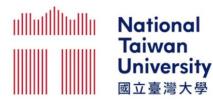
Applied Deep Learning

Gating Mechanism

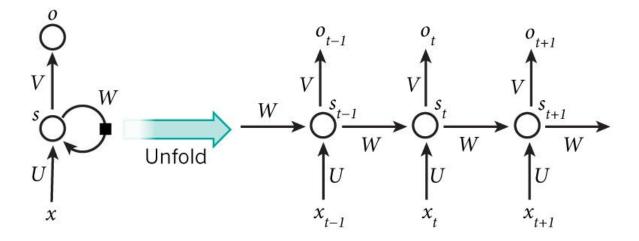
September 29th, 2022 http://adl.miulab.tw



Vanishing Gradient Problem

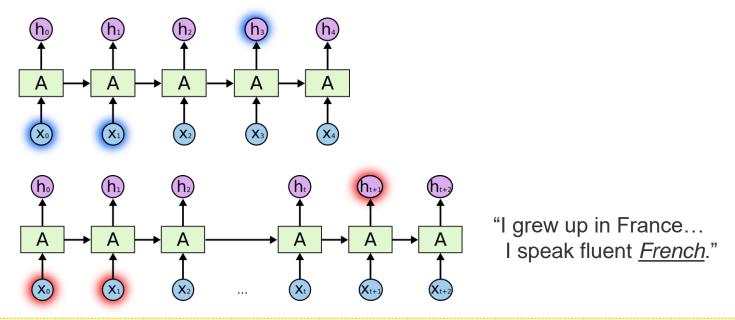
3 Recurrent Neural Network Definition

$$s_t = \sigma(Ws_{t-1} + Ux_t) \quad \sigma(\cdot)$$
: tanh, ReLU
 $o_t = \operatorname{softmax}(Vs_t)$



Vanishing Gradient: Gating Mechanism

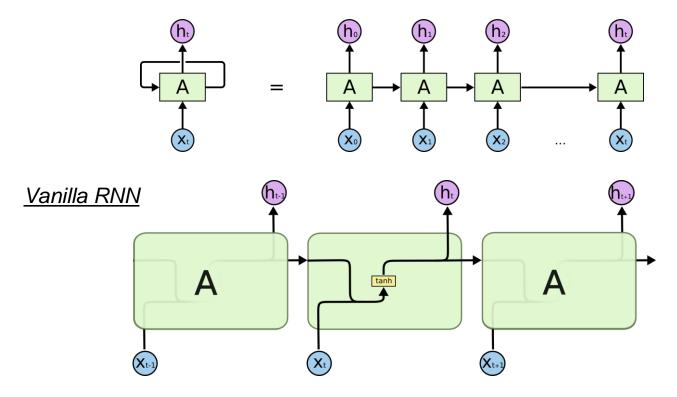
• RNN: keeps temporal sequence information

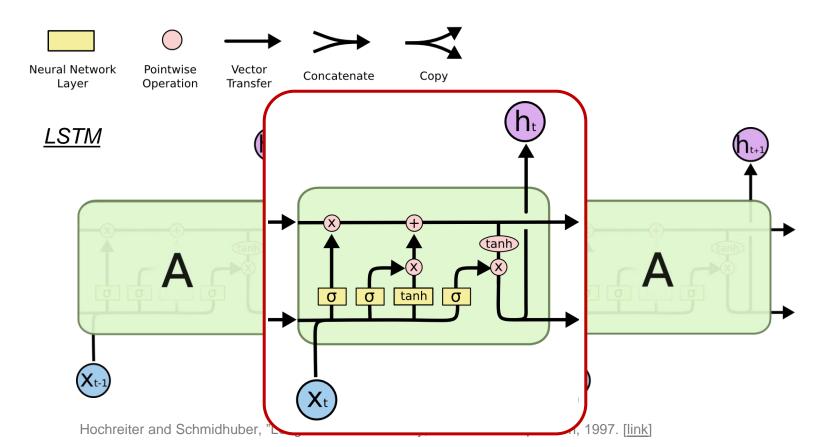


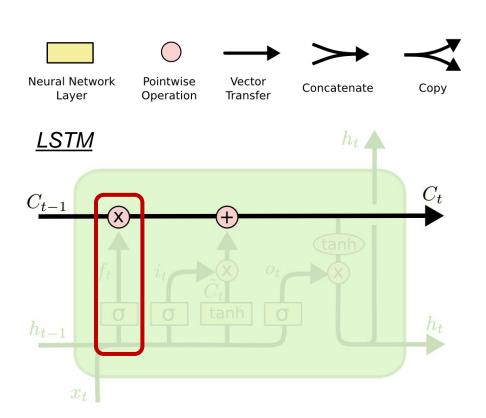
Issue: in theory, RNNs can handle such "long-term dependencies," but they cannot in practice \rightarrow use gates to directly encode the long-distance information

Addressing Vanishing Gradient Problem

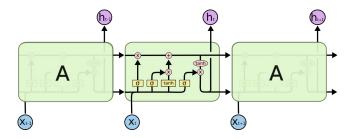
ESTMs are explicitly designed to avoid the long-term dependency problem





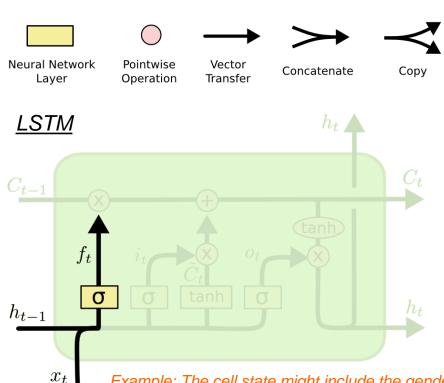


8

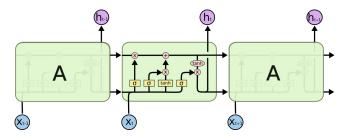


runs straight down the chain with minor linear interactions \rightarrow easy for information to flow along it unchanged

Gates are a way to optionally let information through → composed of a sigmoid and a pointwise multiplication operation



9

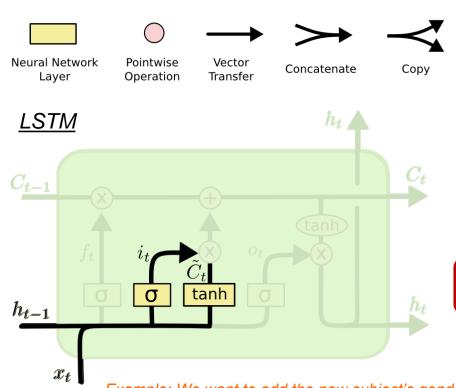


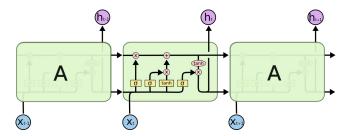
forget gate (a sigmoid layer): decides what information we're going to throw away from the cell state

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

- 1: "completely keep this"
- 0: "completely get rid of this"

t Example: The cell state might include the gender of the present subject, so that the correct pronouns can be used. When seeing a new subject, we want to forget the old subject's gender.



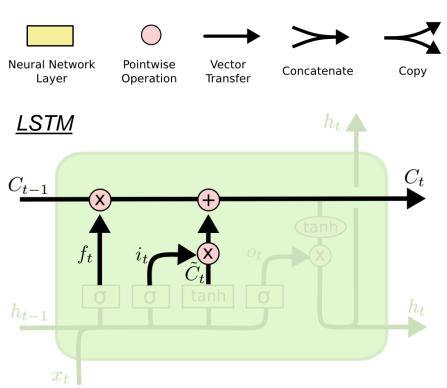


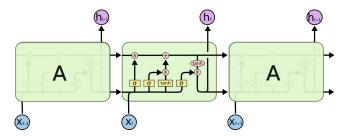
input gate (a sigmoid layer): decides what new information we're going to store in the cell state

$$\dot{a}_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

 $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ Vanilla RNN

Example: We want to add the new subject's gender to the cell state for replacing the old one.



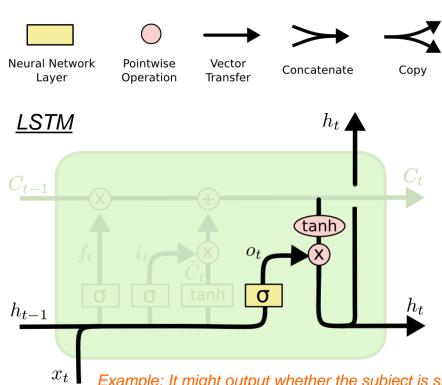


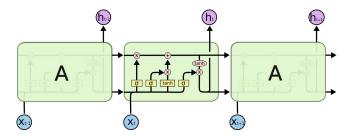
cell state update: forgets the things we decided to forget earlier and add the new candidate values, scaled by how much we decided to update each state value

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- f_t : decides which to forget
- i_t : decide which to update

where we actually drop the information about the old subject's gender and add the new information





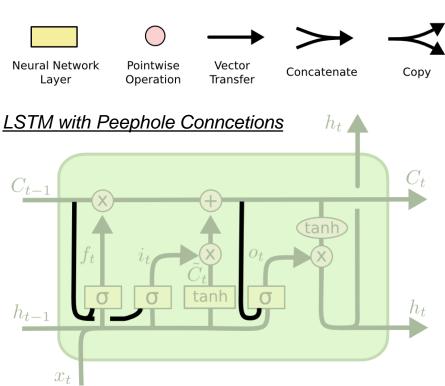
output gate (a sigmoid layer): decides what new information we're going to output

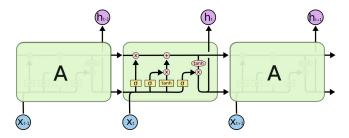
$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + b_{o} \right)$$
$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

Example: It might output whether the subject is singular or plural, so that we know what form a verb should be conjugated into if that's what follows next.

Addressing Vanishing Gradient Problem

4 LSTM with Peephole Connections





Idea: allow gate layers to look at the cell state

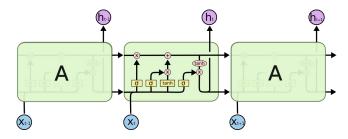
$$f_{t} = \sigma \left(W_{f} \cdot \begin{bmatrix} \mathbf{C_{t-1}}, h_{t-1}, x_{t} \end{bmatrix} + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot \begin{bmatrix} \mathbf{C_{t-1}}, h_{t-1}, x_{t} \end{bmatrix} + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot \begin{bmatrix} \mathbf{C_{t}}, h_{t-1}, x_{t} \end{bmatrix} + b_{o} \right)$$

15—LSTM with Coupled Forget/Input Gates

LSTM with Coupled Forget/Input Gates h_t tanh tanh h_{t-1} x_t



Idea: instead of separately deciding what to forget and what we should add new information to, we make those decisions together

$$C_t = f_t * C_{t-1} + \frac{(1 - f_t)}{(1 - f_t)} * \tilde{C}_t$$

We only forget when we're going to input something in its place, and vice versa.

Addressing Vanishing Gradient Problem

tanh $r_{t}=0$: ignore previous $h_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$ memory and only stores $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$ the new word information x_t GRU is simpler and has less parameters than LSTM Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014. [link]

17 Gated Recurrent Unit (GRU)

 h_t

Neural Network

Layer

GRU

 h_{t-1}

Copy

Idea: combine the forget and input gates into a single "update gate"; merge the cell state and hidden state

Α

update gate:
$$z_t = \sigma (W_z \cdot [h_{t-1}, x_t])$$

reset gate: $r_t = \sigma (W_r \cdot [h_{t-1}, x_t])$

Α

18— Concluding Remarks

- Gating mechanism for vanishing gradient problem
- Gated RNN
 - Long Short-Term Memory (LSTM)
 - Peephole Connections
 - Coupled Forget/Input Gates
 - Gated Recurrent Unit (GRU)

