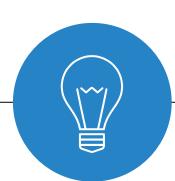
Transformer

October 13th, 2022 <u>http://adl.miulab.tw</u>



Applied Deep Learning

National

² Sequence Encoding Basic Attention

Representations of Variable Length Data

- Input: word sequence, image pixels, audio signal, click logs Property: continuity, temporal, importance distribution
- Example

3

- Basic combination: average, sum
- Neural combination: network architectures should consider input domain properties CNN (convolutional neural network)

 - RNN (recurrent neural network): temporal information —

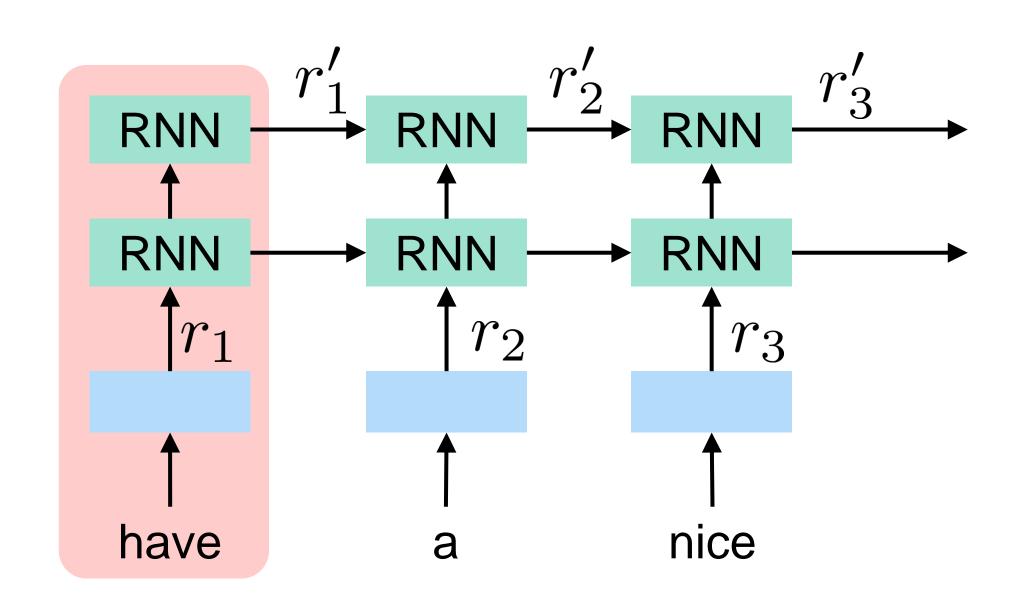
Network architectures should consider the input domain properties

Recurrent Neural Networks

Learning variable-length representations

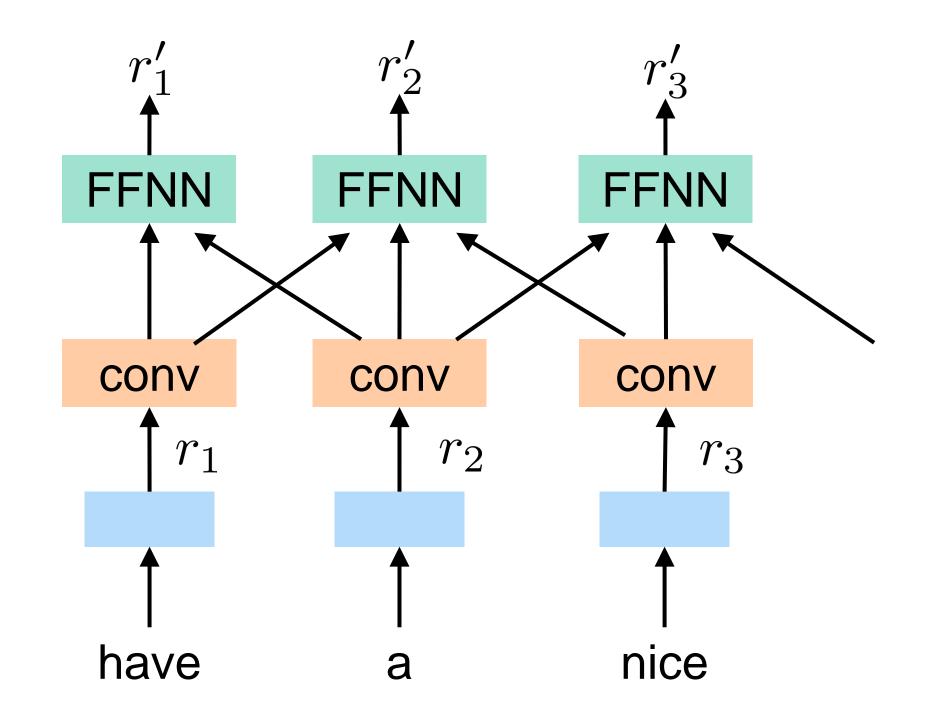
4

- Fit for sentences and sequences of values
- Sequential computation makes parallelization difficult
- No explicit modeling of long and short range dependencies



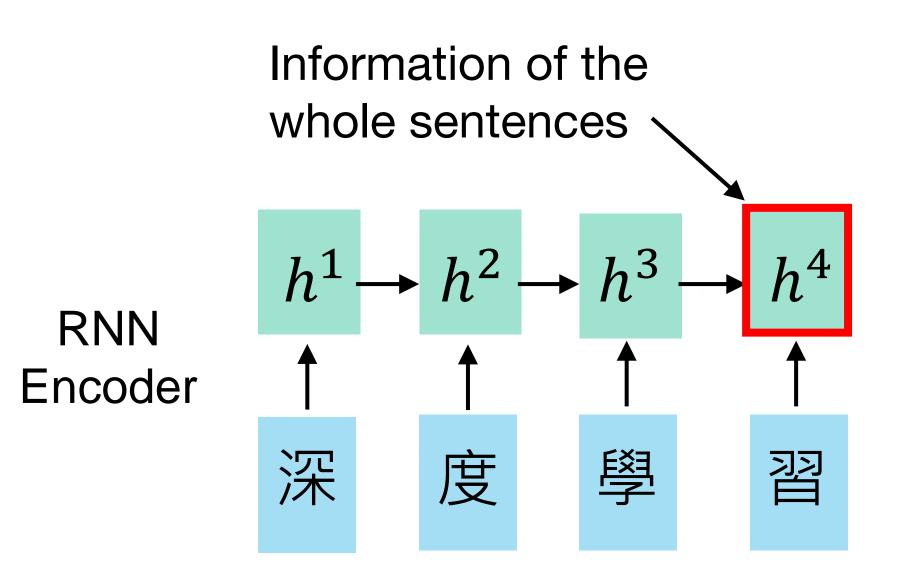
Convolutional Neural Networks 5

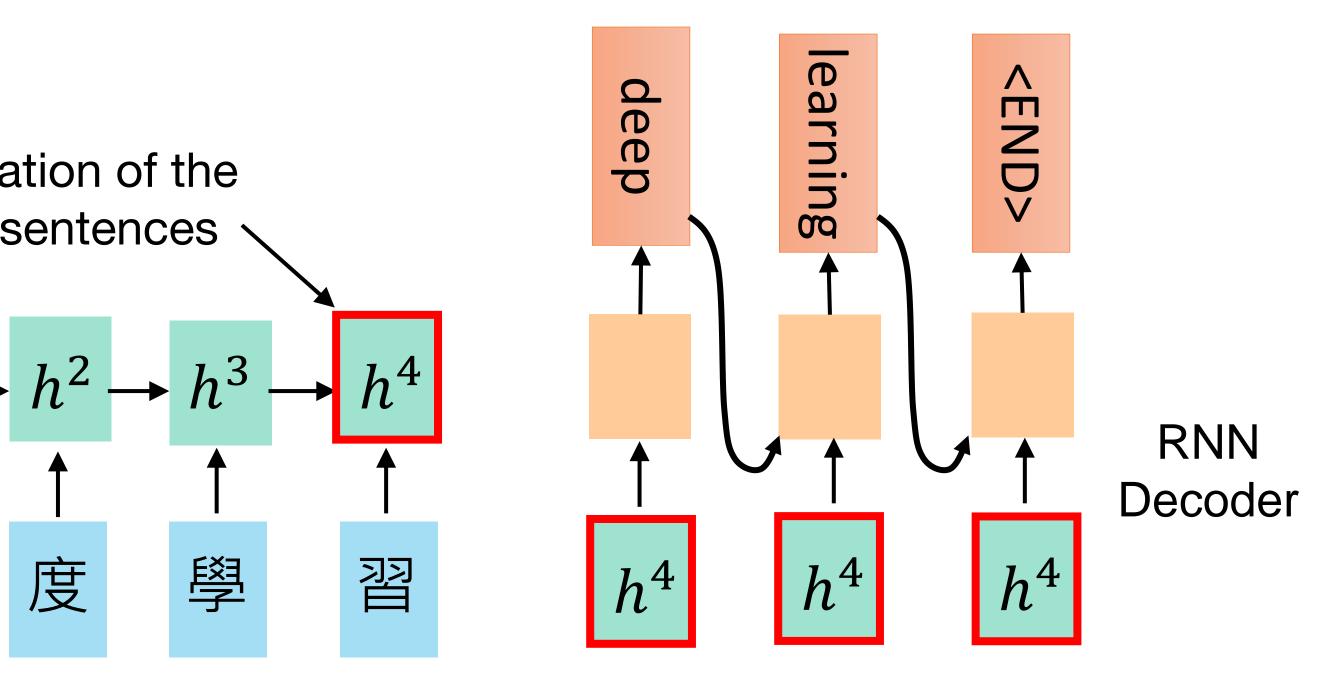
- Easy to parallelize
- Exploit local dependencies
 - Long-distance dependencies require many layers \checkmark

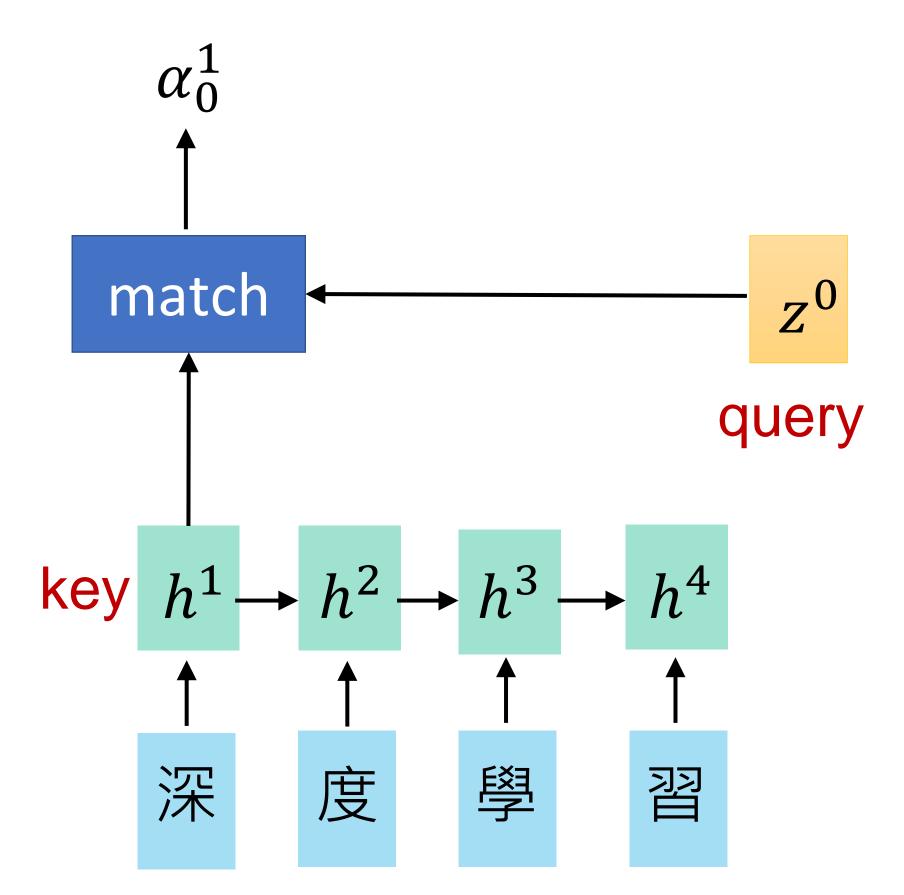


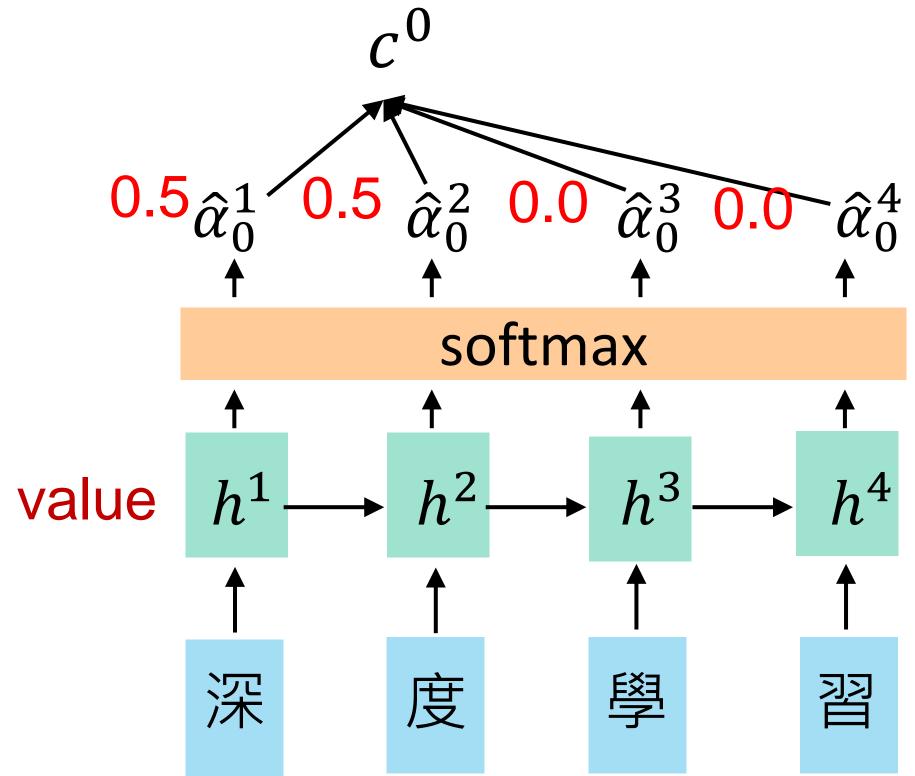
Attention 6

- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state







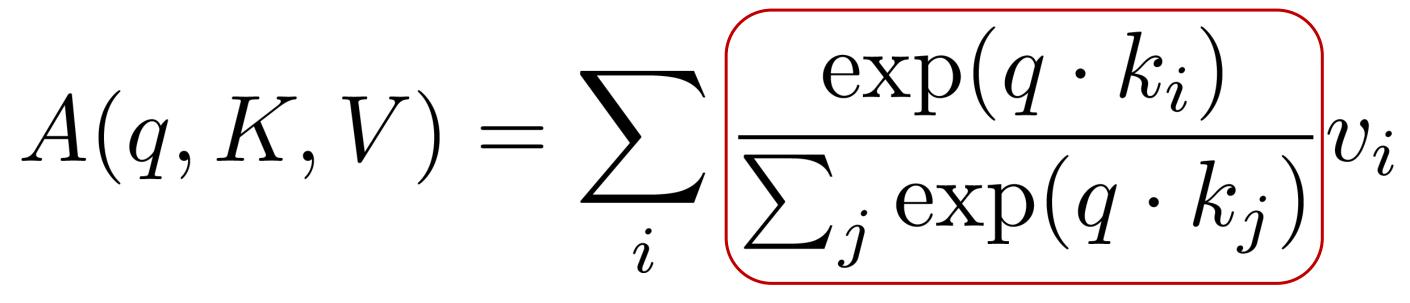


Dot-Product Attention 8

- Input: a query q and a set of key-value (k-v) pairs to an output
- Output: weighted sum of values

Query q is a d_k -dim vector Key k is a d_k -dim vector Value v is a d_v -dim vector

Inner product of query and corresponding key

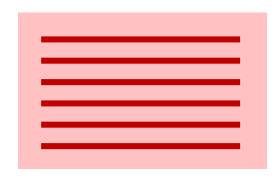


Dot-Product Attention in Matrix

- Input: *multiple* queries q and a set of key-value (k-v) pairs to an output Output: a set of weighted sum of values

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

$$A(Q, K, V) = s$$



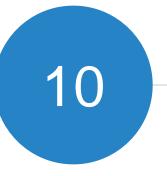
softmax row-wise

9

 $\operatorname{softmax}(QK^{T})V$

$[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$ $= [|Q| \times d_v]$

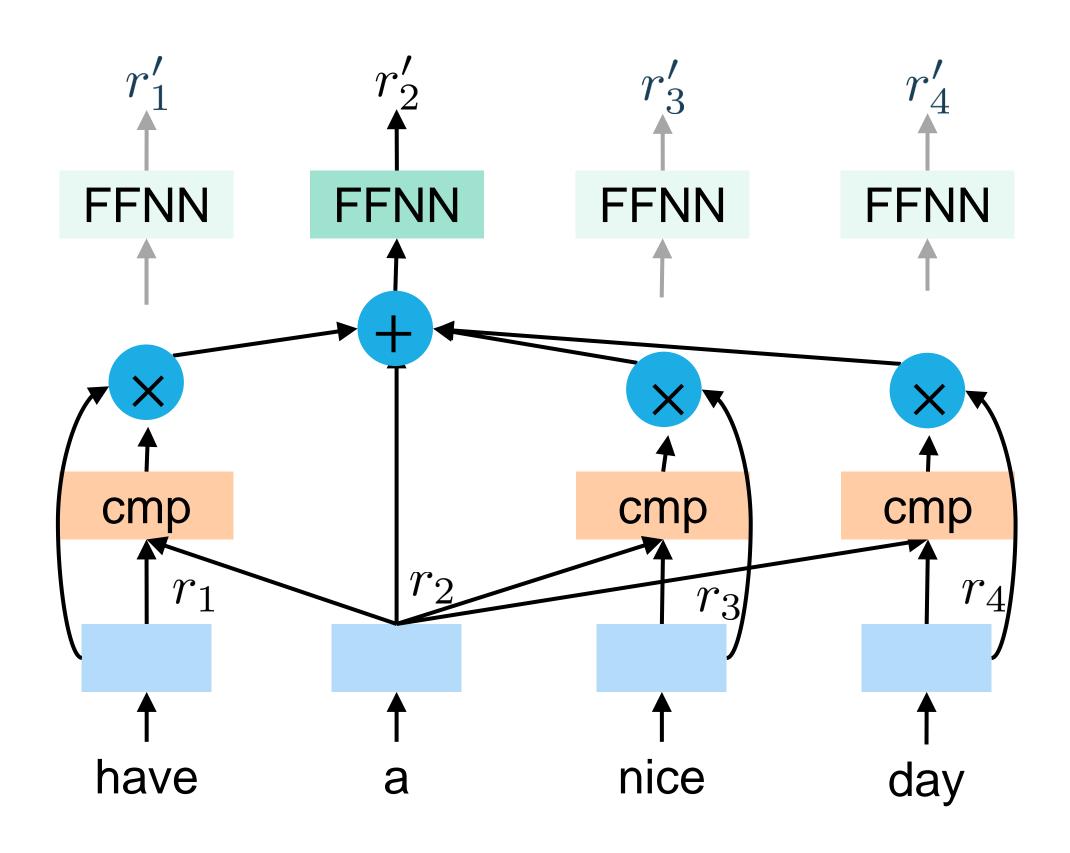
Sequence Encoding Self-Attention



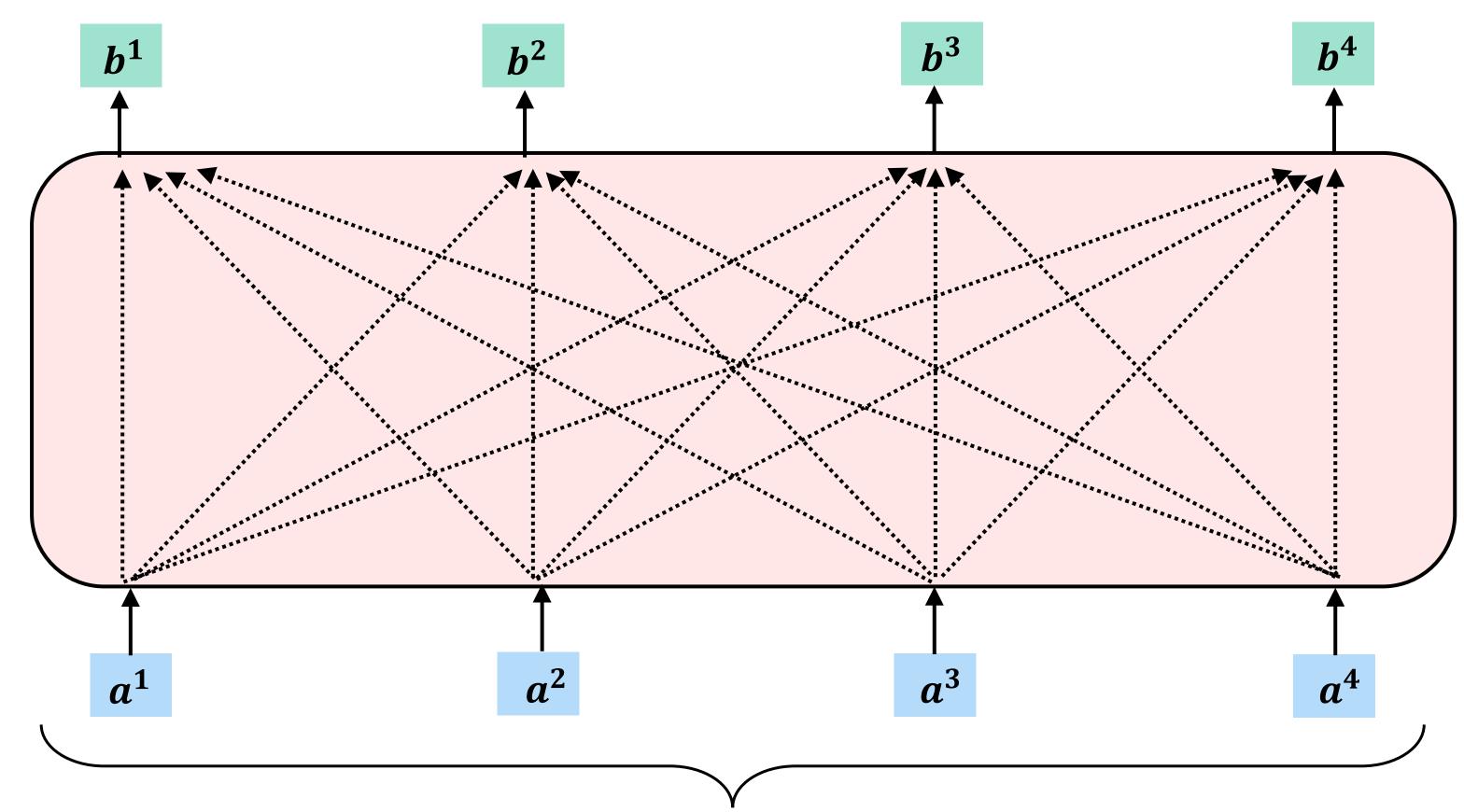
- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state

Using attention to replace recurrence architectures

- Constant "path length" between two positions
- Easy to parallelize

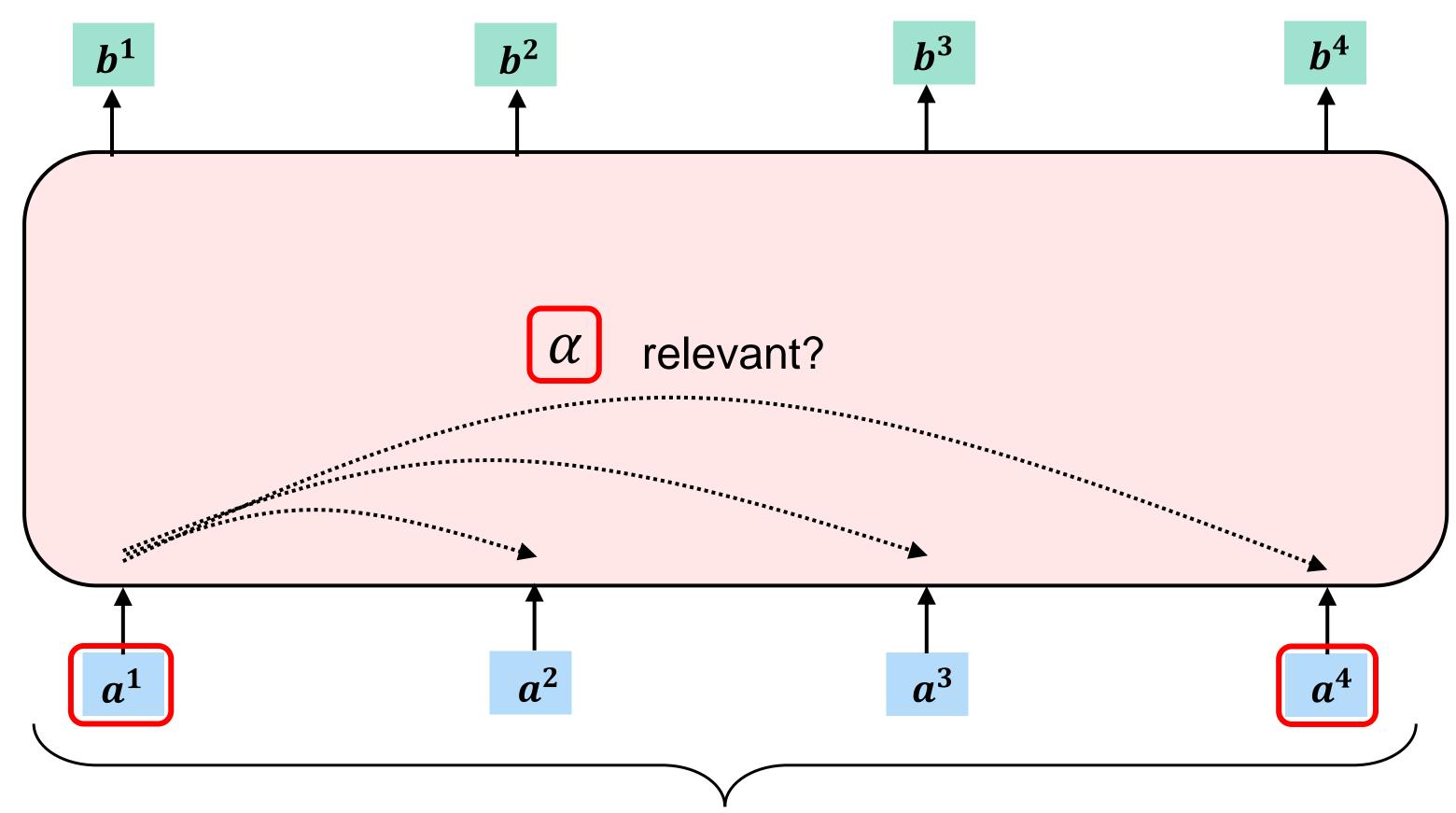


- Constant "path length" between two positions
- Easy to parallelize

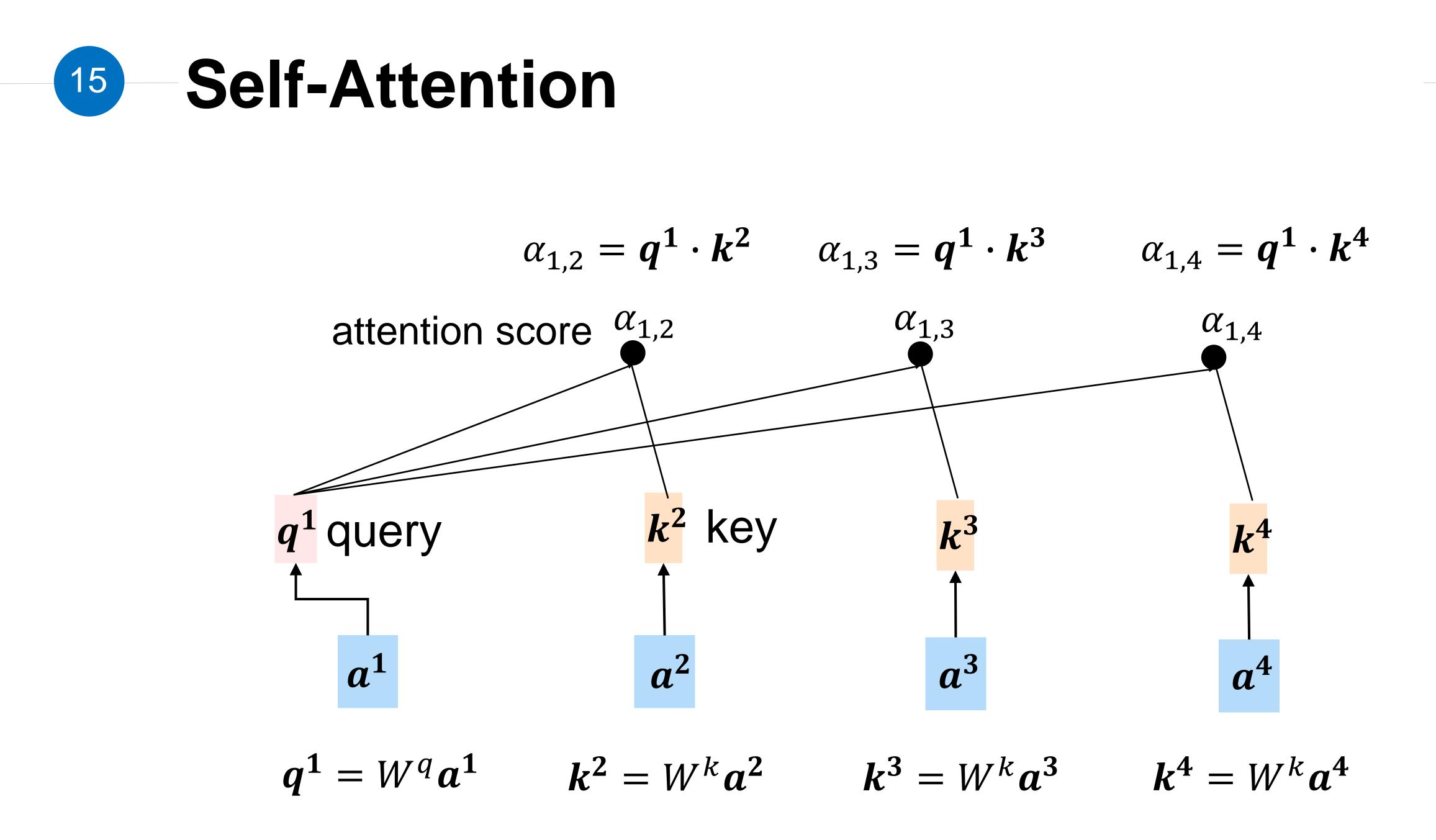


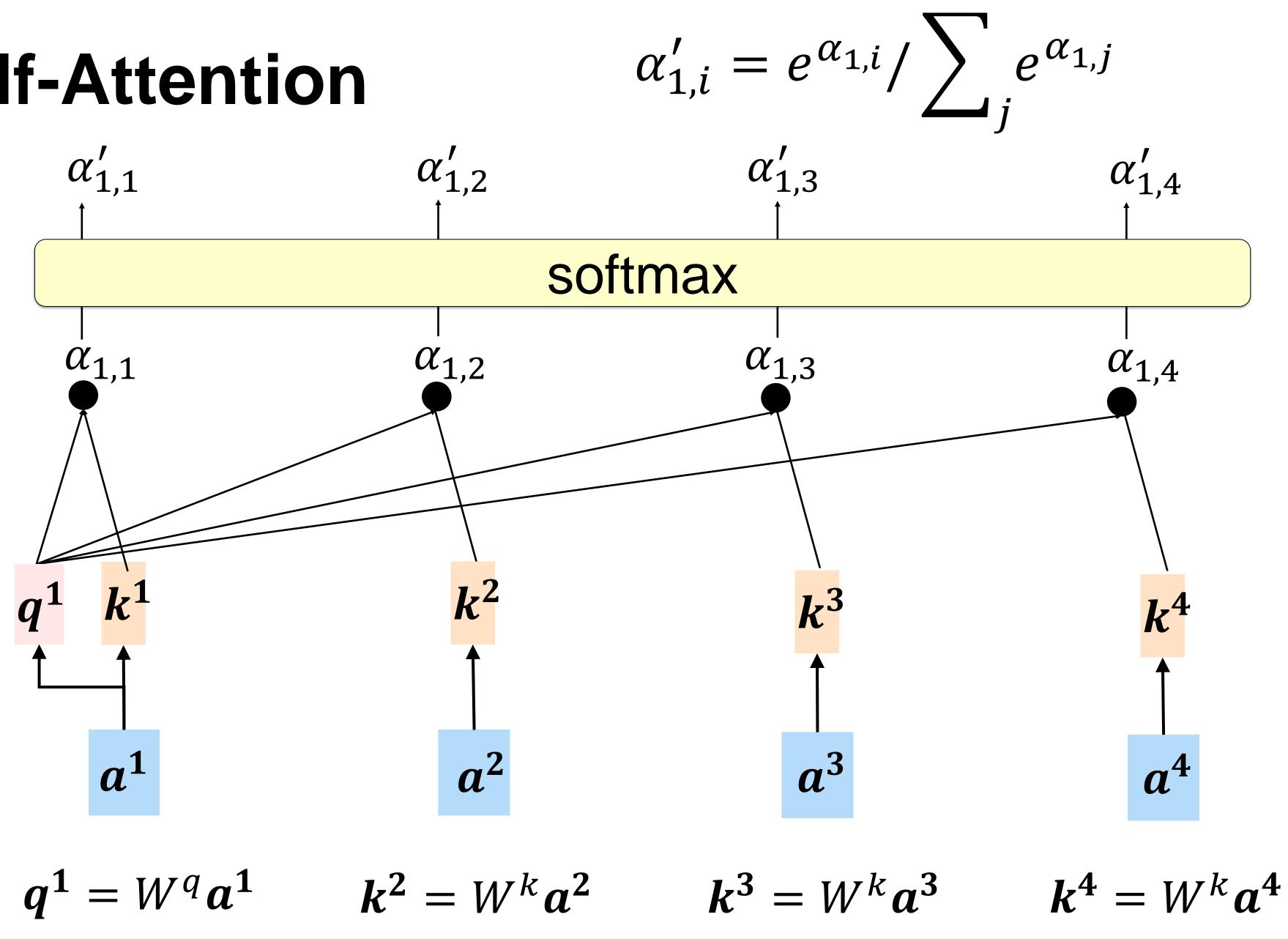
Can be either input or a hidden layer

- Constant "path length" between two positions
- Easy to parallelize



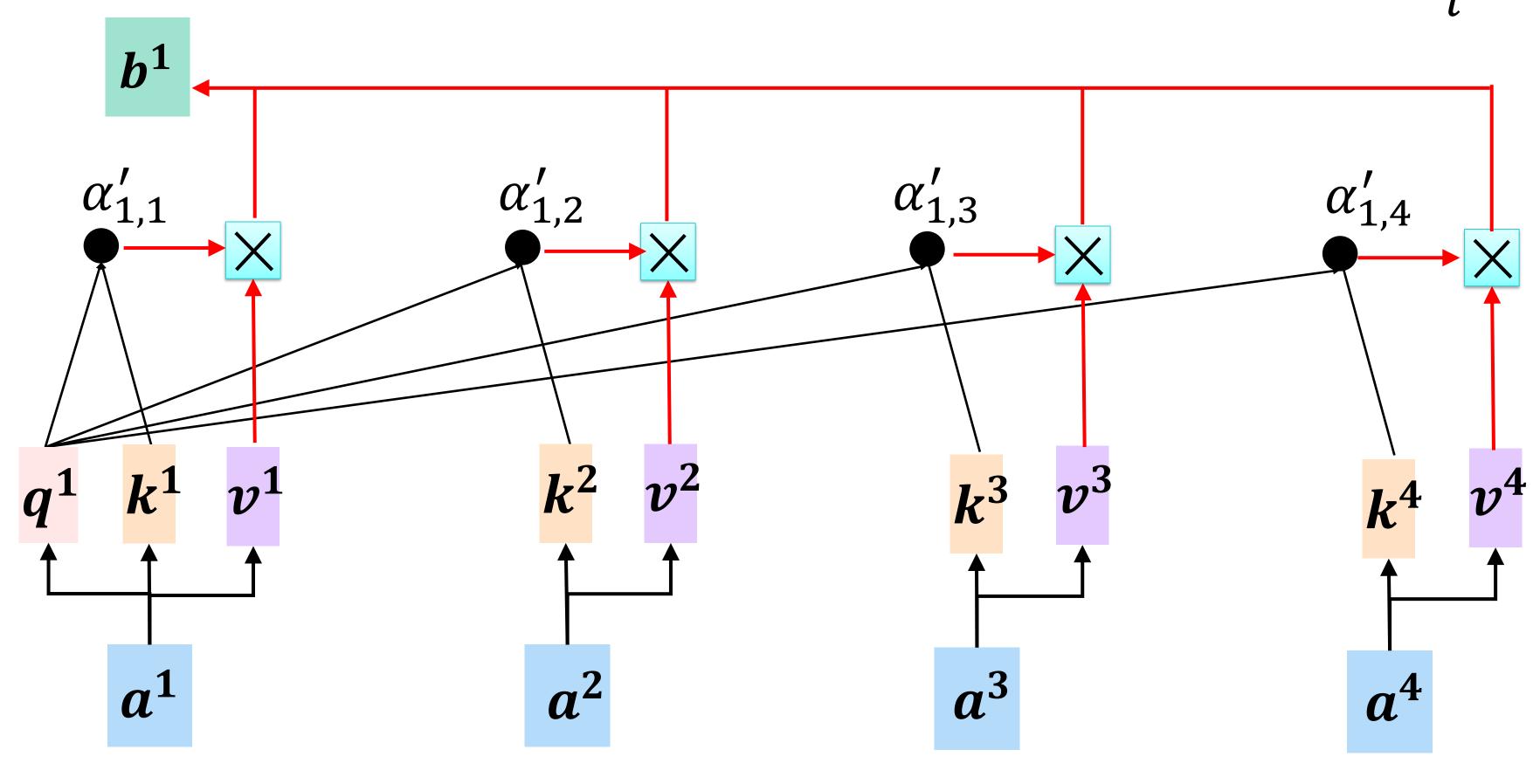
Can be either input or a hidden layer





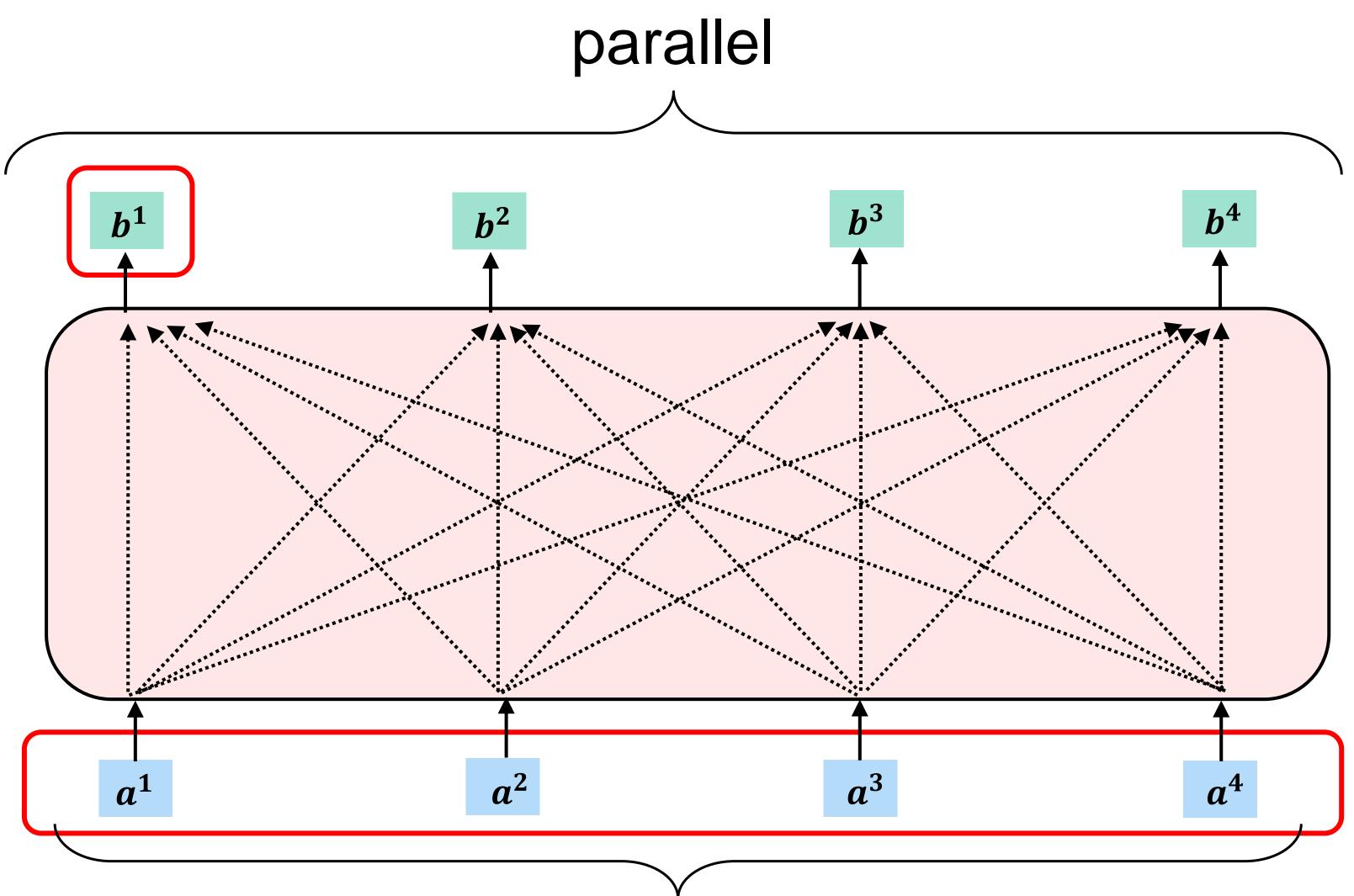
$$q^{1} = W^{q}a^{1} \qquad k^{2} = W^{k}a$$
$$k^{1} = W^{k}a^{1}$$

Self-Attention extract information based $b^1 = \sum_{i} \alpha'_{1,i} v^i$ on attention scores

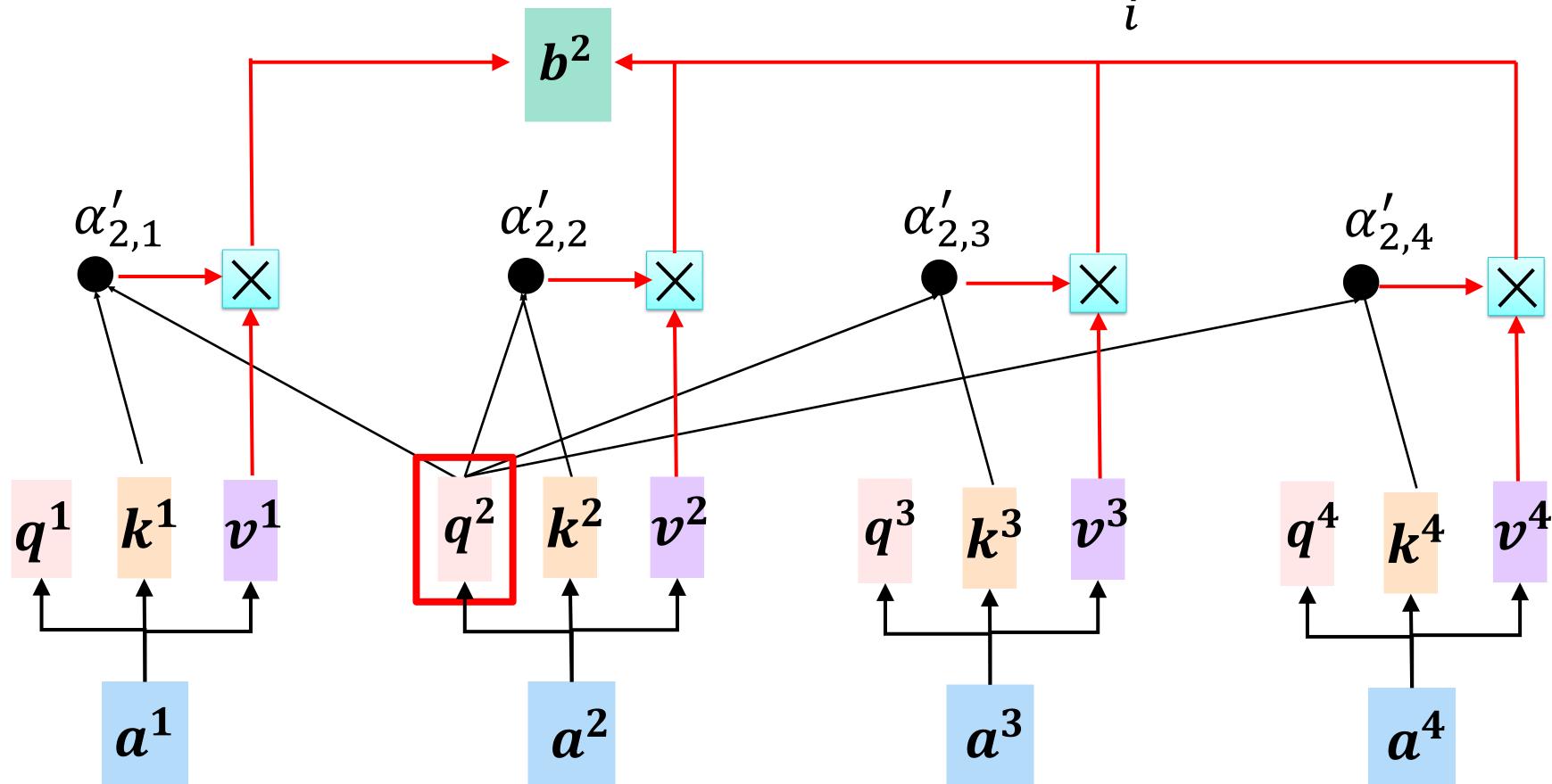


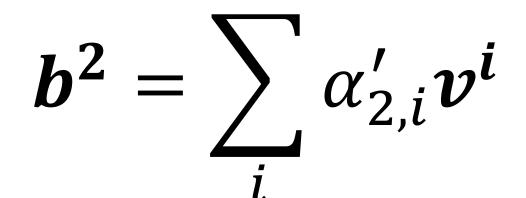
 $v^1 = W^v a^1$ $v^2 = W^v a$

$$v^2 \qquad v^3 = W^v a^3 \qquad v^4 = W^v a^4$$



Can be either input or a hidden layer

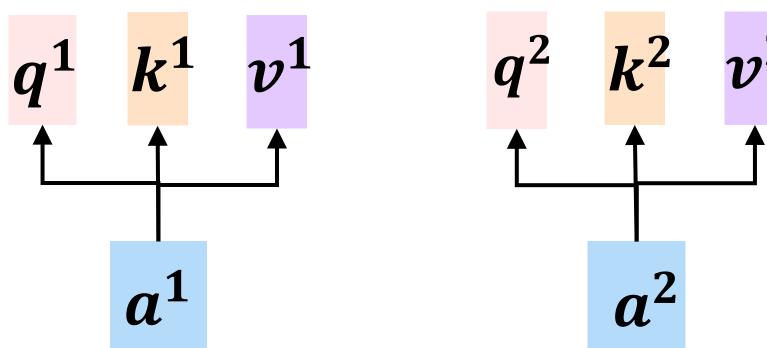




Self-Attention $q^i = V$

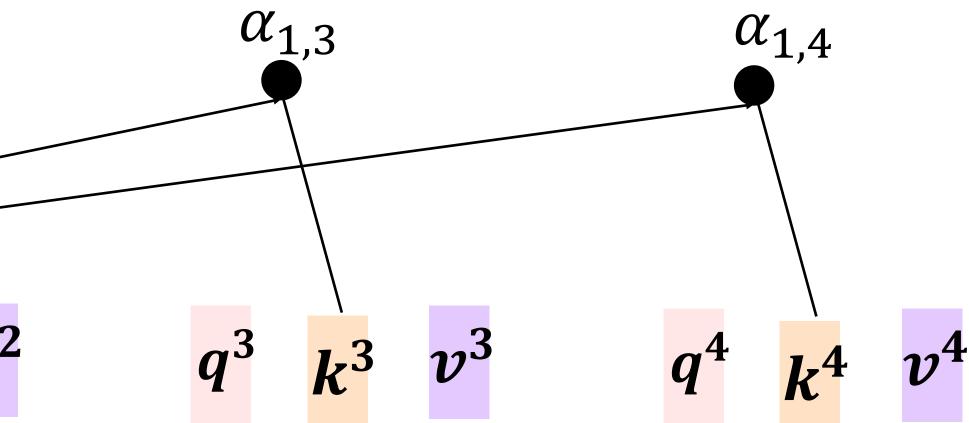
 $k^i =$

 $v^i =$

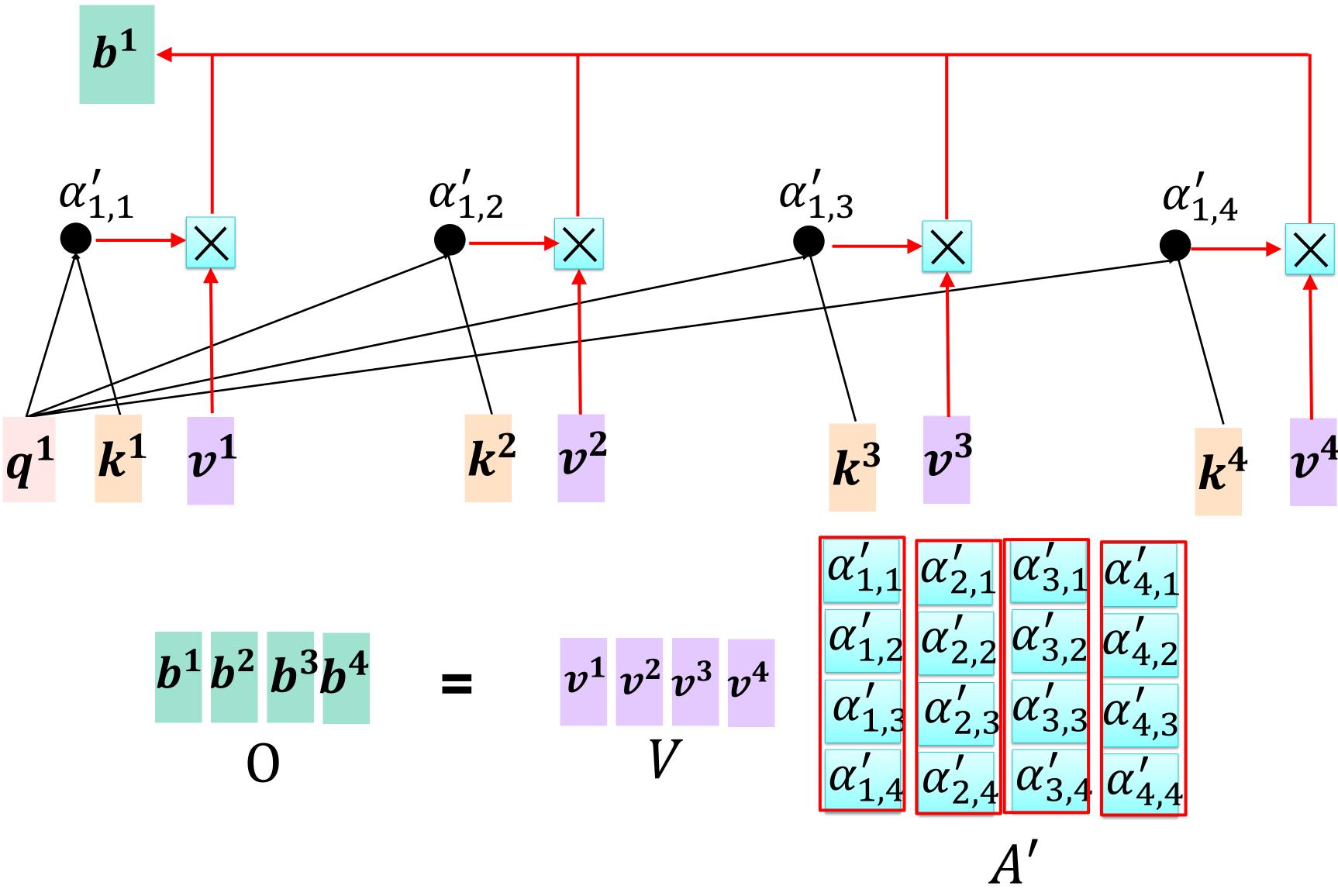


W ^q a ⁱ	$q^1 q^2 q^3 q^4 =$	$W^q a^1 a^2 a^3 a^4$
	Q	Ι
$W^k a^i$	$k^1 k^2 k^3 k^4 =$	$W^k a^1 a^2 a^3 a^4$
	K	Ι
$W^{v} a^{i}$	$v^1 v^2 v^3 v^4 =$	W^{v} a^{1} a^{2} a^{3} a^{4}
	V	Ι
,2	$q^3 k^3 v^3$	q^4 k^4 v^4
ſ		
	a ³	a ⁴

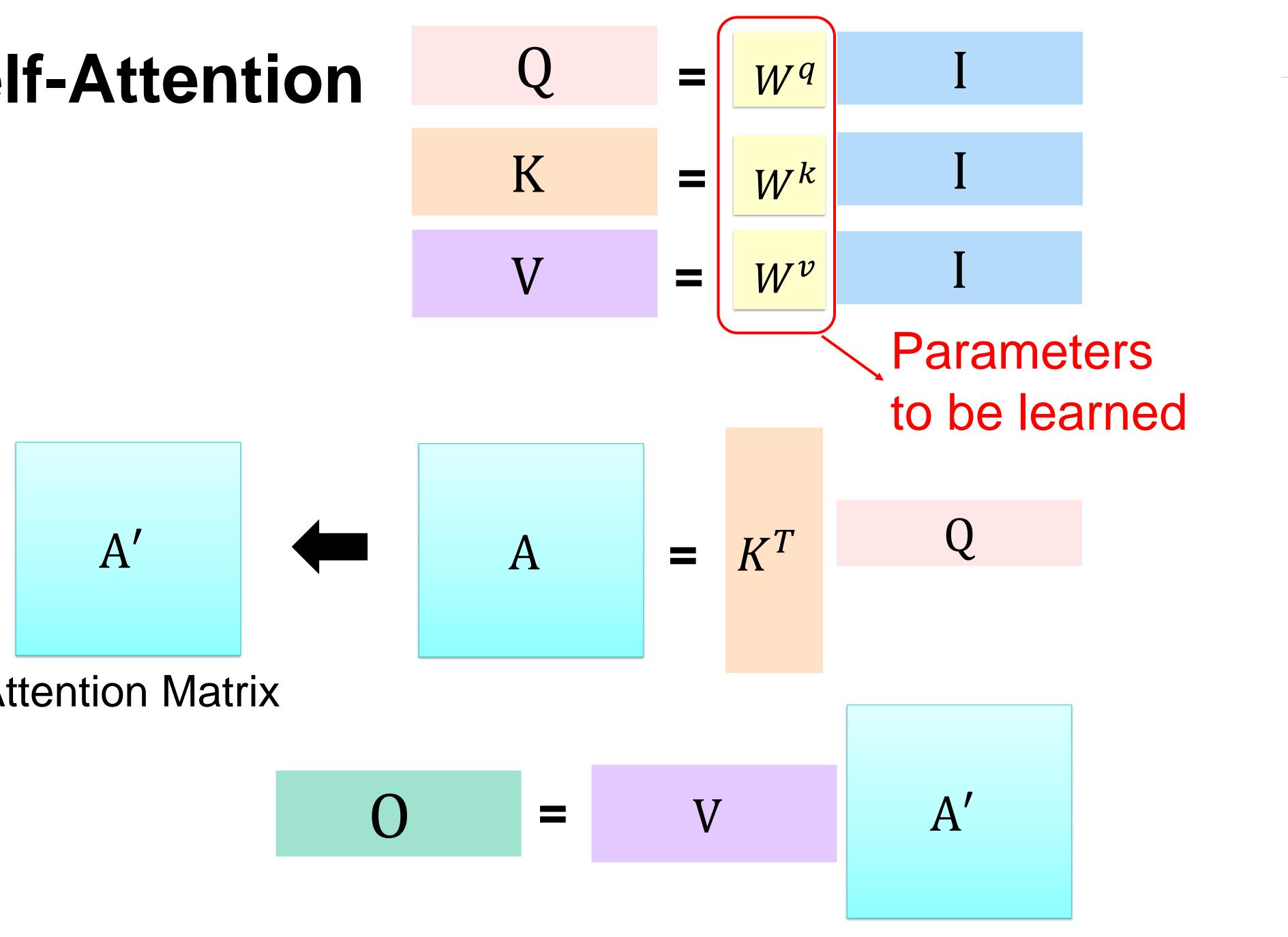
Self-Attention $\alpha_{1,1} = k^1 q^1 \alpha_{1,2} =$ $\alpha_{1,3} = k^3 q^1 \alpha_{1,4} =$ $\alpha_{1,1}$ $\alpha_{1,2}$ $q^2 k^2 v^2$ v^1 q^1 k^1 $\alpha'_{1,1} \alpha'_{2,1} \alpha'_{3,1} \alpha'_{4,1}$ $\alpha_{1,1} \ \alpha_{2,1} \ \alpha_{3,1} \ \alpha_{4,1}$ $\alpha'_{1,2} \alpha'_{2,2} \alpha'_{3,2} \alpha'_{4,2}$ $\alpha_{1,2} \ \alpha_{2,2} \ \alpha_{3,2} \ \alpha_{4,2}$ $\alpha'_{1,3} \; \alpha'_{2,3} \; \alpha'_{3,3} \; \alpha'_{4,3}$ $\alpha_{1,3} \alpha_{2,3} \alpha_{3,3} \alpha_{4,3}$ $\alpha'_{1,4} \alpha'_{2,4} \alpha'_{3,4} \alpha'_{4,4}$ $\alpha_{1,4} \alpha_{2,4} \alpha_{3,4} \alpha_{4,4}$ A'A



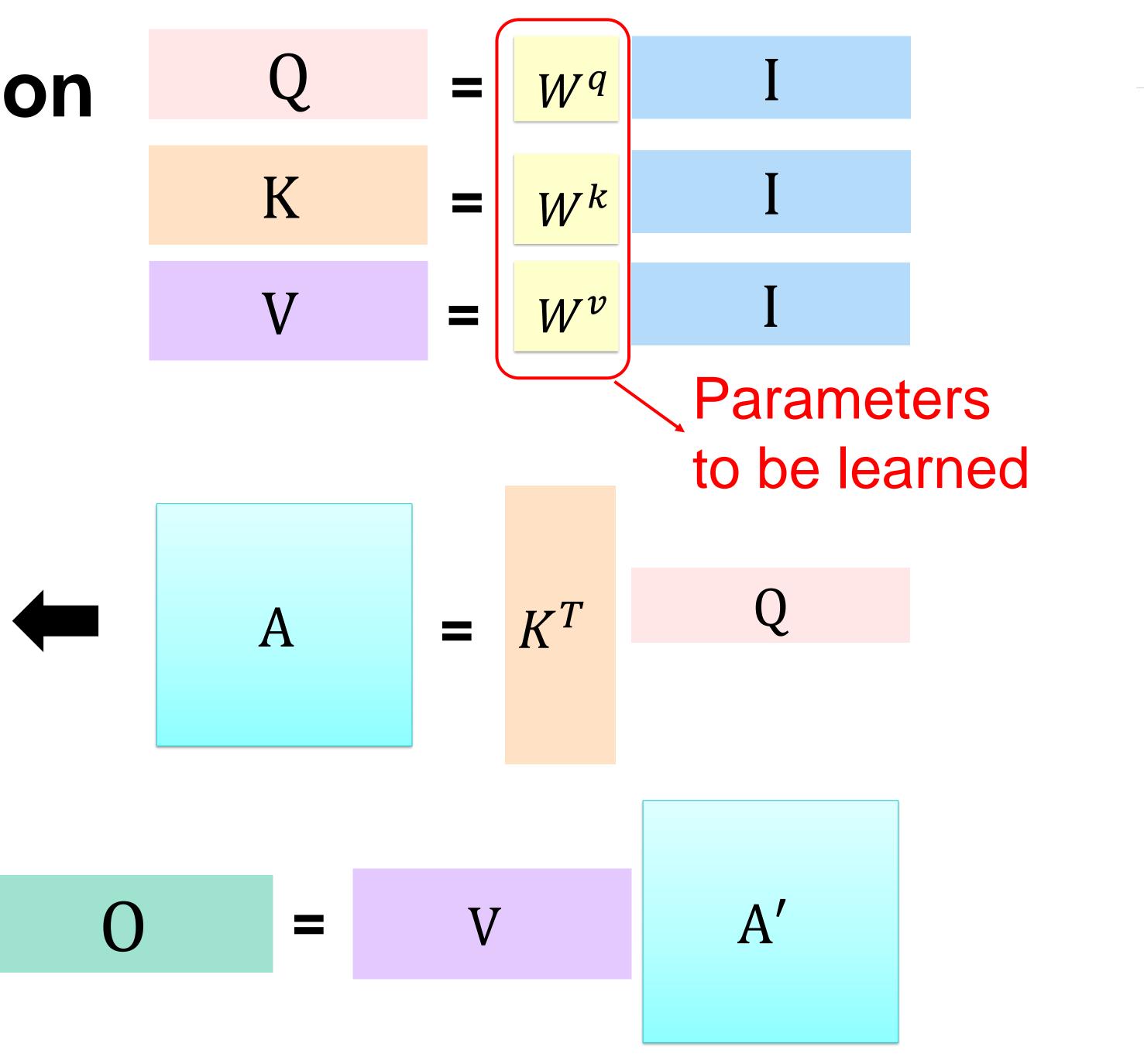
 k^1 k² k³ $q^1 q^2 q^3 q^4$ *k*⁴ K^T

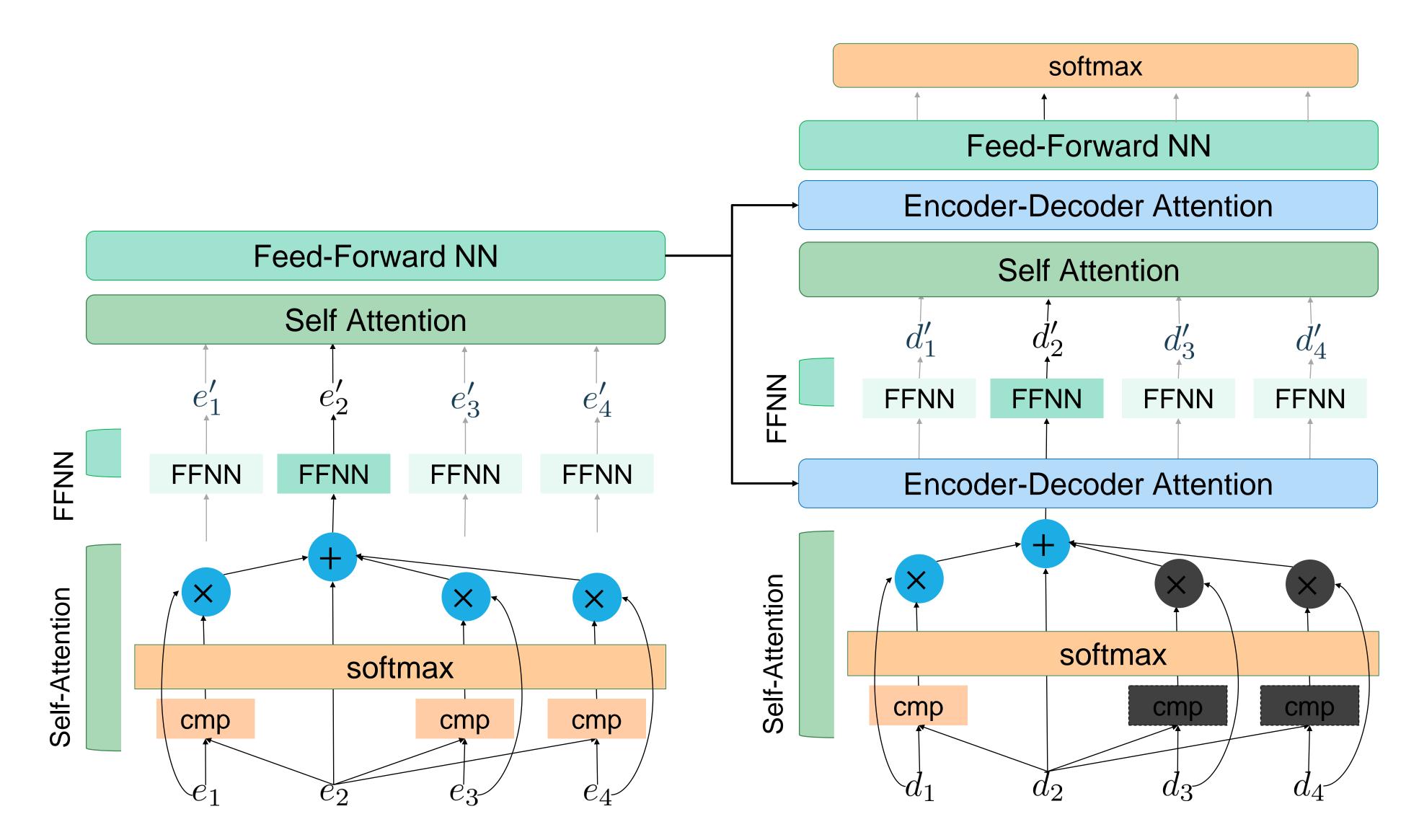


$$b^{1} b^{2} b^{3} b^{4} = v$$

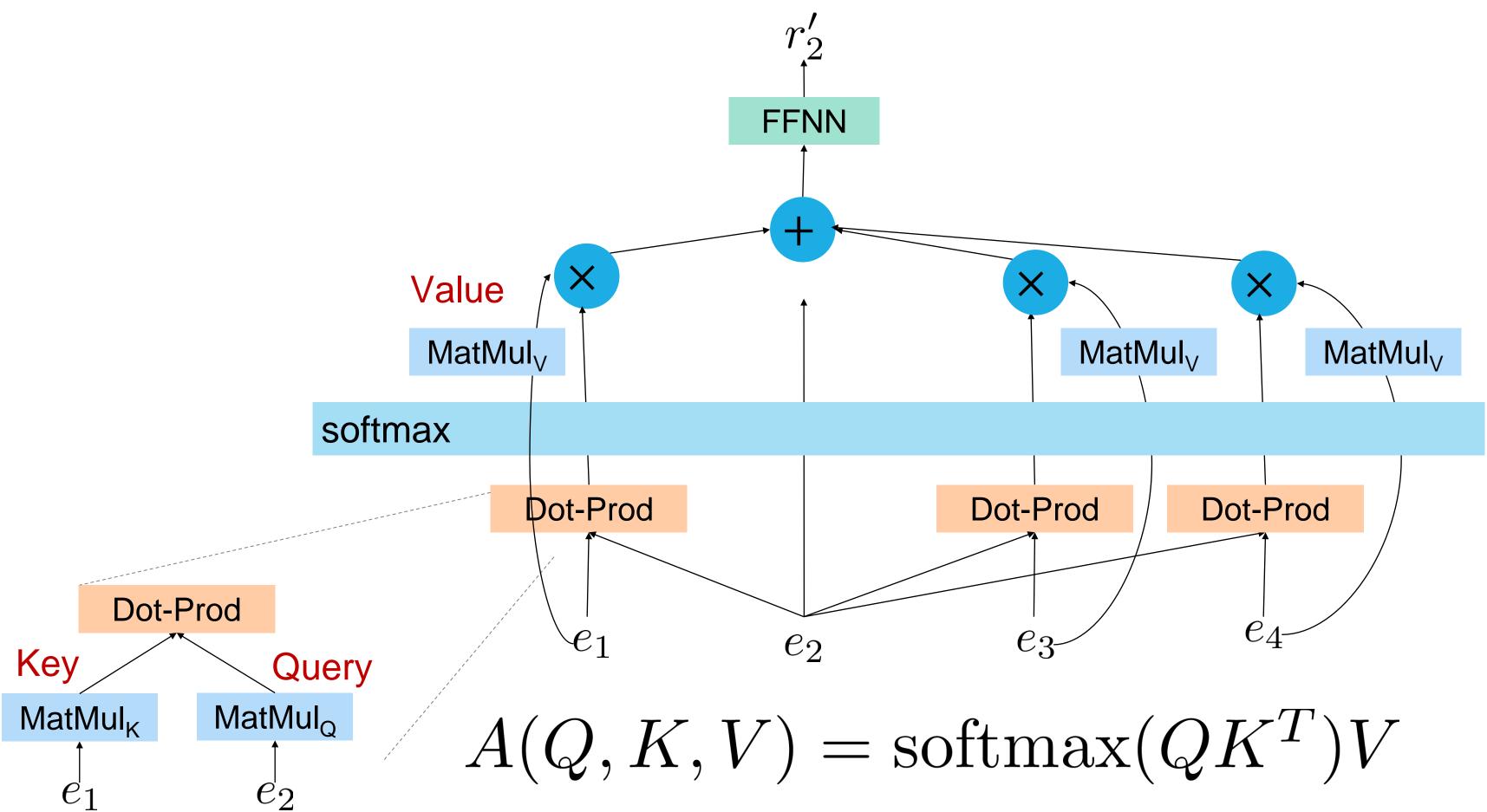


Attention Matrix



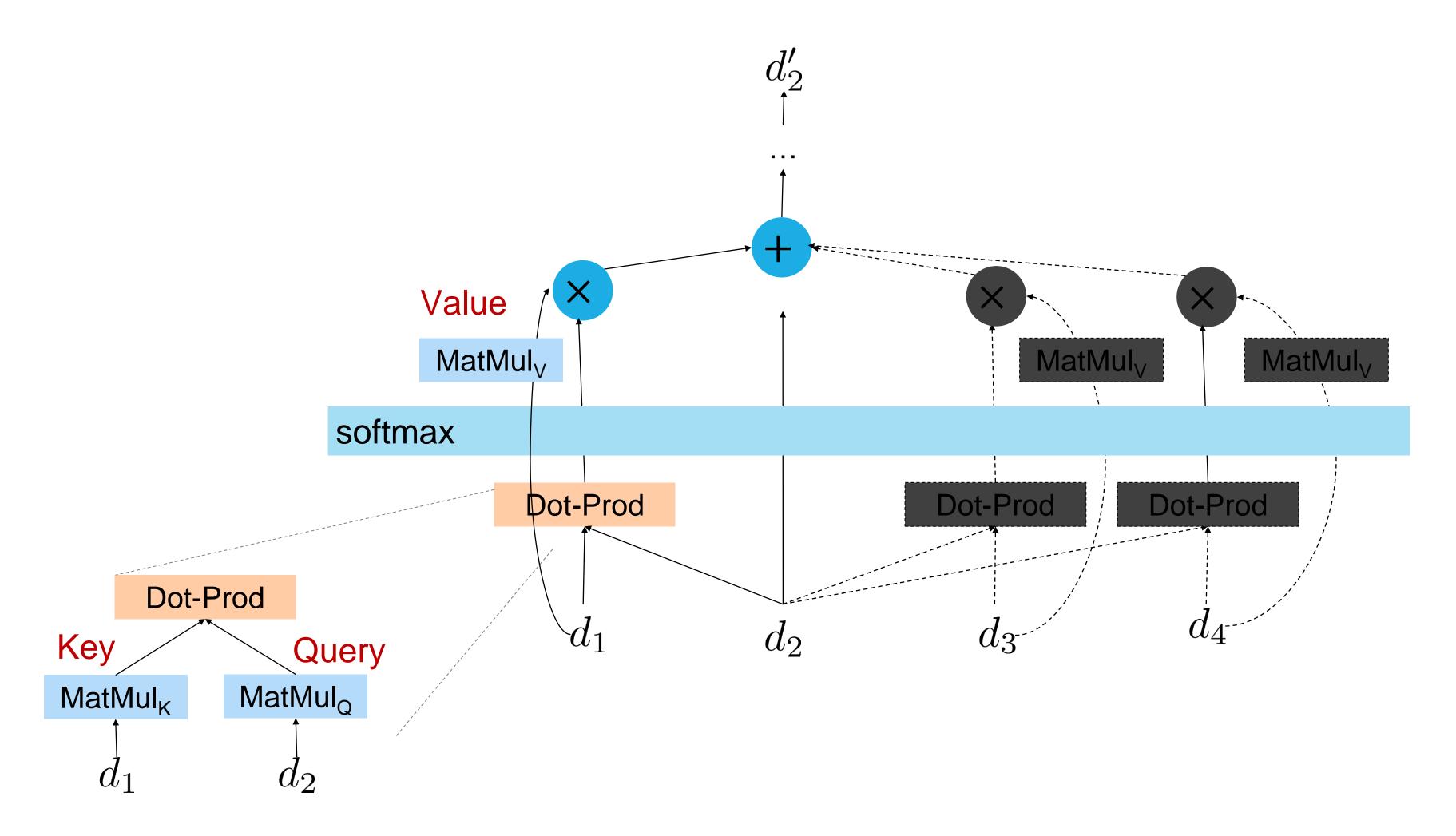


Vaswani et al., "Attention Is All You Need", in NIPS, 2017.



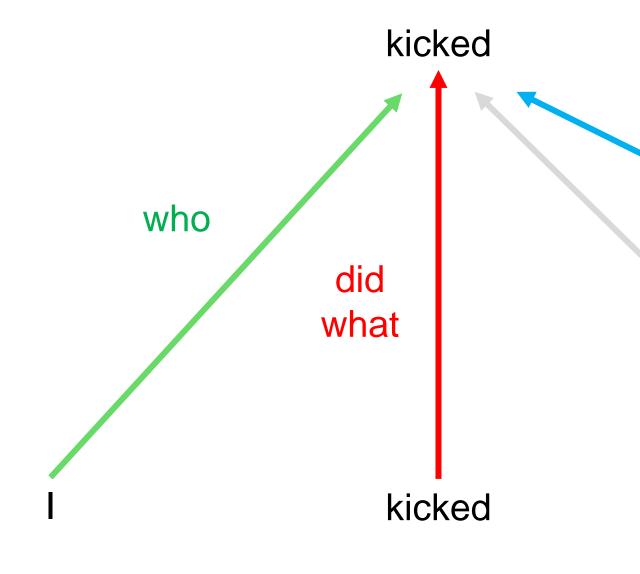
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

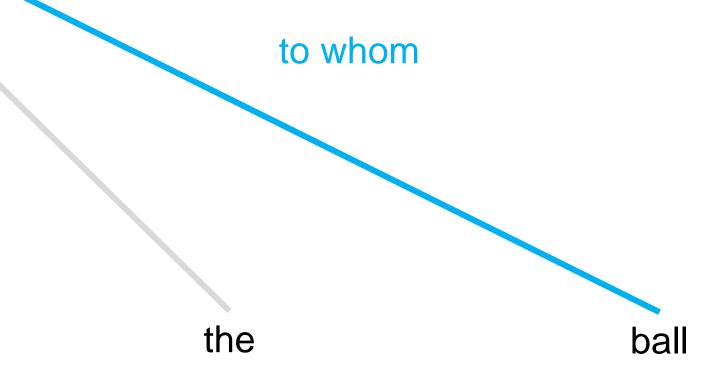
Decoder Self-Attention (Vaswani+, 2017)

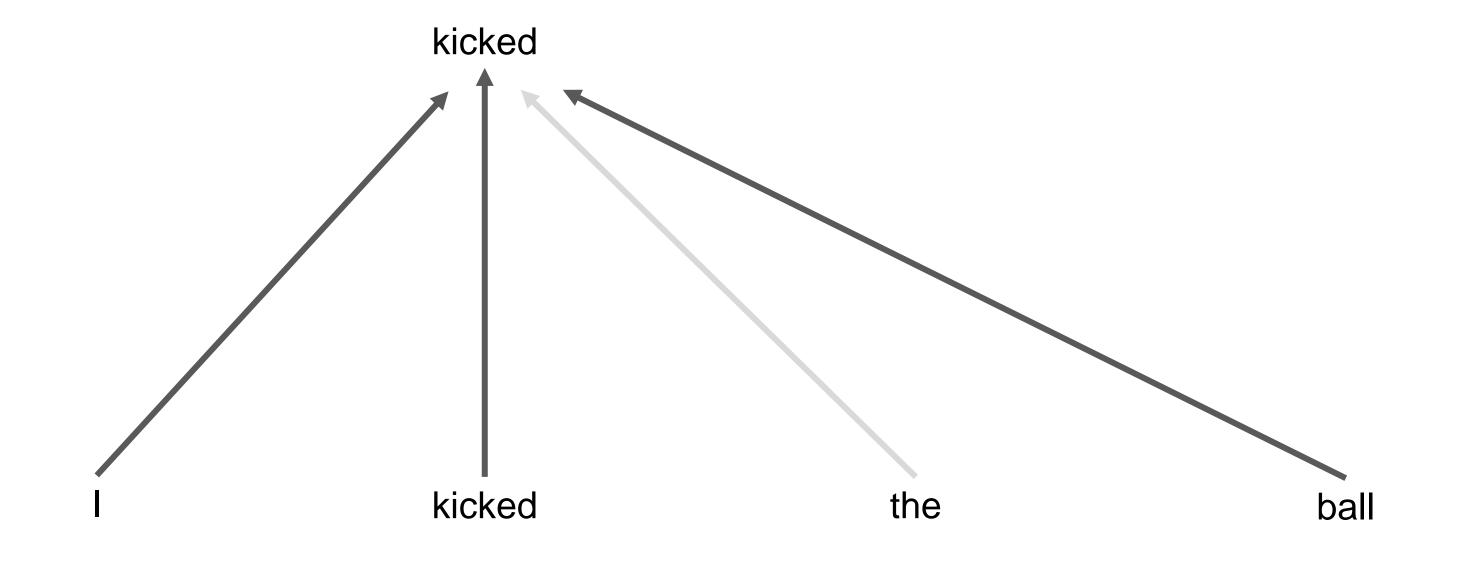


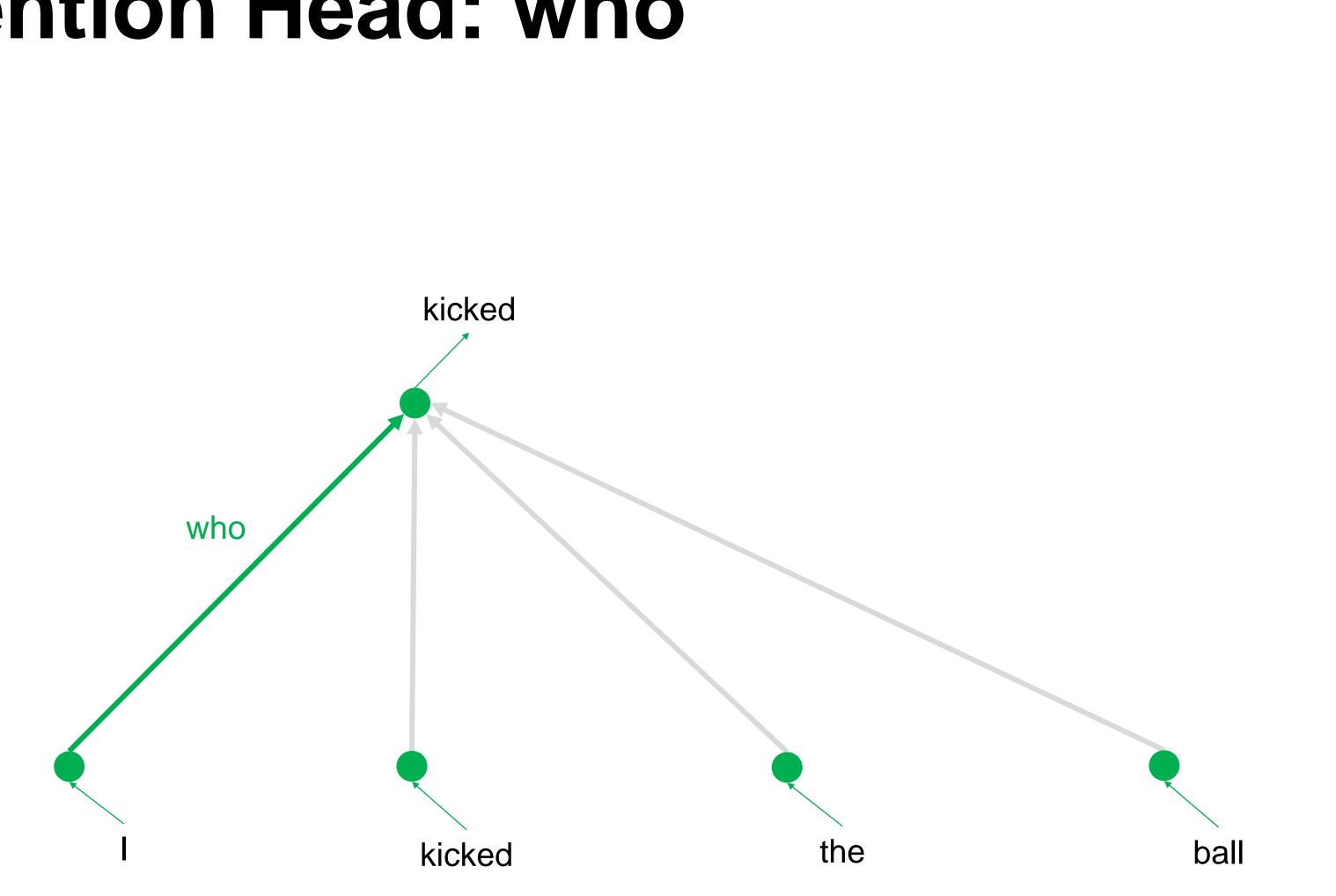
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

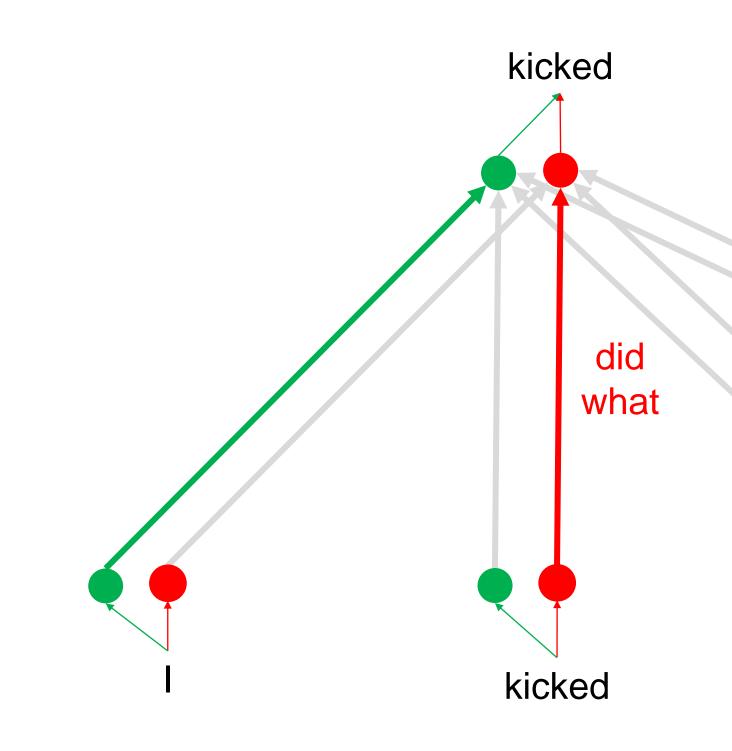
Sequence Encoding Multi-Head Attention

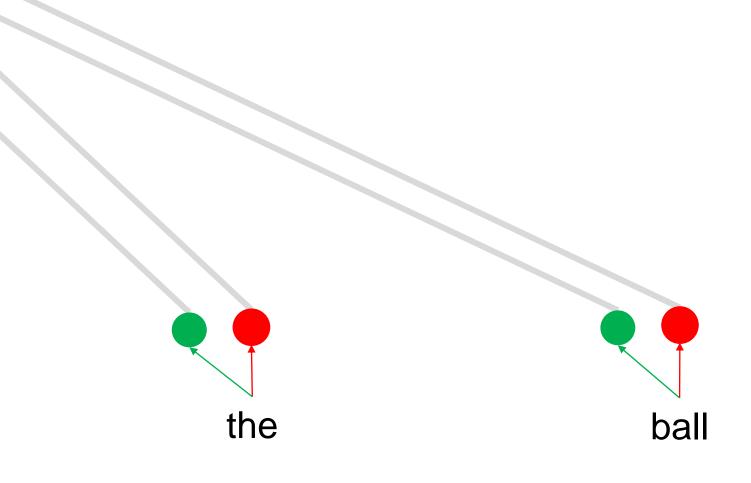




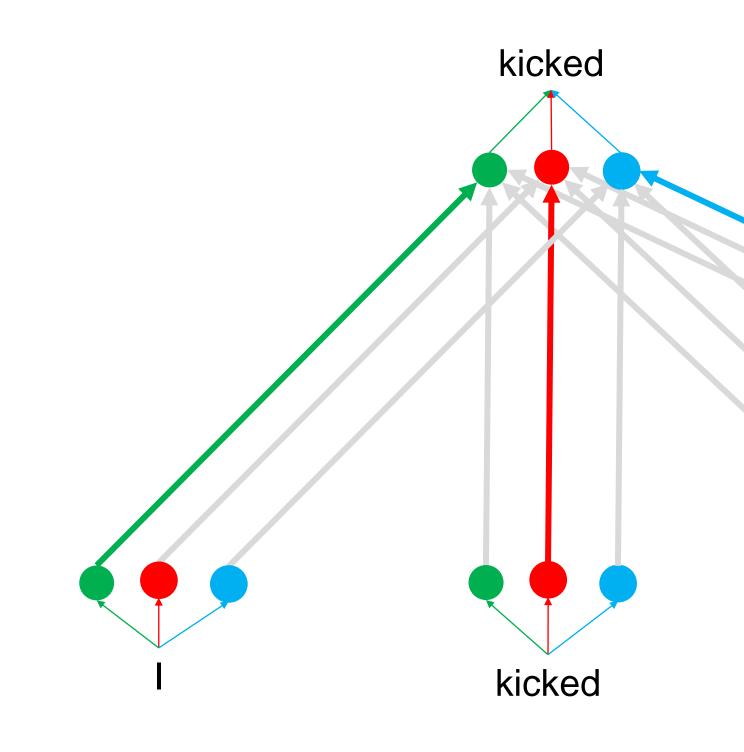


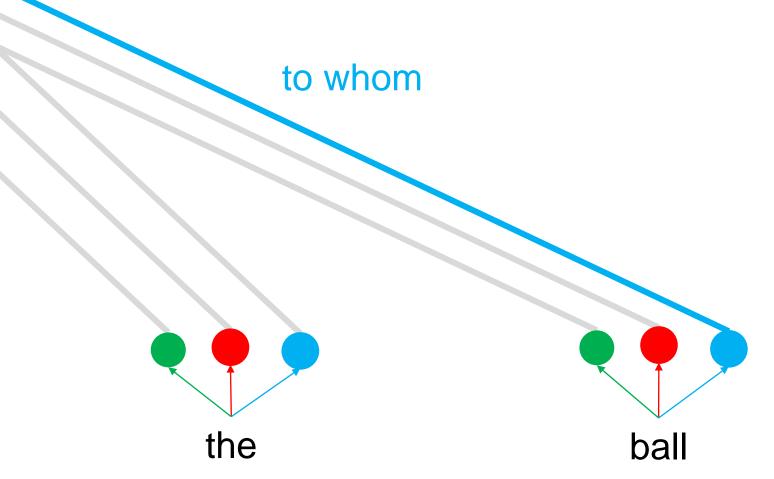




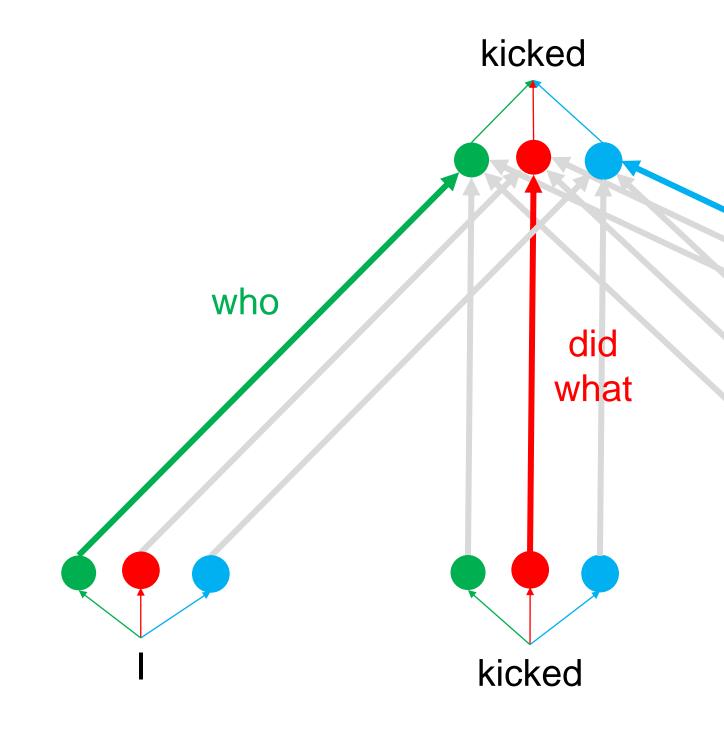


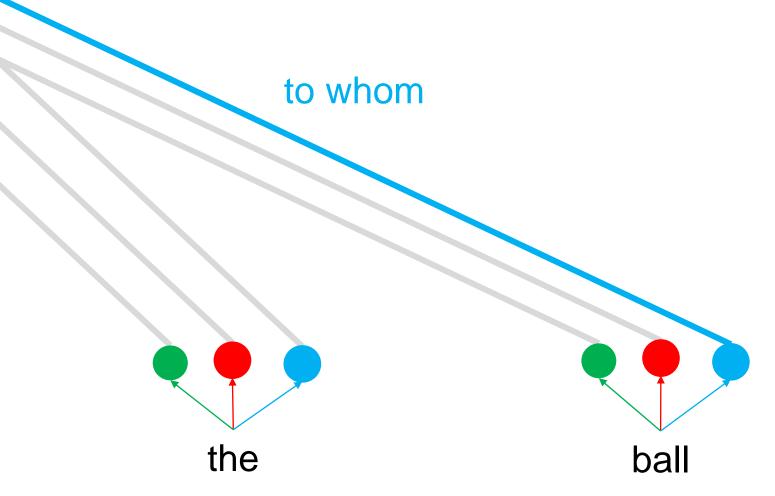
Attention Head: to whom

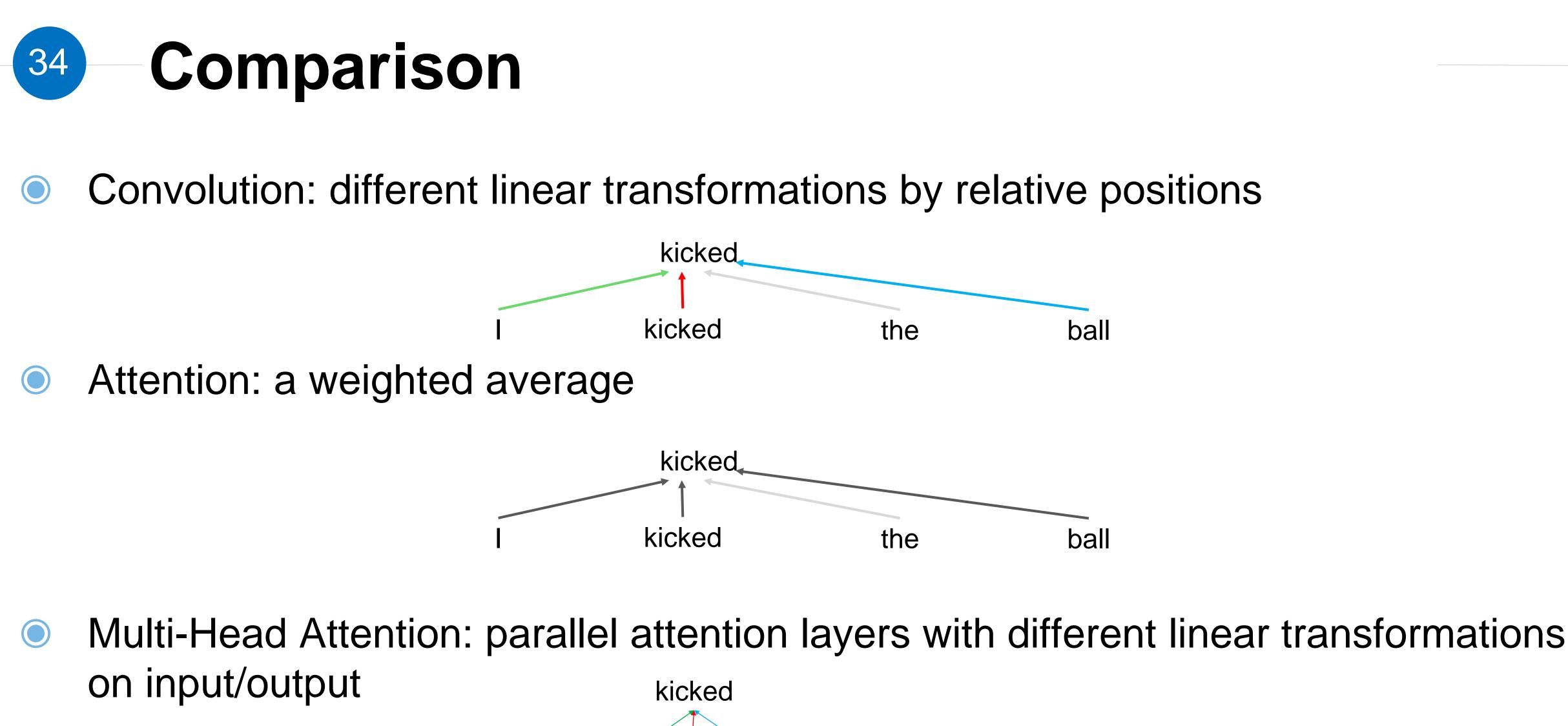


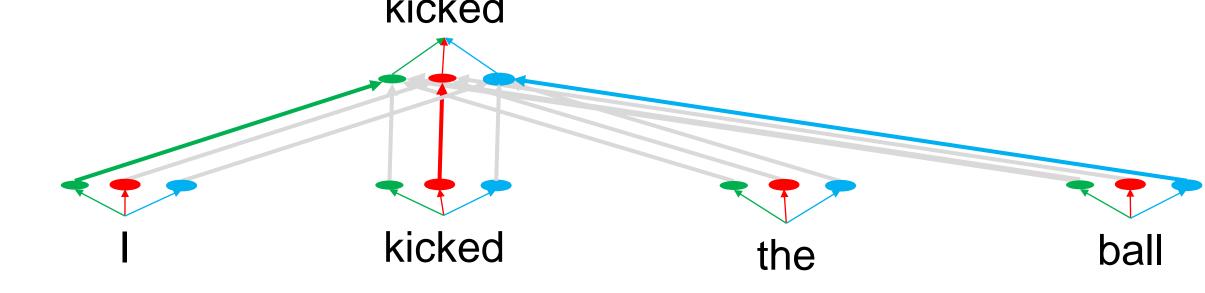


Multi-Head Attention

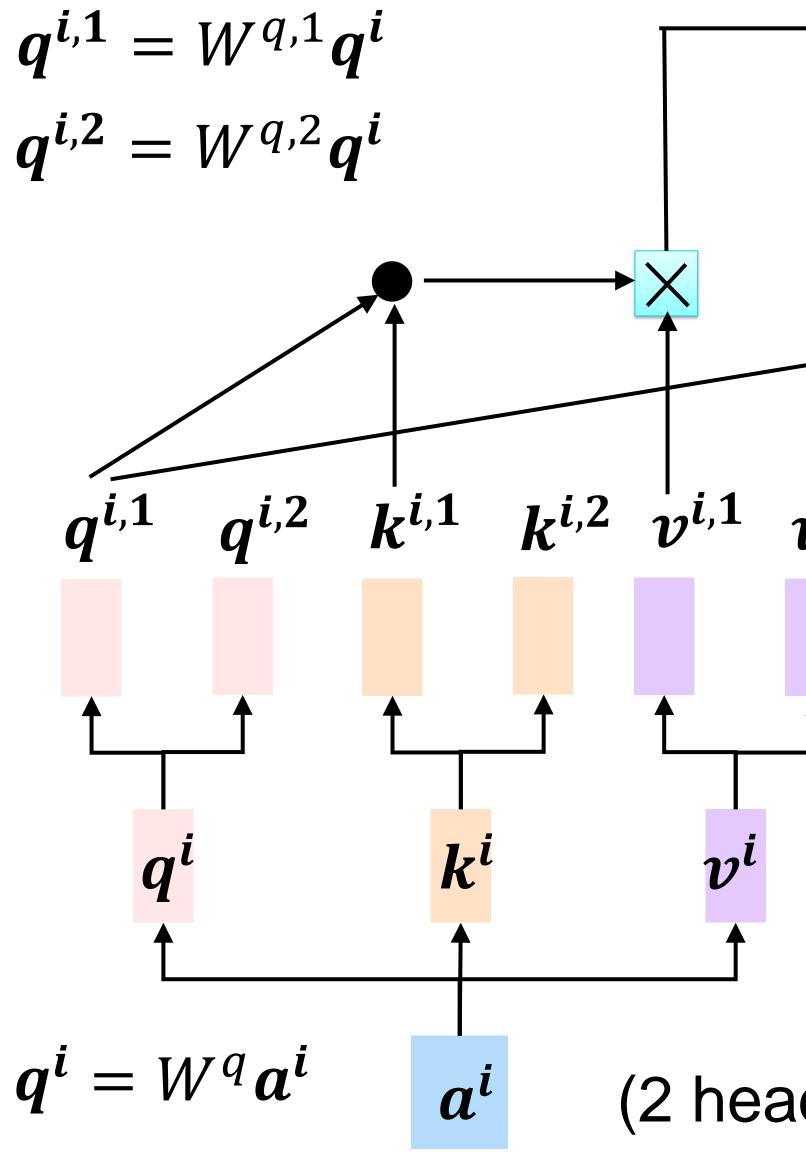






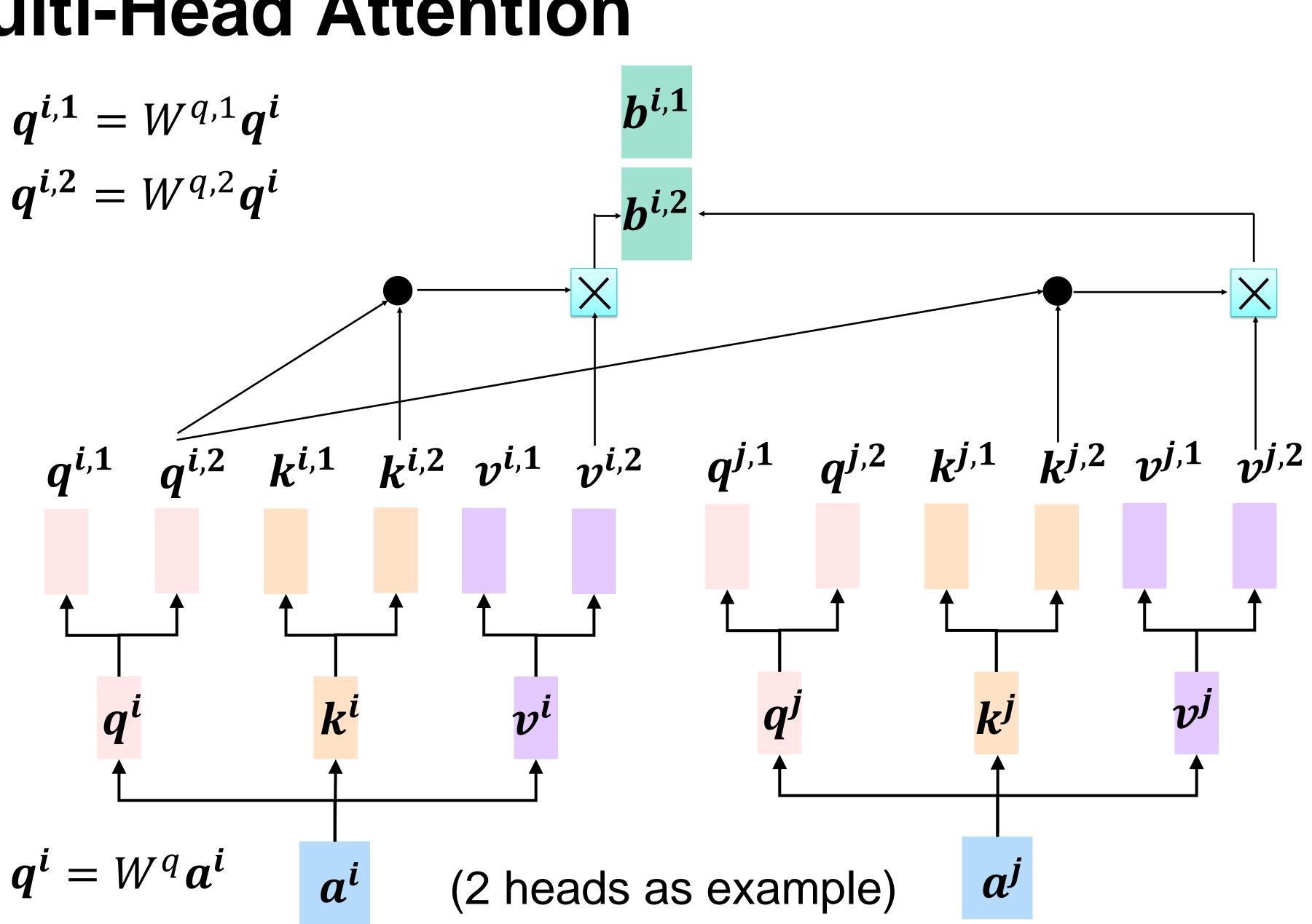


Multi-Head Attention ▶*b^{i,1}* **↓** $\boldsymbol{q^{i,1}} = W^{q,1}\boldsymbol{q^{i}}$ $q^{i,2} = W^{q,2}q^{i}$ $q^{i,1}$ $q^{i,2}$ $k^{i,1}$ $k^{i,2}$ $v^{i,1}$ $v^{i,2}$ $q^{j,1}$ $q^{j,2}$ $k^{j,1}$ $k^{j,2}$ $v^{j,1}$ $v^{j,2}$ k $q^i = W^q a^i$ aⁱ a (2 heads as example)



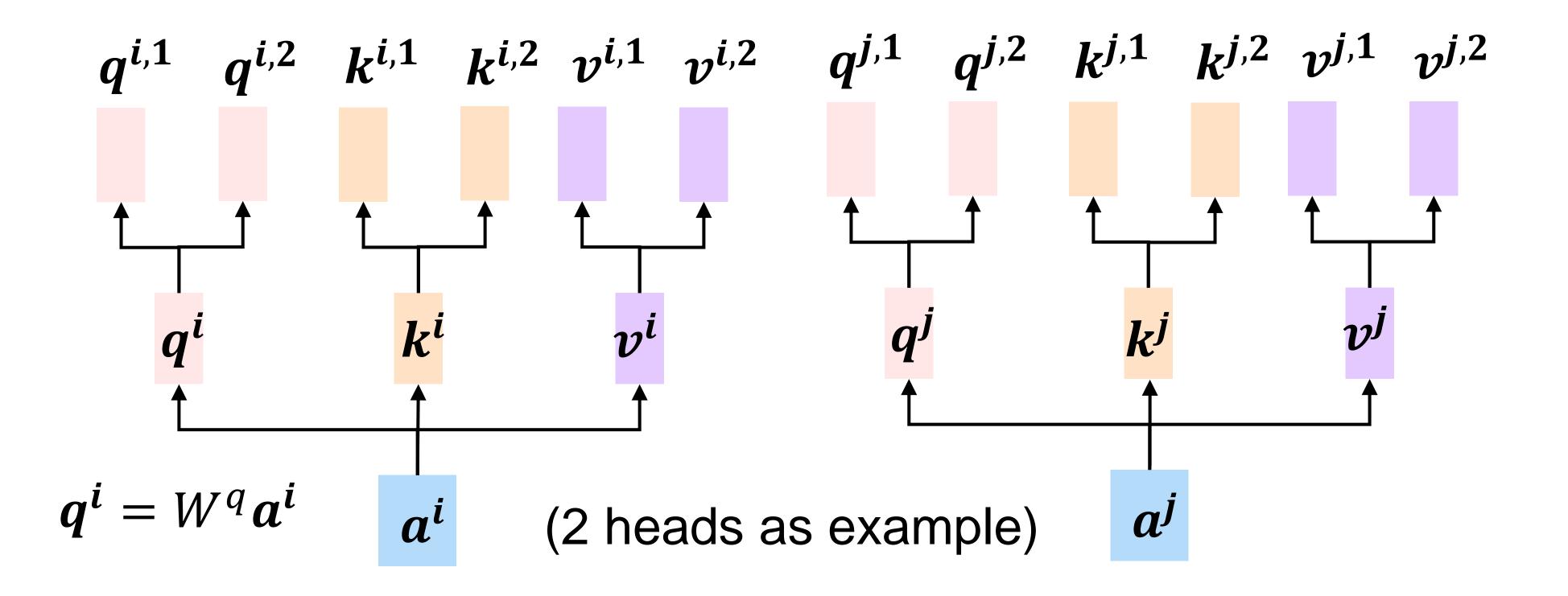
Multi-Head Attention

$$q^{i,1} = W^{q,1}q^i$$
$$q^{i,2} = W^{q,2}q^i$$



Multi-Head Attention

 $b^i = W^0$



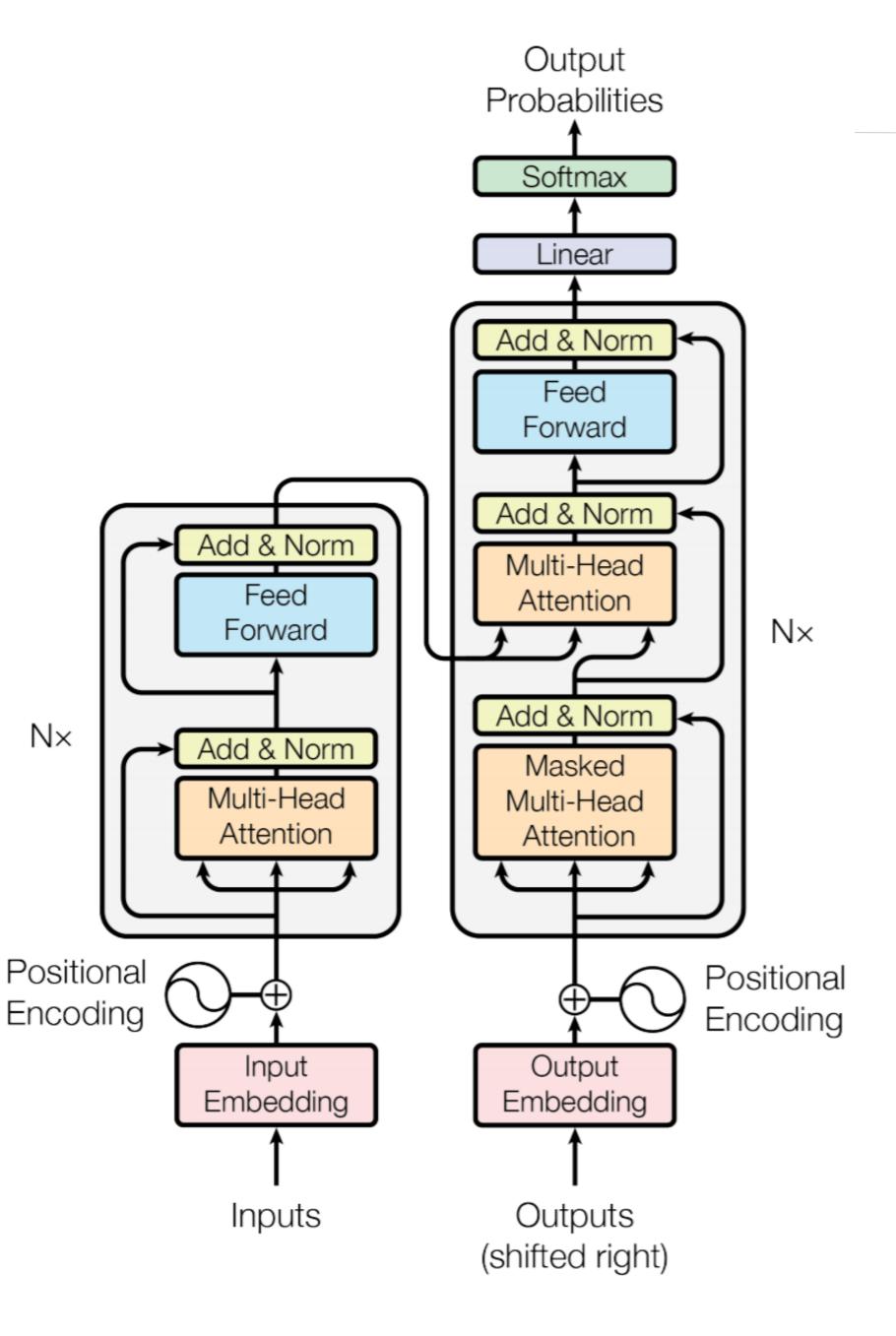
b^{i,1} **b**^{i,2}

Sequence Encoding Transformer

38

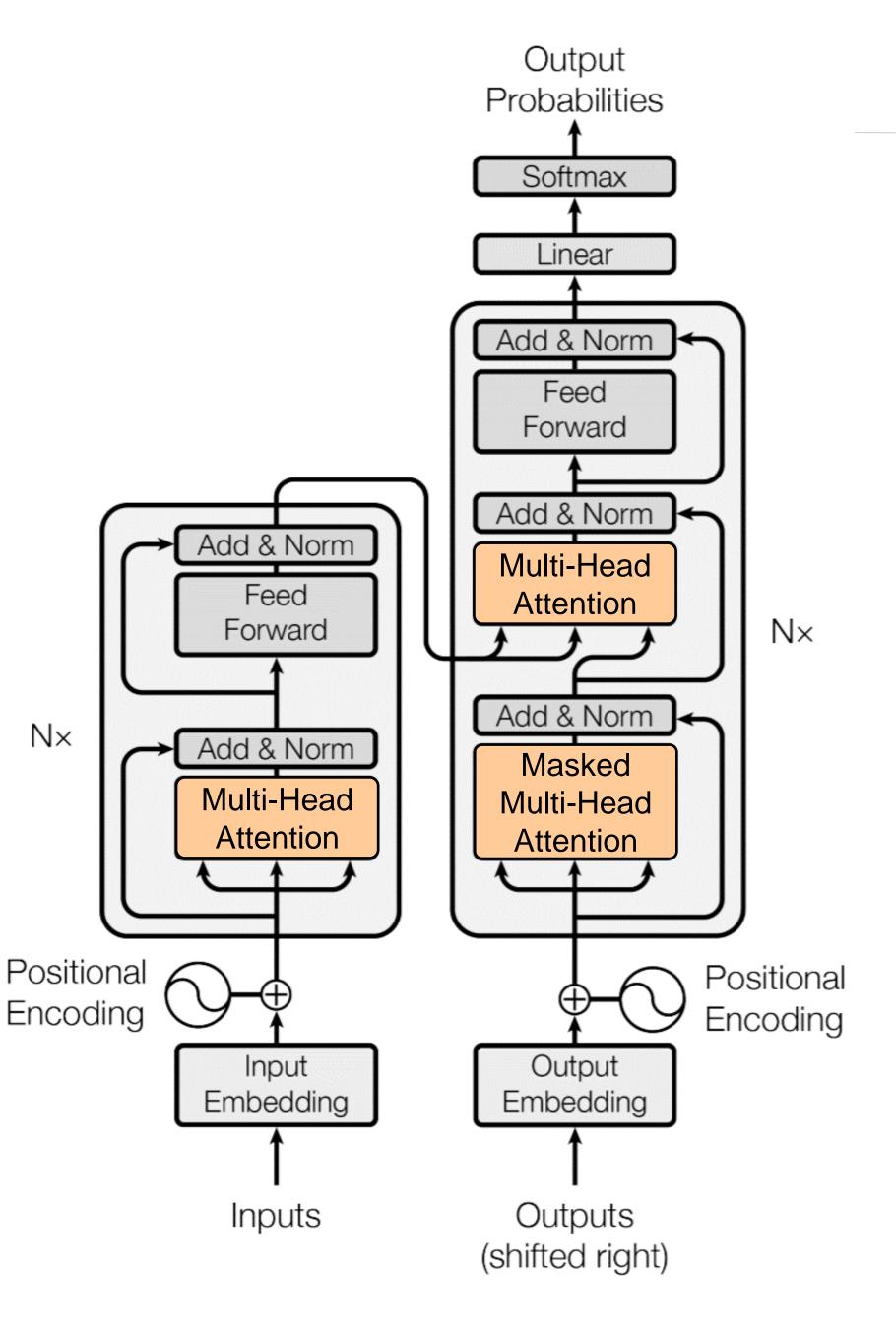
39 **Transformer Overview**

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush http://nlp.seas.harvard.edu/2018/04/03/attention.html



Transformer Overview 40

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush http://nlp.seas.harvard.edu/2018/04/03/attention.html



Multi-Head Attention

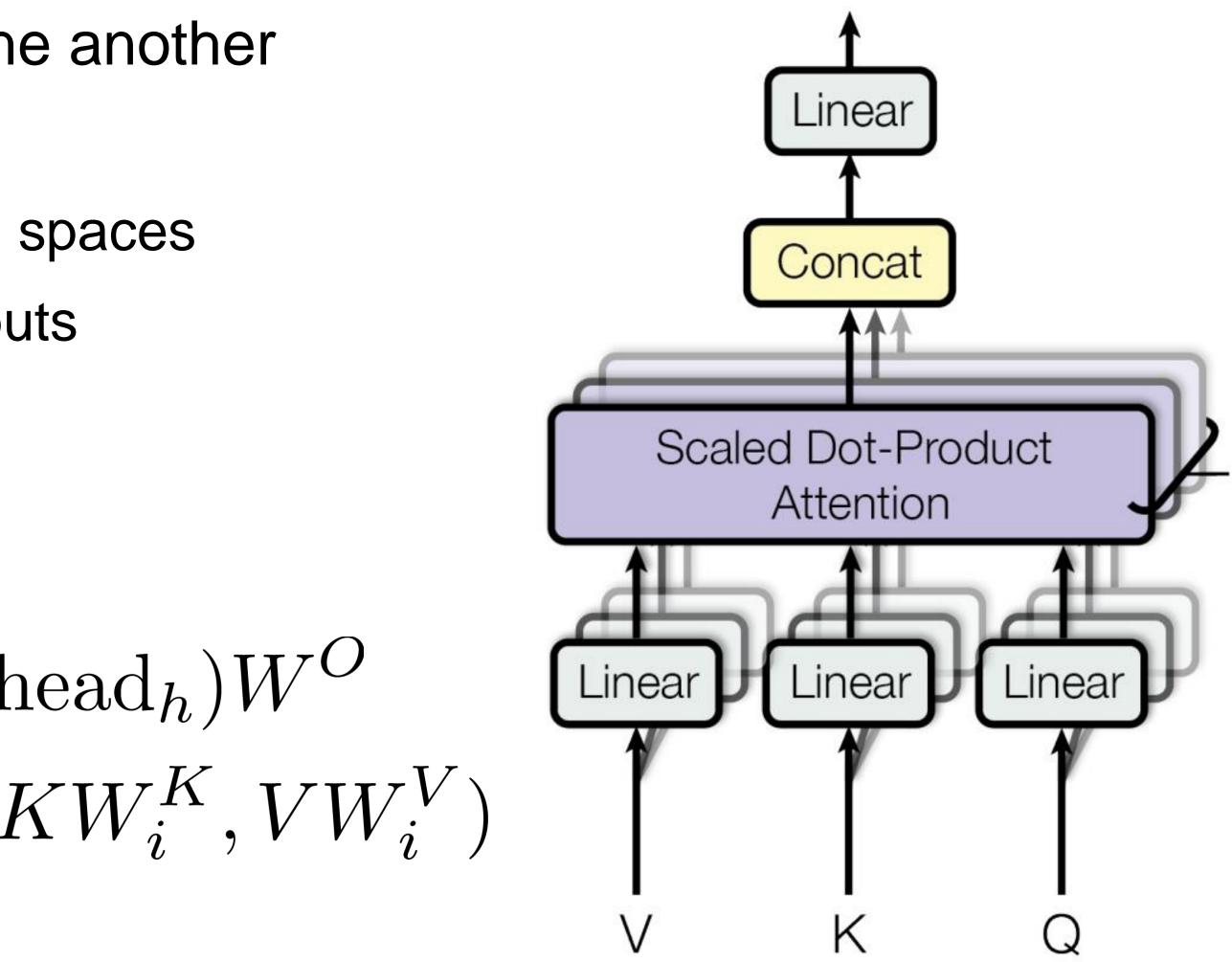
Idea: allow words to interact with one another

Model

41

- Map V, K, Q to lower dimensional spaces
- Apply attention, concatenate outputs
- Linear transformation

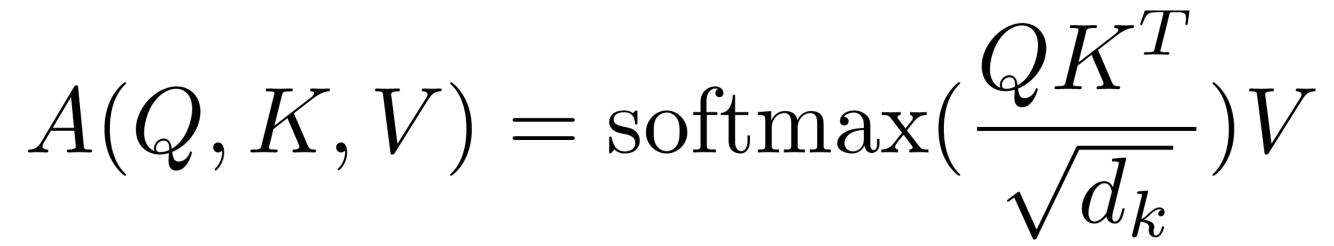
MultiHead(Q, K, V) $= \operatorname{Concat}(\operatorname{head}_1, \cdots, \operatorname{head}_h)W^O$ head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

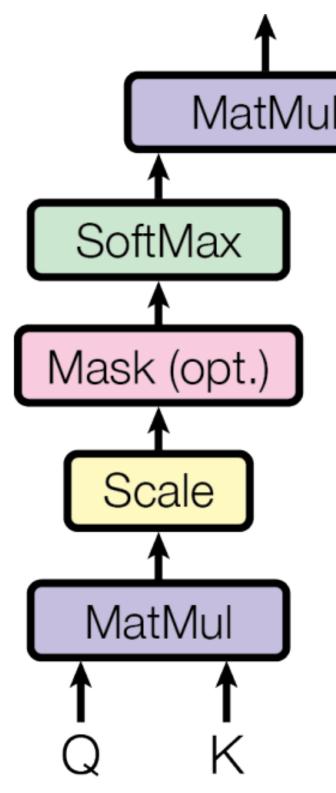


Scaled Dot-Product Attention

- Problem: when d_k gets large, the variance of $q^T k$ increases $\rightarrow q$ and k are random variables with mean 0 and variance 1
- $\rightarrow q^T k$ has mean 0 and variance d_k
- \rightarrow variance 1 is preferred
- Solution: scale by $\sqrt{d_k}$

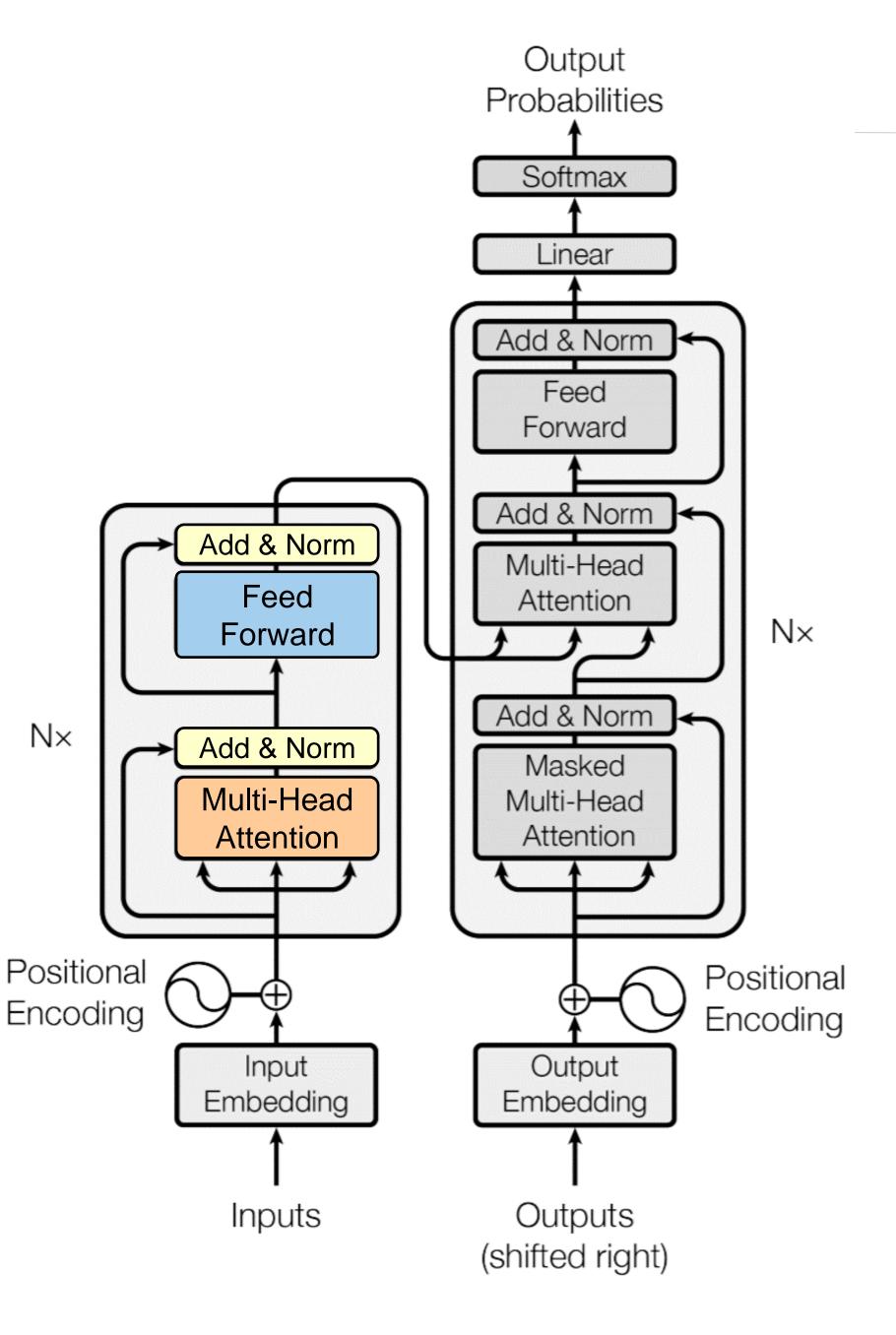
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.





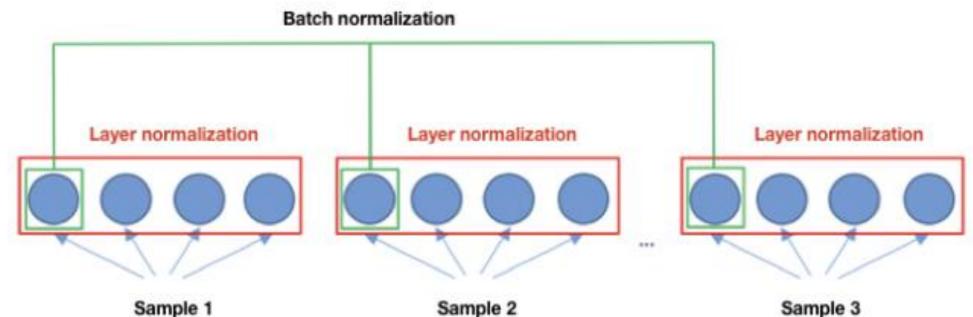
Transformer Overview 43

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush http://nlp.seas.harvard.edu/2018/04/03/attention.html

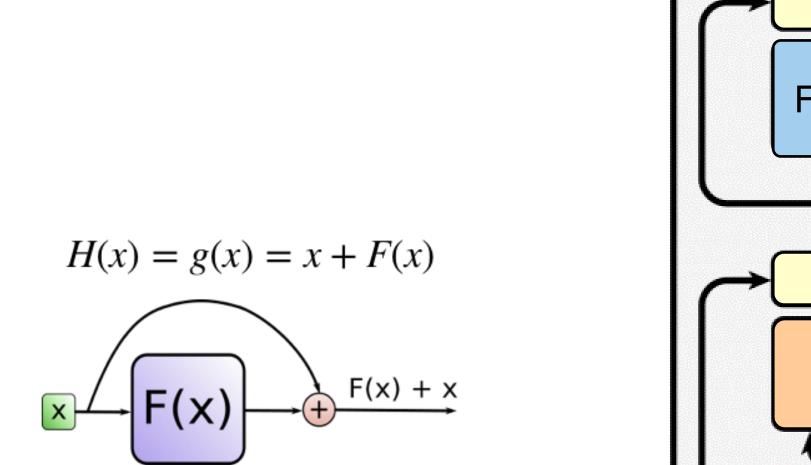


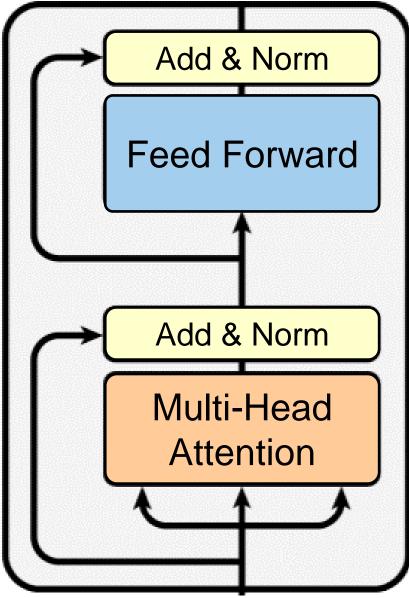
Transformer Encoder Block 44

- Each block has
 - multi-head attention
 - 2-layer feed-forward NN (w/ ReLU)
- Both parts contain
 - **Residual connection**
 - Layer normalization (LayerNorm)
 - Change input to have 0 mean and 1 variance per layer & per training point
- \rightarrow LayerNorm(x + sublayer(x))



https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4

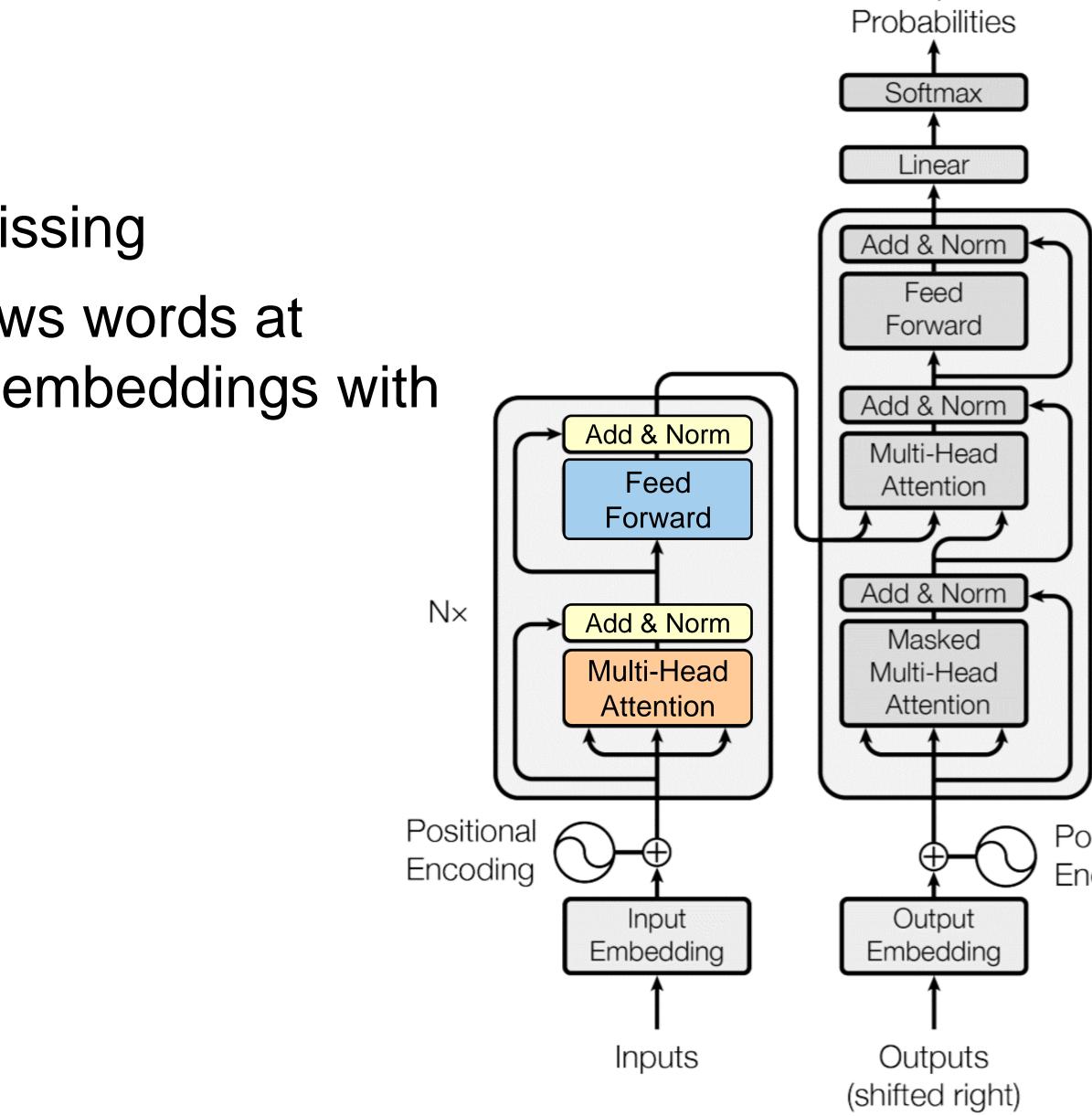




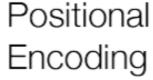
$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \quad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}} \quad h_{i} = f(\frac{g_{i}}{\sigma_{i}}(a_{i} - \mu_{i}) + b_{i})$$

45 **Encoder Input**

- Problem: temporal information is missing
- Solution: positional encoding allows words at different locations to have different embeddings with fixed dimensions



Output



Criteria for positional encoding Unique encoding for each position

- Deterministic \bigcirc
- \bigcirc
- Model can easily generalize to longer sentences 0

Distance between neighboring positions should be the same

Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

Criteria for positional encoding

- \checkmark Unique encoding for each position
- Deterministic
- \checkmark Distance between neighboring positions should be the same Model can easily generalize to longer sentences 0
- Idea 1: PE(pos) = pos
 - A value to indicate the word's position 0
 - Larger value (longer sentence) may not be easily generalized \otimes \bigcirc

- Criteria for positional embeddings
 - Unique encoding for each position
 - Deterministic
 - Distance between neighboring positions should be the same \checkmark 0 Model can easily generalize to longer sentences

Idea 2: 1-hot encoding

- A d-dim vector to encode d positions 0
- Cannot generalize to longer sentences ③ \bigcirc

- sent the sequences with the length <= d

Criteria for positional encoding

- Unique encoding for each position
- Deterministic
 - Distance between neighboring positions should be the same
- Model can easily generalize to longer sentences
- Idea 3: $\operatorname{PE}(pos) = \frac{pos}{100}$
 - The normalized value of the position (0~1)Distances may differ in sentences with different lengths \otimes
 - \bigcirc

$$w_1 \ w_2 \ w_3 \ w_4$$

0.25 0.50 0.75 1.00 PE

0.25

Sinusoidal Positional Encoding

- Criteria for positional embeddings Unique encoding for each position
 - Deterministic

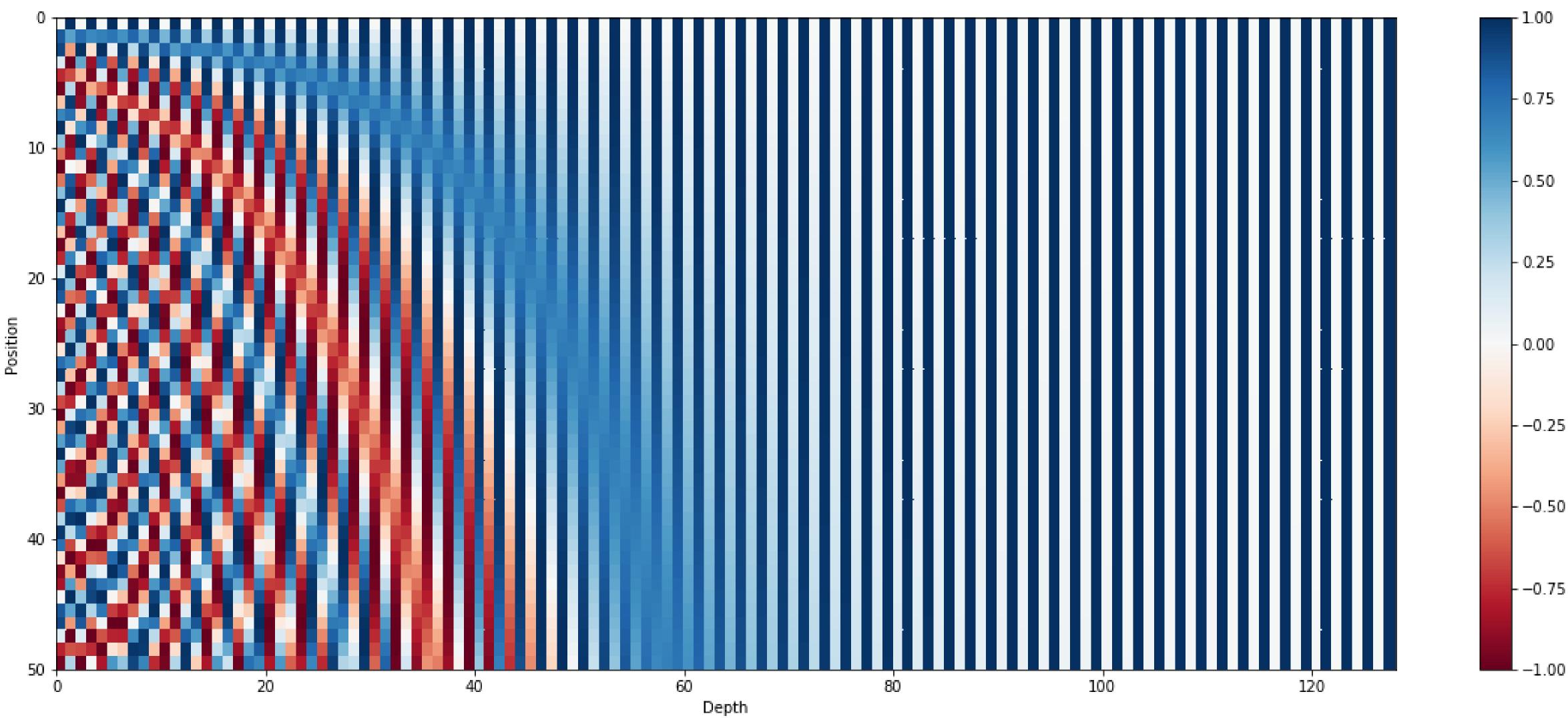
50

- Model can easily generalize to longer sentences $\frac{pos}{100000^{2i/d}}$ A d-dim vector to represent positions
- $\sqrt{\circ}$ Distance between neighboring positions should be the same • Idea: $PE(pos, 2i) = sin(\frac{pos}{100000^{2i/d}})$

$$\operatorname{PE}(pos, 2i+1) = \cos(\frac{100}{100})$$

0

Sinusoidal Positional Encoding 51



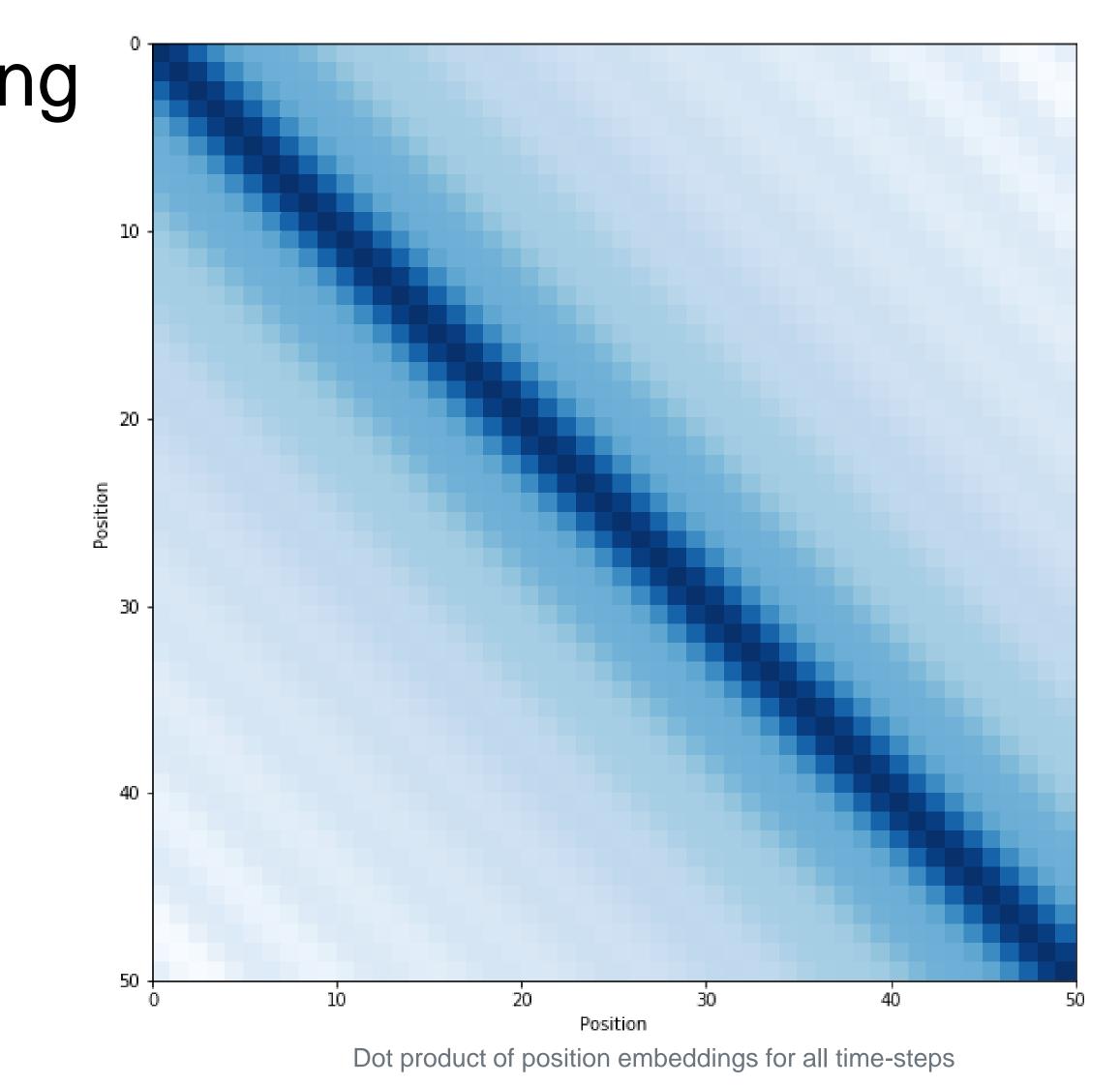
Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

- -0.75

Sinusoidal Positional Encoding

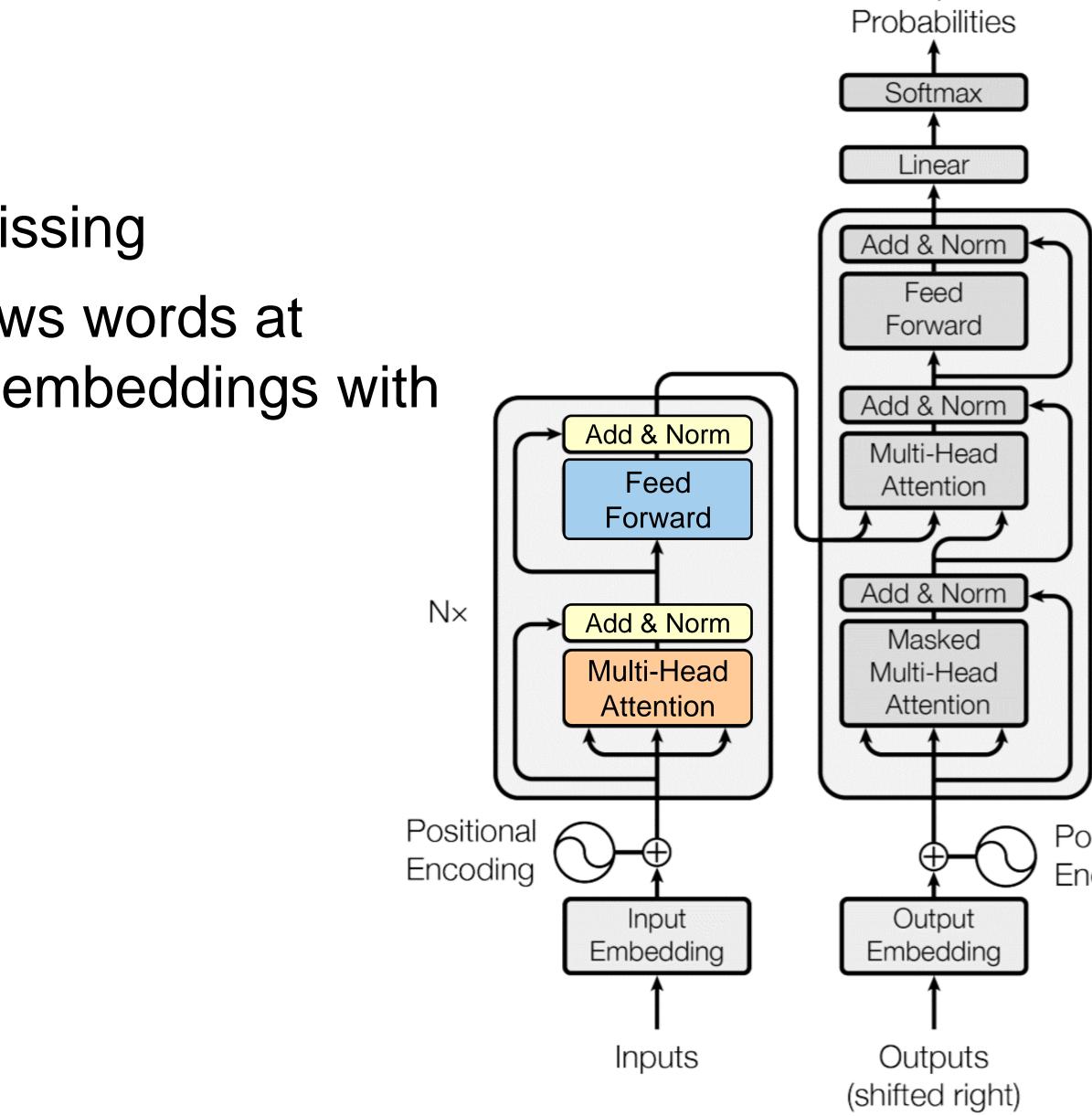
Distance between neighboring positions

- symmetrical Ο
- decay nicely with time 0

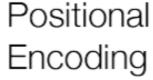


53 **Encoder Input**

- Problem: temporal information is missing
- Solution: positional encoding allows words at different locations to have different embeddings with fixed dimensions



Output



Multi-Head Attention Details

encoder self attention

- 1. Multi-head Attention
- 2. Query=Key=Value

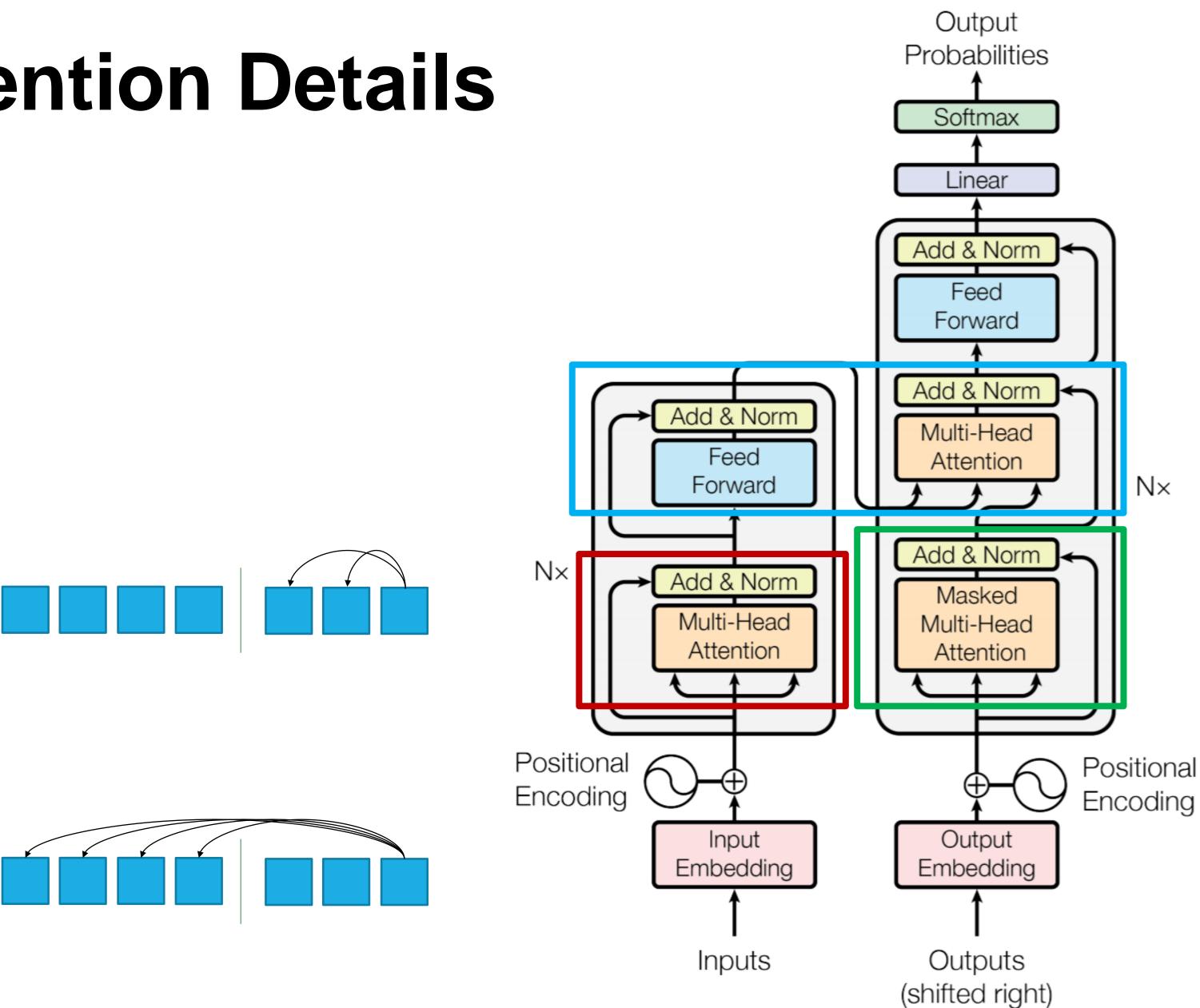
decoder self attention

1. Masked Multi-head Attention

2. Query=Key=Value

encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query



Training Tips 55

- Byte-pair encodings (BPE)
- Checkpoint averaging
- ADAM optimizer with learning rate changes
- Dropout during training at every layer just before adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties

MT Experiments

Model

ByteNet [18] Deep-Att + PosUnk [39] GNMT + RL [38] ConvS2S [9] MoE [32]

Deep-Att + PosUnk Ensemble [39] GNMT + RL Ensemble [38] ConvS2S Ensemble [9]

Transformer (base model) Transformer (big)

Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

BLEU		Training Cost (FLOPs)	
EN-DE	EN-FR	EN-DE	EN-FR
23.75			
	39.2		$1.0\cdot 10^{20}$
24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$
26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
	40.4		$8.0\cdot 10^{20}$
26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
27.3	38.1	$3.3 \cdot 10^{18}$	
28.4	41.8	$2.3\cdot 10^{19}$	

Parsing Experiments

Parser

Vinyals & Kaiser el al. (2014) [37] Petrov et al. (2006) [29] Zhu et al. (2013) [40] Dyer et al. (2016) [8] Transformer (4 layers) Zhu et al. (2013) [40] Huang & Harper (2009) [14] McClosky et al. (2006) [26] Vinyals & Kaiser el al. (2014) [37] Transformer (4 layers) Luong et al. (2015) [23] Dyer et al. (2016) [8]

Vaswani et al., "Attention Is All You Need", in *NIPS*, 2017.

Training	WSJ 23 F1
WSJ only, discriminative	88.3
WSJ only, discriminative	90.4
WSJ only, discriminative	90.4
WSJ only, discriminative	91.7
WSJ only, discriminative	91.3
semi-supervised	91.3
semi-supervised	91.3
semi-supervised	92.1
semi-supervised	92.1
semi-supervised	92.7
multi-task	93.0
generative	93.3

Concluding Remarks

Non-recurrence model is easy to parallelize

58

- Multi-head attention captures different aspects by interacting between words
- **Positional encoding** captures location information Each transformer block can be applied to diverse tasks

