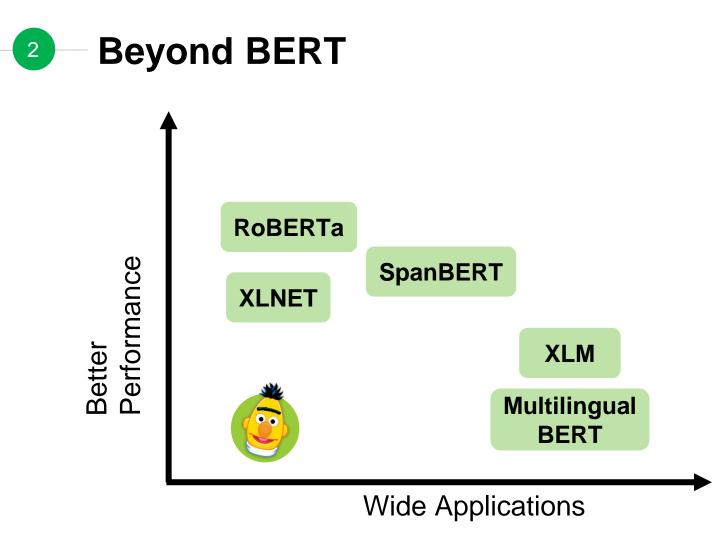
Applied Deep Learning

More BERT

March 28th, 2022 http://adl.miulab.tw

National Taiwan University 國立臺灣大學

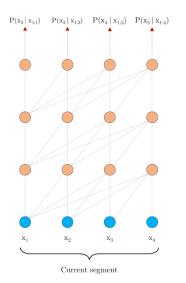


Transformer-XL

(Dai et al, 2019)

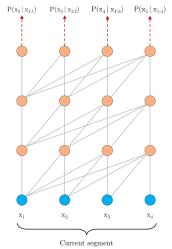
Issue: context fragmentation

- Long dependency: unable to model dependencies longer than a fixed length
- Inefficient optimization: ignore sentence boundaries
 - particularly troublesome even for short sequences



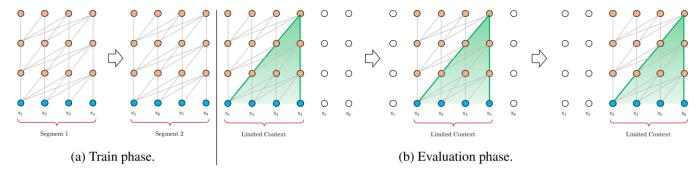
5 Transformer-XL (extra-long)

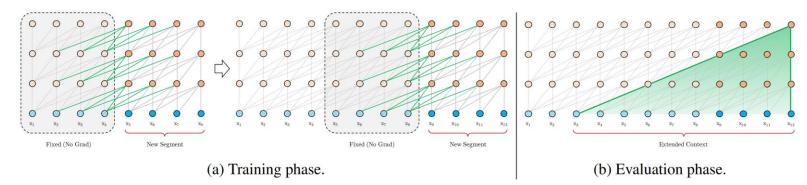
- Idea: segment-level recurrence
 - Previous segment embeddings are **fixed** and **cached** to be reused when training the next segment
 - \rightarrow increases the largest dependency length by N times (N: network depth)



resolve the context fragmentation issue and makes the dependency longer

State Reuse for Segment-Level Recurrence





7—Incoherent Positional Encoding

Issue: naively applying segment-level recurrence can't work
 positional encodings are *incoherent* when reusing

[0, 1, 2, 3] → [0, 1, 2, 3, 0, 1, 2, 3]

8 Self-Attention with Absolute Positions

$$\alpha_{i,j} = q_i \cdot k_j$$

$$W_q(E_{x_i} + U_i)$$

$$W_k(E_{x_j} + U_j)$$

$$W_q$$

$$W_q$$

$$E_{x_i} + U_i$$

$$E_{x_j} + U_j$$

$$W_k$$

$$E_{x_i} + U_i$$

$$E_{x_j} + U_j$$

$$W_k$$

$$W_k$$

$$E_{x_i} + U_i$$

$$W_k$$

Relative Position Encoding

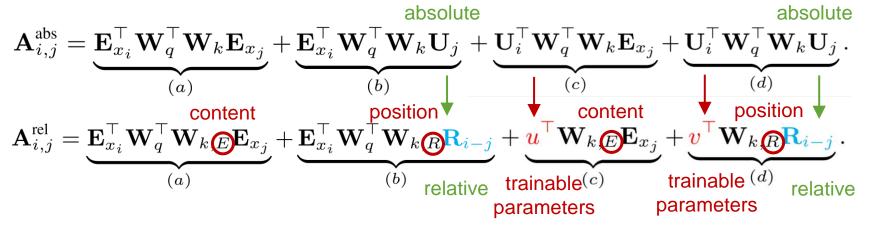
Idea: relative positional encoding $\mathbf{A}_{i,j}^{\mathrm{abs}} = (\mathbf{E}_{x_i} + \mathbf{U}_i)^{ op} \mathbf{W}_q^{ op} \mathbf{W}_k (\mathbf{E}_{x_j} + \mathbf{U}_j)$ absolute $\mathbf{A}_{i,j}^{ ext{rel}} = (\mathbf{E}_{x_i} + \mathbf{U}_i)^ op \mathbf{W}_q^ op \mathbf{W}_k (\mathbf{E}_{x_j} + rac{\mathbf{R}_{i-j}}{\mathbf{R}_{i-j}})$ $\mathbf{A}_{i,j}^{\text{rel}} = \mathbf{E}_{x_i}^{\top} \mathbf{W}_a^{\top} \mathbf{W}_k \mathbf{E}_{x_i} + \mathbf{E}_{x_i}^{\top} \mathbf{W}_a^{\top} \mathbf{W}_k \mathbf{R}_{i-j} + \mathbf{U}_i^{\top} \mathbf{W}_a^{\top} \mathbf{W}_k \mathbf{E}_{x_i} + \mathbf{U}_i^{\top} \mathbf{W}_a^{\top} \mathbf{W}_k \mathbf{R}_{i-j}$ $\mathbf{A}_{i,j}^{\mathrm{rel}} = \mathbf{E}_{x_i}^{ op} \mathbf{W}_q^{ op} \mathbf{W}_{k,\mathbf{E}} \mathbf{E}_{x_j} + \mathbf{E}_{x_i}^{ op} \mathbf{W}_q^{ op} \mathbf{W}_{k,\mathbf{R}} \mathbf{R}_{i-j} + \mathbf{U}_i^{ op} \mathbf{W}_q^{ op} \mathbf{W}_{k,\mathbf{E}} \mathbf{E}_{x_j} + \mathbf{U}_i^{ op} \mathbf{W}_q^{ op} \mathbf{W}_{k,\mathbf{R}} \mathbf{R}_{i-j}$ content position position $\mathbf{A}_{i.i}^{\mathrm{rel}} = \mathbf{E}_{x_i}^\top \mathbf{W}_a^\top \mathbf{W}_{k,E} \mathbf{E}_{x_i} + \mathbf{E}_{x_i}^\top \mathbf{W}_a^\top \mathbf{W}_{k,R} \mathbf{R}_{i-j} + \boldsymbol{u}^\top \mathbf{W}_{k,E} \mathbf{E}_{x_j} + \boldsymbol{v}^\top \mathbf{W}_{k,R} \mathbf{R}_{i-j}$ trainable trainable

- the query vector is the same for all query positions
- the attentive bias towards different words should remain the same

0— Relative Positional Encoding

Idea: relative positional encoding

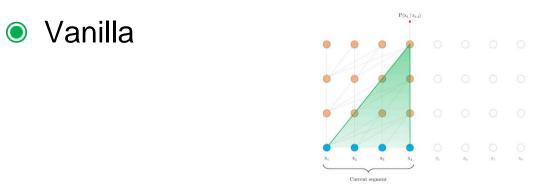
 \sim learnable embeddings \rightarrow fixed embeddings with learnable transformations

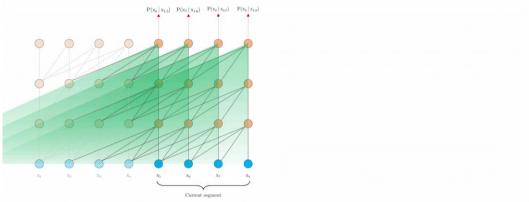


much longer effective contexts than a vanilla model during evaluation

better generalizability to longer sequences

Output - Description - Desc





12 Contributions

- Longer context dependency
 - Learn dependency about 80% longer than RNNs and

450% longer than vanilla Transformers

- Better perplexity on long sequences
- Better perplexity on short sequences by addressing the fragmentation issue

Speed increase

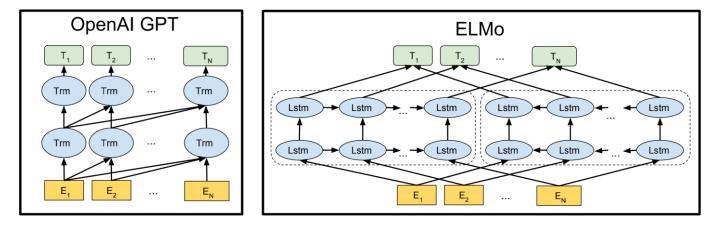
- Process new segments without recomputation
- Achieve up to 1,800+ times faster than a vanilla Transformer during evaluation on LM tasks

(Yang et al., 2019)

4 Auto-Regressive (AR)

 Objective: modeling information based on either previous or following contexts

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)}$$

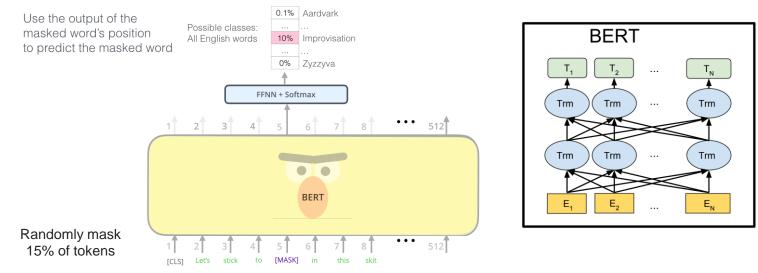


15— Auto-Encoding (AE)

• Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_t \log p_{\theta}(x_t \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_t \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_t^{\top} e(x')\right)}$$

o dimension reduction or denoising (masked LM)



Muto-Encoding (AE)

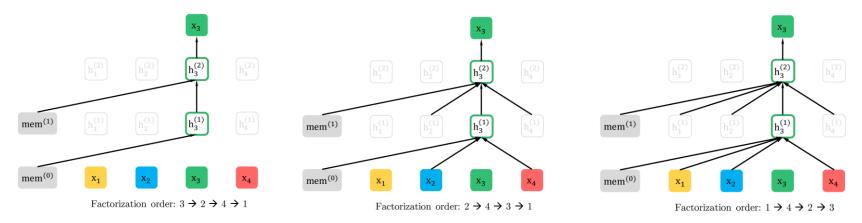
Issues

- Independence assumption: ignore the dependency between masks
- Input noise: discrepancy between pre-training and fine-tuning

(w/[MASK]) (w/o[MASK])

17— Permutation Language Model

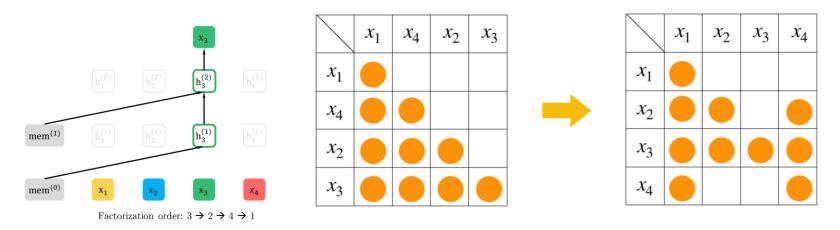
- Goal: use AR and bidirectional contexts for prediction
- Idea: parameters shared across all factorization orders in expectation
 - T! different orders to a valid AR factorization for a sequence of length T
 - Pre-training on sequences sampled from all possible permutations



Permutation Language Model

Implementation: only permute the factorization order

- Remain original positional encoding
- Rely on proper attention masks in Transformers



resolve independence assumption and pretrain-finetune discrepancy issues

19— Formulation Reparameterizing

- Issue: naively applying permutation LM does not work
- Original formulation

$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp\left(e(x)^{\top} h_{\theta}(\mathbf{x}_{z_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^{\top} h_{\theta}(\mathbf{x}_{z_{< t}})\right)}$$

- [MASK] indicates the target position $x_1, x_2, x_3, x_4 \rightarrow P(x_3 | x_1, x_2)$ • $h_{\theta}(x_{z_{< t}})$ does not depend on predicted position $x_1, x_2, x_4, x_3 \rightarrow P(x_4 | x_1, x_2)$
- Reparameterization

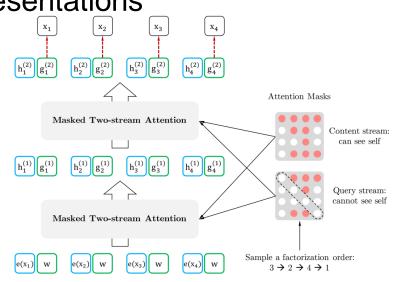
$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp\left(e(x)^{\top} g_{\theta}(\mathbf{x}_{z_{< t}}, z_t)\right)}{\sum_{x'} \exp\left(e(x')^{\top} g_{\theta}(\mathbf{x}_{z_{< t}}, z_t)\right)}$$

• $g_{\theta}(x_{z_{< t}}, z_t)$ is a new embedding considering the target position z_t

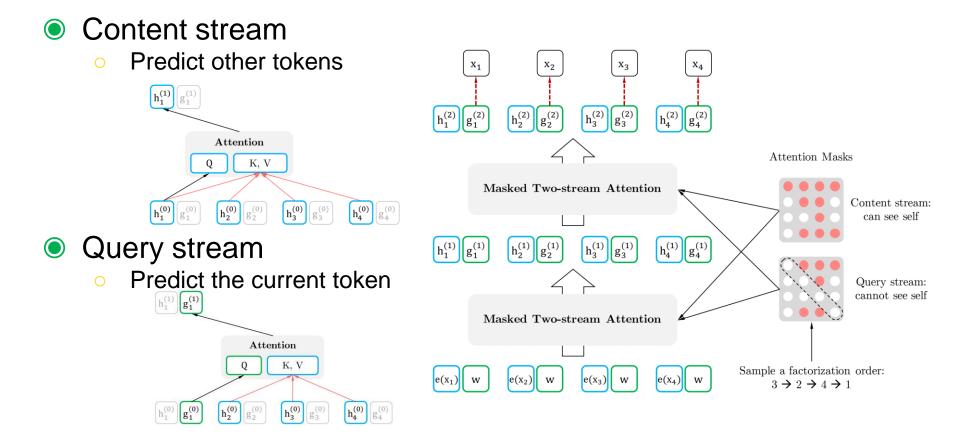
20 Two-Stream Self-Attention

• Formulation of $g(x_{z_{< t}}, z_t)$

-) Predicting the token x_{z_t} should only use the position z_t and not the content x_{z_t}
- 2) Predicting other tokens x_{z_i} (i > t) should encode the content x_{z_t}
- Idea: two sets of hidden representations
 - Content stream: can see self
 - Query stream: cannot see self



21 Two-Stream Self-Attention



Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI					
Single-task single	e models on de	ev												
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-					
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-					
Single-task single	Single-task single models on test													
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1					
Multi-task ensem	bles on test (fi	rom leade	rboard as	s of June	19, 2019)								
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1					
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8					
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0					
XLNet*	90.2/89.7 [†]	98.6 [†]	90.3^{\dagger}	86.3	96.8 [†]	93.0	67.8	91.6	90.4					

AR for addressing independence assumption

 $\mathcal{J}_{\text{BERT}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city})$

 $\mathcal{J}_{\text{XLNet}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city})$

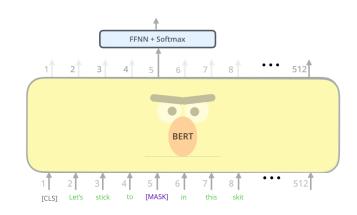
• AE for addressing the pretrain-finetune discrepancy $\mathcal{J}_{\text{BERT}} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N}); \quad \mathcal{J}_{\text{XLNet}} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N} \cup \mathcal{T}_{< x})$

²⁵ What's More in RoBERTa

Oynamic masking

- 10 different masking ways over 40 epochs
 - BERT: static masking by preprocessing

Masking	SQuAD 2.0	MNLI-m	SST-2
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9



Optimization

- peak learning-rate & #warmup-steps tuned separately
- large batch (batch size=8K)

batch size	learning rate	arning rate epochs steps perplexity		MNLI-m	SST-2	
256	1e-4	32	1 M	3.99	84.7	92.5
2K	7e-4	32 64 128	125K 250K 500K	3.68 3.59 3.51	85.2 85.3 85.4	93.1 94.1 93.5
8K	1e-3	32 64 128	31K 63K 125K	3.77 3.60 3.50	84.4 85.3 85.8	93.2 93.5 94.1

20 What's More in RoBERTa

Data

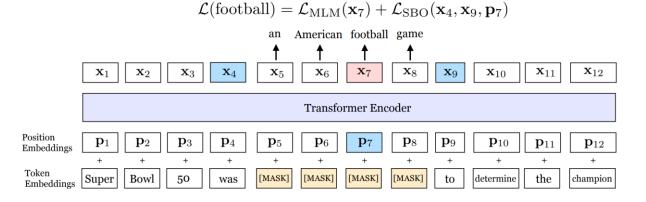
- train only with full-length sequences
 - BERT: on the reduced length
- BookCorpus + English Wikipedia (16G), CC-News (76G), OpenWebText (38G), Stories (31G)

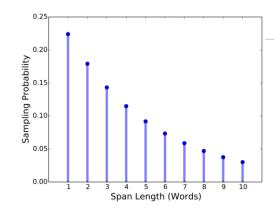
Model	data	batch size	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE} with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
XLNet _{LARGE} with BOOKS + WIKI + additional data	13GB 126GB	256 2K	1M 500K	94.0/87.8 94.5/88.8	88.4 89.8	94.4 95.6

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

(Joshi et al., 2019)

- Span masking
 - A random process to mask spans of tokens
- Single sentence training
 - a single contiguous segment of text for each training sample (instead of two)
- Span boundary objective (SBO)
 - predict the entire masked span using only the span's boundary





Masking scheme

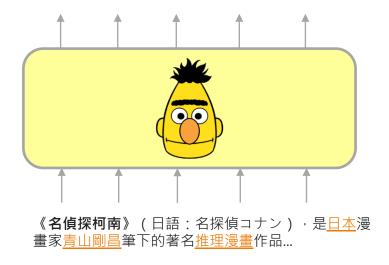
	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Subword Tokens	83.8	72.0	76.3	77.7	86.7	92.5
Whole Words	84.3	72.8	77.1	76.6	86.3	92.8
Named Entities	84.8	72.7	78.7	75.6	86.0	93.1
Noun Phrases	85.0	73.0	77.7	76.7	86.5	93.2
Random Spans	85.4	73.0	78.8	76.4	87.0	93.3

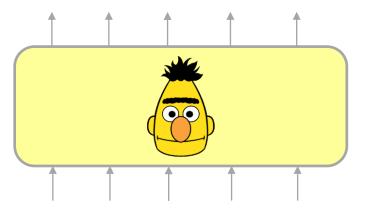
Auxiliary objective

	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Span Masking (2seq) + NSP	85.4	73.0	78.8	76.4	87.0	93.3
Span Masking (1seq)	86.7	73.4	80.0	76.3	87.3	93.8
Span Masking (1seq) + SBO	86.8	74.1	80.3	79.0	87.6	93.9

(Devlin et al., 2018)

- Data: Wikipedia in top 104 languages
 - Code-mixing helps align words in different languages





Case Closed, also known as Detective Conan (<u>Japanese</u>: 名 探偵コナン, <u>Hepburn</u>: Meitantei Konan, lit. "Great Detective Conan"), is a Japanese <u>detective manga</u> series

(Lample & Connueau, 2019)

Masked LM + Translation LM

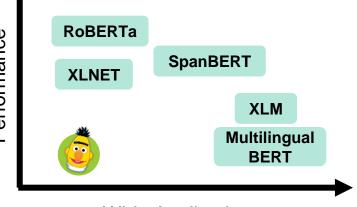
Masked Languag Modeling (MLM)	je	take			[/s]			drink		now		
		<u> </u>			<u> </u>	Transt	ormer	<u> </u>		<u> </u>		
	•	•	^	^	▲	^	<u>▲</u>	•	^	•	^	▲
Token embeddings	[/s]	[MASK]	a	seat	[MASK]	have	a	[MASK]	[/s]	[MASK]	relax	and
-	+	+	+	+	+	+	+	+	+	+	+	+
Position embeddings	0	1	2	3	4	5	6	7	8	9	10	11
	+	+	+	+	+	+	+	+	+	+	+	+
Language embeddings	en	en	en	en	en	en	en	en	en	en	en	en
Translation Language												
Translation Lang Modeling (TLM)	juage		curtains	were				les			bleus	
	juage			were		Transf	ormer					
	juage	↑		were	↑	Transt ↑	former ↑		↑	↑		
	Juage ↑ [/s]	↑ the	▲	were MASK]	blue	Transt	former	<u>↑</u>	rideaux	↑ étaient		↑ [/s]
Modeling (TLM) Token embeddings	▲ ▲	↑ the +	↑	↑	↑ blue +	^	1	↑ ↑	rideaux +	∱ étaient +	↑	↑ [/s] +
Modeling (TLM)	▲ [/s] + 0	+	↑ [MASK] + 2	↑ [MASK] + 3	+ 4	↑ [/s] + 5	↑ [/s] +	↑ [MASK] + 1	+ 2	+ 3	↑ [MASK] + 4	+
Modeling (TLM) Token embeddings Position	▲	+	↑ [MASK] +	↑ [MASK] +	+	 [/s] +	↑ [/s] +	↑ [MASK] +	+	+	↑ [MASK] +	+

Cross-lingual classification

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW	ur	Δ
Machine translation baselines	(TRAN	ISLATE	E-TRAI	V)												
Devlin et al. (2018)	81.9	-	77.8	75.9	-	-	-	-	70.7	-	-	76.6	-	-	61.6	-
XLM (MLM+TLM)	<u>85.0</u>	<u>80.2</u>	<u>80.8</u>	<u>80.3</u>	<u>78.1</u>	<u>79.3</u>	<u>78.1</u>	<u>74.7</u>	<u>76.5</u>	<u>76.6</u>	<u>75.5</u>	<u>78.6</u>	<u>72.3</u>	<u>70.9</u>	63.2	<u>76.7</u>
Machine translation baselines (TRANSLATE-TEST)																
Devlin et al. (2018)	81.4	-	74.9	74.4	-	-	-	-	70.4	-	-	70.1	-	-	62.1	-
XLM (MLM+TLM)	<u>85.0</u>	79.0	79.5	78.1	77.8	77.6	75.5	73.7	73.7	70.8	70.4	73.6	69.0	64.7	65.1	74.2
Evaluation of cross-lingual set	ntence	encode	rs													
Conneau et al. (2018b)	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	65.6
Devlin et al. (2018)	81.4	-	74.3	70.5	-	-	-	-	62.1	-	-	63.8	-	-	58.3	-
Artetxe and Schwenk (2018)	73.9	71.9	72.9	72.6	73.1	74.2	71.5	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0	70.2
XLM (MLM)	83.2	76.5	76.3	74.2	73.1	74.0	73.1	67.8	68.5	71.2	69.2	71.9	65.7	64.6	63.4	71.5
XLM (MLM+TLM)	<u>85.0</u>	78. 7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	<u>67.3</u>	75.1

36— Concluding Remarks

- Transformer-XL (<u>https://github.com/kimiyoung/transformer-xl</u>)
 - Longer context dependency
- XLNet (<u>https://github.com/zihangdai/xlnet</u>)
 - AR + AE
 - No pretrain-finetune discrepancy
- RoBERTa (<u>http://github.com/pytorch/fairseq</u>)
 - Optimization details & data
- SpanBERT
 - Better for QA, NLI, coreference
- Multilingual BERT (<u>https://github.com/google-research/bert</u>)
- XLM (<u>https://github.com/facebookresearch/XLM</u>)
 - Zero-shot scenarios



Wide Applications

Better Performance