Applied Deep Learning

Word Embeddings

September 29th, 2022 http://adl.miulab.tw

National Taiwan
University

Review

Word Representation

3 Meaning Representations in Computers

- Knowledge-based representation
- Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors
- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 -dimension reduction
- Method 2 - direct learning
(4) Meaning Representations in Computers

O Knowledge-based representation

- Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors
- High-dimensional sparse word vector
- Low-dimensional dense word vector

Method 1 -dimension reduction
Method 2 - direct learning

5 Corpus-based representation

- Atomic symbols: one-hot representation

$$
\operatorname{car}\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\operatorname{car}
\end{array}\right.
$$

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

$$
\begin{aligned}
& {\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \ldots & 0
\end{array}\right] \text { AND }\left[\begin{array}{lllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \ldots .0\right]=0} \\
& \text { car } \\
& \text { motorcycle }
\end{aligned}
$$

Idea: words with similar meanings often have similar neighbors

6 Meaning Representations in Computers

O Knowledge-based representation

- Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors
- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1 -dimension reduction
- Method 2 - direct learning

7 Window-based Co-occurrence Matrix

- Example

Window length=1 Left or right context Corpus:
I love NTU.
I love deep learning.
I enjoy learning.
similarity >0

Counts	I	love	enjoy	NTU	deep	learning
I	0	2	1	0	0	0
love	2	0	0	1	1	0
enjoy	1	0	0	0	0	1
NTU	0	1	0	0	0	0
deep	0	1	0	0	0	1
learning	0	0	1	0	1	0

Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity \rightarrow poor robustness

Idea: low dimensional word vector

8 Meaning Representations in Computers

O Knowledge-based representation

- Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors
- High-dimensional sparse word vector
- Low-dimensional dense word vector

Method 1 - dimension reduction

- Method 2 - direct learning

9 Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X

10 Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix

O Singular Value Decomposition (SVD) of co-occurrence matrix X

Issues:

- computationally expensive: $O\left(\mathrm{mn}^{2}\right)$ when $\mathrm{n}<\mathrm{m}$ for $\mathrm{n} \times \mathrm{m}$ matrix
- difficult to add new words

Idea: directly learn lowdimensional word vectors

11 Word Representation

- Knowledge-based representation
- Corpus-based representation
\checkmark Atomic symbol
\checkmark Neighbors
- High-dimensional sparse word vector
- Low-dimensional dense word vector
- Method 1-dimension reduction
- Method 2 - direct learning \rightarrow word embedding

12 Word Embedding

- Method 2: directly learn low-dimensional word vectors

Learning representations by back-propagation. (Rumelhart et al., 1986) A neural probabilistic language model (Bengio et al., 2003)

- NLP (almost) from Scratch (Collobert \& Weston, 2008)
- Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)

13 Word Embedding Benefit

- Given an unlabeled training corpus, produce a vector for each word that encodes its semantic information. These vectors are useful because:

1) semantic similarity between two words can be calculated as the cosine similarity between their corresponding word vectors
2) word vectors as powerful features for various supervised NLP tasks since the vectors contain semantic information
3) propagate any information into them via neural networks and update during training

Word Embeddings Word2Vec

(15) Word2Vec - Skip-Gram Model

O Goal: predict surrounding words within a window of each word
O Objective function: maximize the probability of any context word given the current center word

$$
\begin{gathered}
w_{1}, w_{2}, \cdots, \underbrace{w_{I}}_{w_{t-m}, \cdots, w_{t-1}, w_{t}, w_{t+1}, \cdots, w_{t+m}, \cdots, w_{T-1}, w_{T}} \begin{array}{l}
w_{O} \quad w_{O} \\
p\left(w_{O, 1}, w_{O, 2}, \cdots, w_{O, C} \mid w_{I}\right)=\prod_{c=1}^{C} p\left(w_{O, c} \mid w_{I}\right) \\
C(\theta)=-\sum_{w_{I}} \sum_{c=1}^{C} \log p\left(w_{O, c} \mid w_{I}\right) \quad
\end{array} \begin{array}{c}
p\left(w_{O} \mid w_{I}\right)=\frac{\exp \left(v_{w_{O}}^{\prime T} v_{w_{I}}\right)}{\sum_{j} \exp \left(v_{w_{j}}^{\prime T} v_{w_{I}}\right)}
\end{array}
\end{gathered}
$$

Benefit: faster, easily incorporate a new sentence/document or add a word to vocab

(16) Word2Vec Skip-Gram Illustration

O Goal: predict surrounding words within a window of each word

(17) Hidden Layer Matrix \rightarrow Word Embedding Matrix

18 Weight Matrix Relation

- Hidden layer weight matrix = word vector lookup
(2)

$$
h=x^{T} W=W_{(k, .)}:=v_{w_{I}}
$$

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right] \times\left[\begin{array}{ccc}
17 & 24 & 1 \\
23 & 5 & 7 \\
4 & 6 & 13 \\
10 & 12 & 19 \\
11 & 18 & 25
\end{array}\right]=\left[\begin{array}{lll}
10 & 12 & 19
\end{array}\right]
$$

Each vocabulary entry has two vectors: as a target word and as a context word

19) Weight Matrix Relation

O Output layer weight matrix $=$ weighted sum as final score

> 10,000 words
> $s_{j}=h v_{w_{j}}^{\prime}$
> $p\left(w_{j}=w_{O, c} \mid w_{I}\right)=y_{j_{c}}=\frac{\exp \left(s_{j_{c}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)}$ sothin the conexex windoo
> Output weights for "car"
> softmax
> \times
> $=$ Probability that "car" shows up near "ants"

20 Word2Vec Skip-Gram Illustration

Word Embeddings Word2Vec Training

22. Word2Vec Skip-Gram Illustration

${ }^{23}$ Loss Function

- Given a target word (w_{I})

$$
\begin{aligned}
C(\theta) & =-\log p\left(w_{O, 1}, w_{O, 2}, \cdots, w_{O, C} \mid w_{I}\right) \\
& =-\log \prod_{c=1}^{C} \frac{\exp \left(s_{j_{c}}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)} \\
& =-\sum_{c=1}^{C} s_{j_{c}}+C \log \sum_{j^{\prime}=1}^{V} \exp \left(s_{j^{\prime}}\right)
\end{aligned}
$$

${ }^{24}$ SGD Update for W^{\prime}

- Given a target word $\left(w_{I}\right)$

$$
\frac{\partial(\theta)}{\partial S_{j_{c}}}=y_{j_{c}}-t_{j_{c}}:=e_{j_{c}} \text { =1, when } w_{j c} \text { is within the context window } \begin{aligned}
& =0, \text { otherwise }
\end{aligned}
$$

$$
w_{i j}^{\prime}{ }^{(t+1)}=w_{i j}^{\prime}(t)-\eta \cdot \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot h_{i}
$$

25 SGD Update for W

$$
\begin{aligned}
& \frac{\partial C(\theta)}{\partial w_{k i}}=\frac{\partial C(\theta)}{\partial h_{i}} \frac{\partial h_{i}}{\partial w_{k i}}=\sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{k} \\
& \frac{\partial C(\theta)}{\partial h_{i}}=\sum_{j=1}^{V} \frac{\partial C(\theta)}{\partial s_{j}} \frac{\partial s_{j}}{\partial h_{i}}=\sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \\
& s_{j}=v_{w_{j}}^{\prime} \cdot h
\end{aligned}
$$

$$
w_{i j}^{(t+1)}=w_{i j}^{(t)}-\eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{j}
$$

26 SGD Update

$$
\begin{array}{ll}
w_{i j}^{\prime(t+1)}=w_{i j}^{\prime(t)}-\eta \cdot \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot h_{i} \\
v_{w_{j}}^{\prime}(t+1) & =v_{w_{j}}^{\prime(t)}-\eta \cdot E I_{j} \cdot h \\
E I_{j}=\sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \\
w_{i j}^{(t+1)}=w_{i j}^{(t)}-\eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C}\left(y_{j_{c}}-t_{j_{c}}\right) \cdot w_{i j}^{\prime} \cdot x_{j} \\
v_{w_{I}}^{(t+1)}=v_{w_{I}}^{(t)}-\eta \cdot E H^{T} & E H_{i}=\sum_{j=1}^{V} E I_{j} \cdot w_{i j}^{\prime} \cdot x_{j}
\end{array}
$$

large vocabularies or large training corpora \rightarrow expensive computations
limit the number of output vectors that must be updated per training instance
\rightarrow hierarchical softmax, sampling

Word Embeddings Negative Sampling

28 Hierarchical Softmax

- Idea: compute the probability of leaf nodes using the paths

29 Negative Sampling

- Idea: only update a sample of output vectors

$$
\begin{array}{lr}
C(\theta)=-\log \sigma\left(v_{w_{O}}^{\prime}{ }^{T} v_{w_{I}}\right)+\sum_{w_{j} \in \mathcal{W}_{\text {neg }}} \log \sigma\left(v_{w_{j}}^{\prime}{ }^{T} v_{w_{I}}\right) \\
v_{w_{j}}^{\prime}{ }^{(t+1)}=v_{w_{j}}^{\prime}{ }^{(t)}-\eta \cdot E I_{j} \cdot h & E I_{j}=\sigma\left(v_{w_{j}}^{\prime}{ }^{T} v_{w_{I}}\right)-t_{j} \\
v_{w_{I}}^{(t+1)}=v_{w_{I}}^{(t)}-\eta \cdot E H^{T} & E H=\sum_{w_{j} \in\left\{w_{o}\right\} \cup \mathcal{W}_{\text {neg }}} E I_{j} \cdot v \\
w_{j} \in\left\{w_{O}\right\} \cup \mathcal{W}_{\text {neg }} &
\end{array}
$$

$30 \quad$ Negative Sampling

- Sampling methods
- Random sampling $w_{j} \in\left\{w_{O}\right\} \cup \mathcal{W}_{\text {neg }}$
- Distribution sampling: w_{j} is sampled from $P(w) \quad$ What is a good $P(w)$?

Idea: less frequent words sampled more often
O Empirical setting: unigram model raised to the power of $3 / 4$

Word	Probability to be sampled for "neg"
is	$0.9^{3 / 4}=0.92$
constitution	$0.09^{3 / 4}=0.16$
bombastic	$0.01^{3 / 4}=0.032$

Word Embeddings Word2Vec Variants

32 Word2Vec Skip-Gram Visualization https://ronxin.github.io/wevil

- Skip-gram training data:
apple|drink^juice,orange|eat^apple,rice|drink^juice,juice|drink^milk,milk|drink^rice,water|drink^mil k,juice|orange^apple,juice|apple^drink,milk|rice^drink,drink|milk^water,drink|water^juice,drink|juic e^{\wedge} water

34 Word2Vec Variants

- Skip-gram: predicting surrounding words given the target word (Mikolov+, 2013)

$$
p\left(w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m} \mid w_{t}\right)
$$

- CBOW (continuous bag-of-words): predicting the target word given the surrounding words (Mikolov+, 2013)

$$
p\left(w_{t} \mid w_{t-m}, \cdots w_{t-1}, w_{t+1}, \cdots, w_{t+m}\right)
$$

- LM (Language modeling): predicting the next words given the proceeding contexts (Mikolov+, 2013)

$$
p\left(w_{t+1} \mid w_{t}\right)
$$

Practice the derivation by yourself!!

35 Word2Vec CBOW

- Goal: predicting the target word given the surrounding words

36 Word2Vec LM

- Goal: predicting the next words given the proceeding contexts

$$
p\left(w_{t+1} \mid w_{t}\right)
$$

Word Embeddings GloVe

38 Comparison

O Count-based

- LSA, HAL (Lund \& Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret \& Collobert)
- Pros
\checkmark Fast training
\checkmark Efficient usage of statistics
- Cons
\checkmark Primarily used to capture word similarity
\checkmark Disproportionate importance given to large counts

O Direct prediction

- NNLM, HLBL, RNN, Skipgram/CBOW
(Bengio et al; Collobert \& Weston; Huang et al; Mnih \& Hinton; Mikolov et al; Mnih \& Kavukcuoglu)
- Pros
\checkmark Generate improved performance on other tasks
$\checkmark \quad$ Capture complex patterns beyond word similarity
- Cons
\checkmark Benefits mainly from large corpus
$\checkmark \quad$ Inefficient usage of statistics

Combining the benefits from both worlds \rightarrow GloVe

39 GloVe

O Idea: ratio of co-occurrence probability can encode meaning

- $P_{i j}$ is the probability that word w_{j} appears in the context of word w_{i}

$$
P_{i j}=P\left(w_{j} \mid w_{i}\right)=X_{i j} / X_{i}
$$

- Relationship between the words w_{i} and w_{j}

	$\boldsymbol{x}=$ solid	$\boldsymbol{x}=$ gas	$\boldsymbol{x}=$ water	$\boldsymbol{x}=$ random
$P(x \mid$ ice $)$	large	small	large	small
$P(x \mid$ stream $)$	small	large	large	small
$\frac{P(x \mid \text { ice })}{P(x \mid \text { stream })}$	large	small	~ 1	~ 1

40 GloVe

- The relationship of w_{i} and w_{j} approximates the ratio of their co-occurrence probabilities with various w_{k}

$$
\begin{aligned}
& F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(w_{i}-w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}} \\
& F\left(\left(v_{w_{i}}-v_{w_{j}}\right)^{T} v_{\tilde{w}_{k}}^{\prime}\right)=\frac{P_{i k}}{P_{j k}} \quad F(\cdot)=\exp (\cdot) \\
& v_{w_{i}} \cdot v_{\tilde{w}_{k}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{k}}^{\prime}=\log P\left(w_{k} \mid w_{i}\right)
\end{aligned}
$$

41 GloVe

$$
\begin{aligned}
& v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}=v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}=\log P\left(w_{j} \mid w_{i}\right) \quad P_{i j}=X_{i j} / X_{i} \\
& \quad=\log P_{i j}=\log \left(X_{i j}\right)-\log \left(X_{i}\right) \\
& v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}=\log \left(X_{i j}\right) \\
& C(\theta)=\sum_{i, j=1}^{V} f\left(P_{i j}\right)\left(v_{w_{i}} \cdot v_{\tilde{w}_{j}}^{\prime}-\log P_{i j}\right)^{2} \\
& C(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
\end{aligned}
$$

42 GloVe - Weighted Least Squares Regression Model

$$
C(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(v_{w_{i}}^{T} v_{\tilde{w}_{j}}^{\prime}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

- Weighting function should obey
- $f(0)=0$
- $f(x)$ should be non-decreasing so that rare co-occurrences are not overweighted
- $f(x)$ should be relatively small for large values of x, so that frequent co-occurrences are not overweighted

fast training, scalable, good performance even with small corpus, and small vectors
(43) Word Vector Evaluation

(44) Intrinsic Evaluation - Word Analogies

- Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

$$
x=\arg \max _{x} \frac{\left(v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right)^{T} v_{w_{x}}}{\left\|v_{w_{B}}-v_{w_{A}}+v_{w_{C}}\right\|}
$$

- Syntactic and Semantic example questions [link]

Issue: what if the information is there but not linear

45 Intrinsic Evaluation - Word Analogies

O Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$

- Syntactic and Semantic example questions [link]
city---in---state
Chicago : Illinois = Houston:Texas
Chicago : lllinois = Philadelphia : Pennsylvania
Chicago: Illinois = Phoenix : Arizona
Chicago: Illinois = Dallas: Texas
Chicago : Illinois = Jacksonville: Florida
Chicago : Illinois = Indianapolis: Indiana
Chicago: : Illinois = Aus8n : Texas
Chicago: lllinois = Detroit : Michigan
Chicago : lllinois = Memphis: Tennessee
Chicago : Illinois = Boston : Massachusetts
Issue: different cities may have same name
capital---country
Abuja : Nigeria = Accra : Ghana
Abuja : Nigeria = Algiers: Algeria
Abuja : Nigeria = Amman : Jordan
Abuja : Nigeria = Ankara : Turkey
Abuja : Nigeria = Antananarivo: Madagascar
Abuja : Nigeria = Apia : Samoa
Abuja : Nigeria = Ashgabat: Turkmenistan
Abuja : Nigeria = Asmara : Eritrea
Abuja : Nigeria = Astana : Kazakhstan

${ }^{46}$ Intrinsic Evaluation - Word Analogies

- Word linear relationship $w_{A}: w_{B}=w_{C}: w_{x}$
- Syntactic and Semantic example questions [link]

```
superlative
bad : worst = big : biggest
bad : worst = bright : brightest
bad : worst = cold : coldest
bad : worst = cool : coolest
bad : worst = dark : darkest
bad : worst = easy : easiest
bad : worst = fast : fastest
bad : worst = good : best
bad : worst = great : greatest
```


past tense

dancing : danced = decreasing : decreased dancing : danced = describing : described
dancing : danced = enhancing : enhanced
dancing : danced = falling : fell
dancing : danced $=$ feeding : fed
dancing : danced = flying : flew
dancing : danced = generating : generated
dancing : danced = going : went
dancing : danced = hiding : hid
dancing : danced = hiding : hit

47) Intrinsic Evaluation - Word Correlation

- Comparing word correlation with human-judged scores
- Human-judged word correlation [link]

Word 1	Word 2	Human-Judged Score
tiger	cat	7.35
tiger	tiger	10.00
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62

Ambiguity: synonym or same word with different POSs

48 Extrinsic Evaluation - Subsequent Task

- Goal: use word vectors in neural net models built for subsequent tasks

O Benefit
Ability to also classify words accurately

- Ex. countries cluster together a classifying location words should be possible with word vectors
- Incorporate any information into them other tasks
- Ex. project sentiment into words to find most positive/negative words in corpus

49 Concluding Remarks

- Low dimensional word vector
- word2vec

- GloVe: combining count-based and direct learning
- Word vector evaluation
- Intrinsic: word analogy, word correlation
- Extrinsic: subsequent task

