Applied Deep Learning

Value-Based
Reinforcement Learning

@ October 27th, 2022 http://adl.miulab.tw

illllintly -~ Nationat
Taiwan

B EEAS

http://adl.miulab.tw/

©® RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor

© Value-Based Approach

Learning a Critic

© Value Function

@® A value function is a prediction of future reward (with action a in state s)

@® Q-value function gives expected total reward
from state S and action
under policy 7T
with discount factor ’Y

QW(SaC’J) — E[Tt+1+7"°t+2+’727°t+3+--- ‘ 57@]

@® Value functions decompose into a Bellman equation

Q7(s,a) =By y[r +7Q7(s',a') | 5,

+

it

© Optimal Value Function

@® An optimal value function is the maximum achievable value
Q*(s,a) =max Q" (s,a) = Q" (s,a)
s
@® The optimal value function allows us act optimally
(s) = arg max Q(s, a)
a
@® The optimal value informally maximizes over all decisions

Q*(S7 a) = T'141+7y max 7“H2+')/2 max ryy3+...

a1 at 42
*
=T+ 7Y rglax Q" (5141, Aa1)
t+1

@® Optimal values decompose into a Bellman equation

Q*(s,a) =Eg|r + Y max Q*(s',d") | s,al

a

©® Value Function Approximation

@® Value functions are represented by a lookup table

Qs,a) Vs, a

too many states and/or actions to store
too slow to learn the value of each entry individually

@® Values can be estimated with function approximation

Q(s,a,w) Qs,a,w) - Qs,a,,w)

R
~)

e

©® O-Networks

® Q-networks represent value functions with weights w

Q(s,a,w) = Q*(s,a)

generalize from seen states to unseen states
update parameter w for function approximation

©® O-Learning

® Goal: estimate optimal Q-values
Optimal Q-values obey a Bellman equation

Q'(s.0) =By +ymaxQ'(s',a') | s.d

learning target

Value iteration algorithms solve the Bellman equation

Qas, a) = +7max%s a) | s,al

© Critic = value Function

@® |dea: how good the actor is

@® State value function: when using actor , the expected total reward after seeing
observation (state) s

V™ (s) Vs =E|G;| s = s]

larger
Vﬂ'
LY -3
scalar s‘r}wjg(lle)r
S

A critic does not determine the action
An actor can be found from a critic

@ Monte-Carlo for Estimating V™ (s)

® Monte-Carlo (MC)

The critic watches m playing the game
MC learns directly from complete episodes: no bootstrapping

After seeing s, - ~
until the end of the episode, the cumulated reward is G, Sag=> VT =V (Sa)*’ G

After seeing sy,
until the end of the episode, the cumulated reward is G,

Sp—> V7T =»V7(s) &Gy

@ Temporal-Difference for Estimating V™ (s)

@ Temporal-difference (TD)

The critic watches m playing the game
TD learns directly from incomplete episodes by bootstrapping
TD updates a guess towards a guess

® MCvs. . TD

@® Monte-Carlo (MC)
Large variance
Unbiased
No Markov property

St —> Vﬂ- »Vﬂ(st)<:> Gt

@® Temporal-Difference (TD)

Small variance
Biased
Markov property

St

— Vﬂ- A (St)

s

T+ VW(St_}_l)‘- Vﬂ- s

St+41

P A '
\ ‘,\ 1

.
llllllllllll

Vlﬂ' (St) Vlﬂ'(st)
=V7(st) + (G — V7 (st)) =V7(st) + a(rigr + 7V (s141) = V7 (s1))

MC v.s. TD
o

@ Critic = Value Function

@® State-action value function: when using actor , the expected total reward after
seeing observation (state) s and taking action a

Q7 (s,a) Vs,a = E|Gy | st = s,a¢ = al

—_— ()7 (s, a = left)

Q7 (s,a)

: QT —— 8» QT —> Q7(s,a =right)

scalar
—> ()7 (s,a = fire)

for discrete action only

@) Q-Learning

@® Given Q™ (s, a), find a new actor ' “better” than =

V™ (s) > V7™(s) Vs

7T, (8) — arg max QW (Sa CL) interacts with
a | the environment

' does not have extra parameters
(depending on value function)

T =1 TD or MC

Find a new actor [% Learning
' “better” than Q™ (s,a)

not suitable for continuous action

@ O-Learning

® Goal: estimate optimal Q-values
Optimal Q-values obey a Bellman equation

Q'(s.0) = Ey[r +ymaxQ'(s',a') | s.d

learning target

Value iteration algorithms solve the Bellman equation

s, a) = T+fymax%s a’) | s, al

@ Deep Q-Networks (DON)

@ Estimate value function by TD L Sp Qs T Spal,

Q" (s¢,at) Q7 (Se41,7(S¢41))

St =

QW — ()™ (54, a4)

At => 11

T + QW(St—H: W(8t+1))4_ QW 4_7T(8t+1)

@® Represent value function by deep Q-network with weights w
Q(s,a,w) = Q"(s,a)
@ Objective is to minimize MSE loss by SGD

L(w) = E{ (fr + ’)/IIE}XQ(S’, a',w) — Q(s, a,w))z}

@ Deep Q-Networks (DQN)

@® Objective is to minimize MSE loss by SGD
2
L(w) =E[(r+ymaxQ(s',a,w) = Q(s,a,w)) |

@® Leading to the following Q-learning gradient
OL(w)

) 5] ¢+ gt o)~ Qo)

Issue: naive Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets

@ Stability Issues with Deep RL

@ Naive Q-learning oscillates or diverges with neural nets

Data is sequential
Successive samples are correlated, non-iid (independent and identically
distributed)

Policy changes rapidly with slight changes to Q-values
Policy may oscillate
Distribution of data can swing from one extreme to another

Scale of rewards and Q-values is unknown
Naive Q-learning gradients can be unstable when backpropagated

€@ Stable Solutions for DQN

@ DON provides a stable solutions to deep value-based RL

Use experience replay
Break correlations in data, bring us back to iid setting
Learn from all past policies

Freeze target Q-network
Avoid oscillation
Break correlations between Q-network and target

Clip rewards or normalize network adaptively to sensible range
Robust gradients

@ Stable Solution 1: Experience Replay

Take action at according to e-greedy policy§ small prob for exploration

Store transition (S, at, 7¢, S¢11) in replay memory D
Sample random mini-batch of transitions (s, a,r, 3’) from D

51,41, 12,5
S2,d2,13,53 — S,a, r,s’
53,43, 14, 54

Sty dt, 141, St+1 — | Sty dt, 41, St+1

Optimize MSE between Q-network and Q-learning targets

L(w) =Esqrs~D [(T + Y max Q(s',a',w) — Q(s,a, w))q

e E I : aq Q(S, 011) = 0 never explored
Xp oration 5<a2 Q(S,ag) = 1 | always sampled

a — () never explored

@ The policy is based on Q-function Q(s,a3) =0 neverexp

a = argimax Q(S, CL) not good for data collection = inefficient learning
a

@ Exploration algorithms
Epsilon greedy

a={ memaxcQls,a), with p=(1=6) " g gecay during learning
random, otherwise T |

Boltzmann sampling
exp(Q(s, a))
20 €xP(Q(s,a))

P(a|s) =

(23 Replay Buffer

put the experience into buffer =

1T interacts with »
the environment

exp

exp

exp

the experience in the buffer
' comes from different

drop the old one if full

Find a new actor i’ Learning
“better” than 0™(s,a)

(24 Replay Buffer

put the experience into buffer
T interacts with » —!
the environment ext » Sty Gty Tty St41

In each iteration:
1. Sample a batch
2. Update Q-function

Find a new actor i’ Learning Off-polic
“better” than 0™(s,a) POlicY

@ Stable Solution 2: Fixed Target Q-Network

@® To avoid oscillations, fix parameters used in Q-learning target

«1
Q™ =—» Q" (s, at) 7t + Q7 (St1, T(Se41)) €=t QT

At =P \ Y / 4-7'('(875_+_1)
freeze ‘
freeze

Compute Q-learning targets w.r.t. old, fixed parameters w
T+ fymz}XQ(s’, a',w™)
Optimize MSE between Q-neatwork and Q-learning targets ,
L(w) =Es 4rsD [(T +ymax Q(s',d' ,w™) — Q(s,a, w))]

Periodically update fixed parameters w~ <« w

@ Stable Solution 3: Reward / Value Range

@® To avoid oscillations, control the reward / value range

DQN clips the rewards to [-1, +1]
Prevents too large Q-values
Ensures gradients are well-conditioned

@ Typical Q-Learning Algorithm

@ |nitialize Q-function Q, target Q-function 0 = Q

@® In each episode

For each time step ¢t
Given state s;, take action a; based on Q (epsilon greedy)
Obtain reward r;, and reach new state s;,
Store (s¢,a¢, 7+, s¢+1) into buffer
Sample (s:, ai, i, si+1) from buffer (usually a batch)

Update the parameters of Q to make Q(s;,a;) ~ r; + max Q(S@H, a)
Every C stepsreset () = Q

~
@ Deep RL in Atari Games (&_=)

action

P
a.
[

. . ~
@ DONin Atari

® Goal: end-to-end learning of values Q(s, a) from pixels
2
L(w) =Es qrsD [(7" +ymax Q(s',a’,w™) — Q(s, a, w))]

Input: state is stack of raw pixels from last 4 frames
Output: Q(s, a) for all joystick/button positions a
Reward is the score change for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4xB84x84

a2

Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

@ DON in Atari

%000€ %000L %009 %005 %00t %00€ %002 %001 %0
L)Ll 1 1 1 1 1]
i %0/[abuansy s ewnzsuo
% | lm>m_ ajeAld
%6 ||)
% |[enaqisouy
%L || spossisy
%€l | " uewoey sy
%l [Bumog
%[sung sianoa
wsz | 1senbeag
wze ™~ aimuap
%zv B ual|y
%er [1._mn_E<
wozs [| prey oy
%5 [l B 1S9 yueg
wzo | epadiuan
%ro I | puewwoq saddoyn
%29 | Jom so piezm
%9 I B auoz ajeg
loAd-uewny mojaq =69 [xueisy
BAOGE JO [aAB|-UBLUNY JB %9L 2 EXED
oL S [ves.0
%6L [~ favooH 20|
%z6 [B umoq pue dn
%es IEE ™ Aqueq Buiysi4
%.6 " ounpug
soot [| 10nd swiL
szoi ™ femsaiy
wzor IS ™ Jeisepy n4-Bumy
%zt ™ weyyueny.
et D[sopy weeg
sorzs [EY [ssepeau) scedg
szer EET | Buog
swsv |~ puog sawep
wov) R | swual
wwzz [N | cosebuex
wzcz [T | souuny peoy
wovz [N | nessy
%z [[jiruy
suosz I | 5uweo sy oweN
oz I T | ey uowaq
ooy [s2udoo
weiv I | Jequung AZesn
wisv [~ snuepy
%a0s I [ueioqoy
%865 l_m:::.w FETS
™ Inoyeaig
%LOLL B Buixog
™ iiequid oapin

attains human-level

Self-taught Al software
pestormance invides games

FOR TWO

TELEPORTATION

EH
wuw

SHAREDATAIN
OUTBREAKS

DQON Nature Paper [link] [code]

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

@ Concluding Remarks

@ RL is a general purpose framework for decision making under interactions
between agent and environment
@® A value-based RL measures how good each state and/or action is via a value

function
Monte-Carlo (MC) v.s. Temporal-Difference (TD)

© Advanced DQN

DON EFEE R

© Double DON

@ Q value is usually over-estimated

~ Alien Space Invaders

—]
t el

—
ja}

Value estimates

Time_ Pilqt

o

Zaxxon
8 DQN estimate
6
ouble DQN estimate
2.

‘ “ b T)()uble DQN true value
DQN true value

€@ Double DON

@ Nature DQN Q(s¢, a;) r+ + v max Q(S¢11,0a)

& &

L(w) =Eqq,9mb [(rr + 7 max Q(s',a',w™) — Q(s, a, w))z}

Issue: tend to select the action that is over-estimated

Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, AAAI 2016.

© Double DON

@® Nature DOQN
. 2
L(w) =EgqrsmD [(’r +ymaxQ(s’,a’,w™) — Q(s, a, w))]
@® Double DQN: remove upward bias caused by max Q(S, a, w)
a
. 2
L(w) =Eg 45D [(’T‘ +7Q(s, arg max Q(s',a ,w),w™) — Q(s,a, w)) }

Current Q-network W is used to select actions
Older Q-network w is used to evaluate actions

If Q over-estimate a, so it is selected. Q would give it proper value.
How about Q overestimate? The action will not be selected by Q.

(36 Dueling DON

@® Dueling Network: split Q-network into two channels
Q(s,a) = V(s) + A(s, a)

Action-independent value function V(S)
Value function estimates how good the state is
Action-dependent advantage function A(s, a)
Advantage function estimates the additional benefit

€@ Dueling DON

State s é;%% Action a Q(s,a)
4 V(s)
/7 I’

State s i>%?% Nl >-IActiona Q(s,a)
14 A(s,a) = Q(s,a) — V(s)

=

S

@ Dueling DON ﬁ@/

nly change the

network structure

Q(S7 CL) action

V(S) average of column

+

A(S, CL) sum of column =0

state

3 84| 3

1 X, 0| 6

2 R-1| 3
I

2 ®il| 4
+

1 3 -1

-1 -1 2

0 -2 -1

Dueling DON

V(s) 1.0
State % N Q(s,a)
. ﬁ> ul ‘ = A(s,a)+V(s)

_/ Only change the
Y 5 A(s,a) T
4

network structure

3
normalize A(s,a) before adding with V(s) 3 |y -1
2 -2

@ Dueling DON - Visualization

@ Dueling DON - Visualization

@® Prioritized Replay

@® Prioritized Replay: weight experience based on surprise
Store experience in priority queue according to the error

r e Q(s ' w) — Qs a,w)

(St; g, Tt, St—l—l) Th_e _data With_larger TD error in previous
training has higher probability to be sampled.

St = —VQ(St,CLt) <_St-l—1
Q t TD error Q
Ly => A S o
¢ Tt + Q(St41, Qry1) +— At+1

~

a;+1 = argmax, Q(S¢y1,0a)

Parameter update procedure is also modified.

® Multi-Step

@ |dea: balance between MC and TD

(St, Aty Tty " 3 St+ Ny At4 N, Tt+N, St+N+1)
? 9 ?
St=> Q #Q(Staat)
N . St N1
t+N A ¢ -
D oy Ter + Q(St4N+1, Qe N+1) -+

Aty N+1 = arg maxy Q(s¢yni1,a)

@ Distributional Q-function

@ State-action value function @™ (s, a)
When using actor r, the cumulated reward[expects}to be obtained after seeing
observation s and taking a

_ ooy

-10 10 -10 10

Different distributions can have the same values.

® Distributional Q-function

Q™ (s, az2)
QW(S,G&) QW(S,CI@)

1]

o
=

S

A network with 3 outputs

=
o
=

S

A network with 15 outputs
(each action has 5 bins)

Laser
Left+Laser »
Right+Laser

— Right

| l Left w=
Noop l

Return

Probability

0.5

Probability

0.0

—f“'fé]m

Return

@ Rainbow

DON
— DDQN
== Prioritized DDQN
= Dueling DDQN
200% - A3C A
o — Distributional DQN -
S — Noisy DON A
- == Rainbow
Q
= 5
L]
2. 4 D “M \" Al
5 | et vy
£ | '.‘fl **) “ ’
5 100%- | ALY
% / /‘ , \J “
— 1)
5 .
E V
’ I
| p o i
| - |
{J |
09, Aa I

| |
7 44 100 200
Millions of frames

Hessel et al., “Rainbow: Combining Improvements in Deep Reinforcement Learning”, arXiv preprint, 2017.

@ Rainbow

200%

Median normalized score

100%

0%

DON

no double

no priority

no dueling

no multi-step
no distribution

Millions of frames

. @
== N0 NOISY A H W l‘
. e’ S 1
== Rainbow AdA 7] 1
- "' -
T !*"..\ J'\ﬁf‘--,'-,‘ A
i e W L
')- ";“
! - Lig "
™ R Vel
At
-\‘.-fa\-_.,‘lw.r"v
| | |
50 100 150 200

Hessel et al., “Rainbow: Combining Improvements in Deep Reinforcement Learning”, arXiv preprint, 2017.

® cConcluding Remarks

@ DON training tips
Double DON
Dueling DQN
Prioritized replay
Multi-step
Distributional DON

