Sampling some data
Compute gradients

Update global models
(other workers also update models)

Global Network

Policy n(s) V(s)

=2
o

[

A 9 Input (s)
0 1

AQ ﬁjﬂ —J —J

Worker 1 Worker 2 Worker 3

! ! !

Environment 1 Environment 2 Environment3 ...

Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” in JMLR, 2016.

01 +nA6

Worker n

!

Environment n

@ Pathwise Derivative Policy Gradient

@® Original actor-critic tells that a given action is good or bad
@® Pathwise derivative policy gradient tells that which action is good

@ Pathwise Derivative Policy Gradient

7'(s) = argmax Q™ (s, a) 4@ an actor’s output
a

Gradient ascent: Fixed
0™ — 07 + nVR(O™)

S r—

T —
Qﬂ' _’QW(Sa CL)
S — Ac%or —> a0 = >
\ J
Y

This is a large network

Silver et al., “Deterministic Policy Gradient Algorithms”, ICML, 2014.
Lillicrap et al., “Continuous Control with Deep Reinforcement Learning”, ICLR, 2016.

@ Deep Deterministic Policy Gradient (DDPG)

@® Idea

Critic estimates value of
current policy by DON
Actor updates policy in
direction that improves Q

Critic provides loss
function for actor

T interacts

Replay

with the Buffer

add noise environment

- exploration
Learning
Q"(s,a)

L9 07+ nVR(O™)
: i

Update actor r —» 7’

based on Q™ (s, a)

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

@ DDPG Algorithm

Initialize critic network 89 and actor network 6™

Initialize target critic network 02" = 99 and target actor network o = g™
Initialize replay buffer R

OJOXONO

In each iteration
Use m(s) + noise to interact with the environment, collect a set of {s;, a;, ¢, St+1}, put them in R
Sample N examples {s,,, a,, 15, Sn+1} from R

Update critic Q to minimize S~ (g, — Q(sp, an))?

Jn = 1o+ Q'(Sn+1,m(8n+1)) using target networks
Update actor to maximize >~ Q(s,,, 7(sy))
Update target networks:

97?, < mf™ + (1 —m)o" _ the target networks
09 < mh? + (1 — m)§? update slower

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

@ DDPG in Simulated Physics

@® Goal: end-to-end learning of control policy from pixels
Input: state is stack of raw pixels from last 4 frames
Output: two separate CNNs for Q and

a

32 4x4 filers

256 hidden units

Stack of 4 previous i Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

@ Concluding Remarks

@ RL is a general purpose framework for decision making under interactions
between agent and environment

@® Policy gradient
learns a policy that maps from state to action

@® Actor-critic
estimates value function Q™ (s, a), V™(s)
updates policy based on the value function evaluation =«

