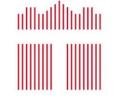
# Applied Deep Learning



#### **Recurrent Neural Network**



September 22nd, 2022 http://adl.miulab.tw



National Taiwan University

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

# Language Modeling

語言模型

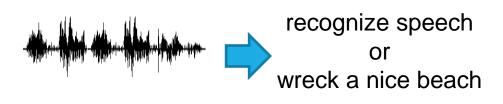
- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

## Language Modeling

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

 Example task: determinate whether a sequence is grammatical or makes more sense



If P(recognize speech) > P(wreck a nice beach)

Output = "recognize speech"

#### Outline

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

#### **N-Gram Language Modeling**

Goal: estimate the probability of a word sequence

$$P(w_1,\cdots,w_m)$$

- N-gram language model
  - Probability is conditioned on a window of (*n*-1) previous words

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

Estimate the probability based on the training data

$$P(\text{beach}|\text{nice}) = \frac{C(\text{nice each})}{C(\text{nice})} \leftarrow \frac{C(\text{ount of "nice beach" in the training data})}{C(\text{ount of "nice" in the training data})}$$

Issue: some sequences may not appear in the training data

#### **N-Gram Language Modeling**

- Training data:
  - The dog ran ......
  - The cat jumped ......

```
P(jumped | dog) = 0.0001
P(ran | cat) = 0.0001
```

give some small probability

→ smoothing

- > The probability is not accurate.
- ➤ The phenomenon happens because we cannot collect all the possible text in the world as training data.

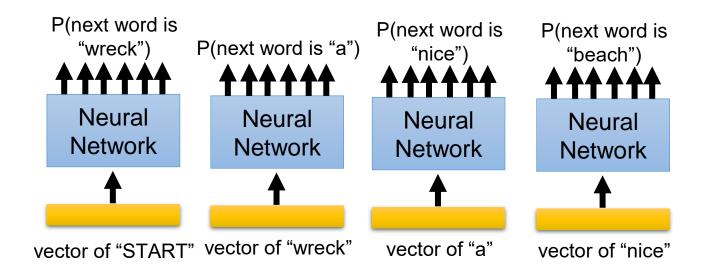
#### Outline

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

## **Neural Language Modeling**

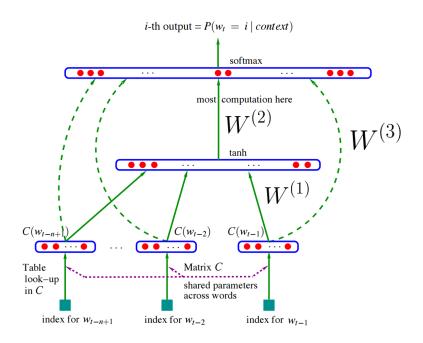
Oldea: estimate  $P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$  not from count, but from NN prediction

P("wreck a nice beach") = P(wreck | START) P(a | wreck) P(nice | a) P(beach | nice)

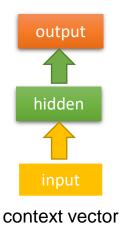


#### **Neural Language Modeling**

$$\hat{y} = \operatorname{softmax}(W^{(2)}\sigma(W^{(1)}x + b^{(1)}) + W^{(3)}x + b^{(3)})$$



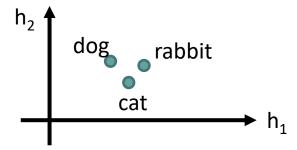
Probability distribution of the next word



Bengio et al., "A Neural Probabilistic Language Model," in *JMLR*, 2003.

## **Neural Language Modeling**

The input layer (or hidden layer) of the related words are close



If P(jump | dog) is large, P(jump | cat) increase accordingly (even there is not "... cat jump ..." in the data)

Smoothing is automatically done

Issue: fixed context window for conditioning

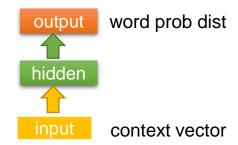
#### 13 Outline

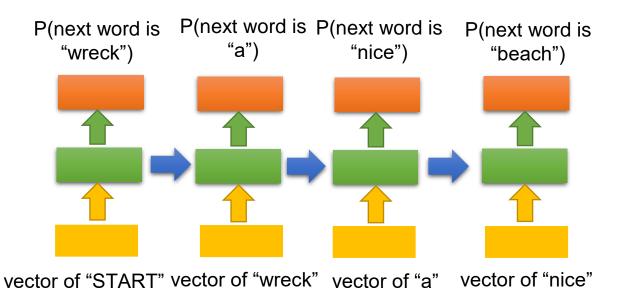
- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

#### **Recurrent Neural Network**

- Idea: condition the neural network on <u>all previous words</u> and <u>tie the weights</u> at each time step
- Assumption: temporal information matters

#### **RNN Language Modeling**





Idea: pass the information from the previous hidden layer to leverage all contexts

**Recurrent Neural Network** 

詳細解析鼎鼎大名的RNN

#### 17 Outline

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)

#### Recurrent Neural Network

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue
- Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

#### **RNNLM Formulation**

At each time step,

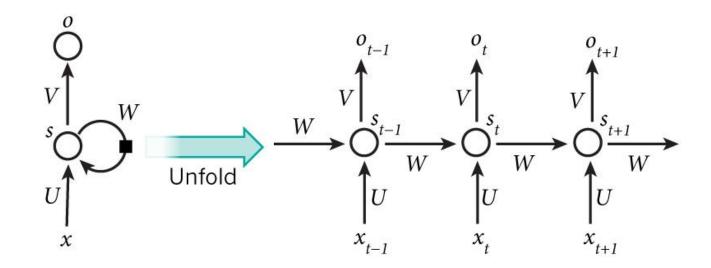
$$h_t = \sigma(Wh_{t-1} + Ux_t) \qquad \text{probability of the next word}$$
 
$$\hat{y}_t = \operatorname{softmax}(Vh_t) \qquad \qquad \hat{y}_t \qquad \qquad \dots \qquad \qquad \\ P(x_{t+1} = w_j \mid x_1, \cdots, x_t) = \hat{y}_{t,j} \qquad \qquad \qquad \downarrow V \qquad \qquad \\ h_{t-1} \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow V \qquad \qquad \\ W \qquad \qquad \downarrow U \qquad \qquad \qquad \qquad \\ W \qquad \qquad \downarrow U \qquad \qquad \qquad \\ \text{vector of the current word}$$

#### 19 Outline

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

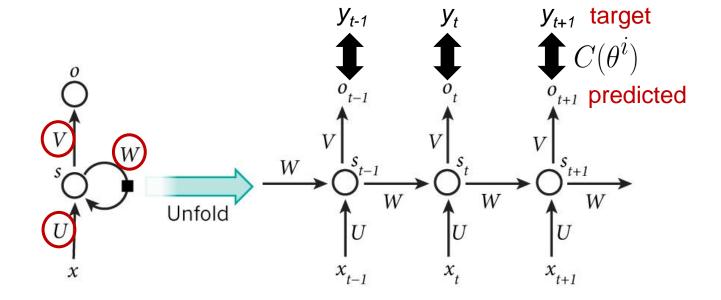
#### **Recurrent Neural Network Definition**

$$s_t = \sigma(Ws_{t-1} + Ux_t)$$
 
$$o_t = \operatorname{softmax}(Vs_t)$$
 
$$\sigma(\cdot): \tanh, \operatorname{ReLU}$$



#### **Model Training**

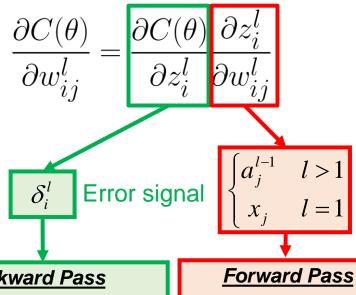
O All model parameters  $\theta=\{U,V,W\}$  can be updated by  $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta C(\theta^i)$ 

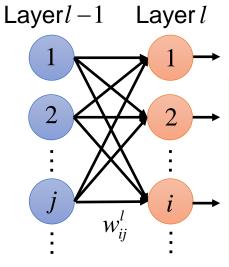


## 22 Outline

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

## **Backpropagation**





#### **Backward Pass**

$$\begin{array}{ll} \delta^L = \sigma'(z^L) \odot \nabla C(y) \\ \delta^{L-1} = \sigma'(z^{L-1}) \odot (W^L)^T \delta^L \\ \vdots \\ \delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1} \\ \vdots \\ z^l = W^l x + b^1 \\ a^1 = \sigma(z^1) \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\ z^l = W^l a^{l-1} + b^1 \\ \vdots \\$$

$$z^{1} = W^{1}x + b^{1}$$

$$a^{1} = \sigma(z^{1})$$

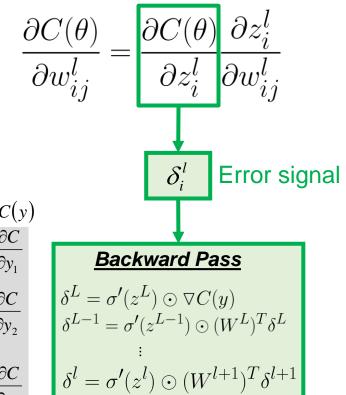
$$\vdots$$

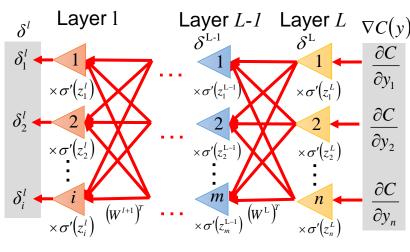
$$z^{l} = W^{l}a^{l-1} + b^{1}$$

$$z^{l} = W^{l}a^{l-1} + b^{l}$$

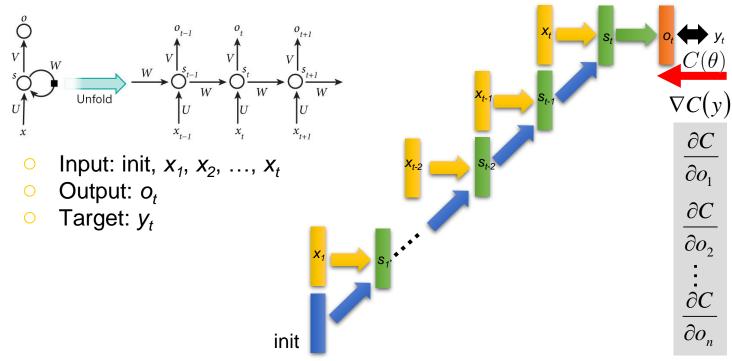
$$a^{l} = \sigma(z^{l})$$

## **Backpropagation**

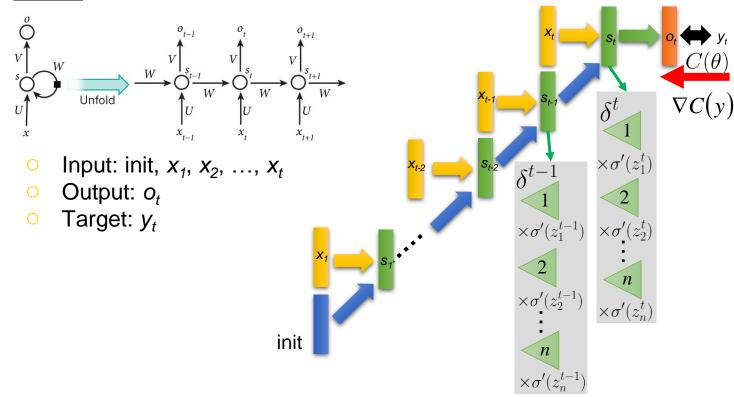




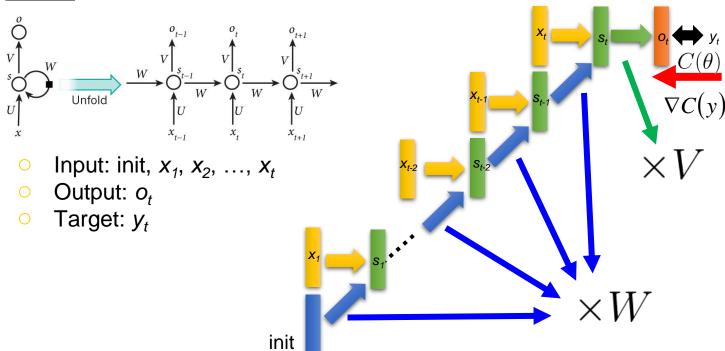
#### Unfold



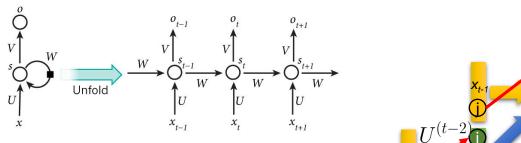
#### Unfold



#### Unfold

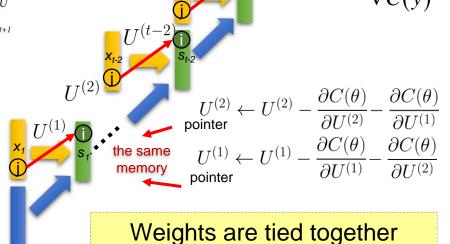


#### Unfold

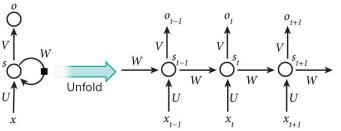


init

- O Input: init,  $x_1$ ,  $x_2$ , ...,  $x_t$
- Output:  $o_t$
- Target: y<sub>t</sub>

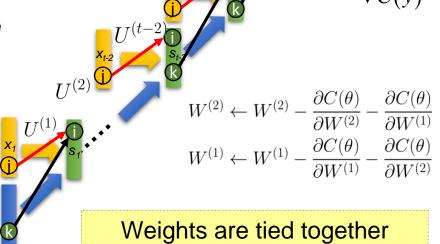


#### Unfold



init

- Output:  $o_t$
- Target: y<sub>t</sub>



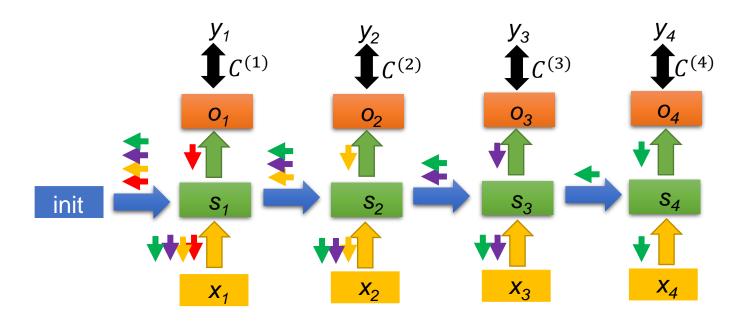
**BPTT** 

Forward Pass:

Compute  $s_1$ ,  $s_2$ ,  $s_3$ ,  $s_4$  .....

Backward Pass:

For  $C^{(4)}$  For  $C^{(3)}$ For  $C^{(2)}$ 



- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - **Training Issue**
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

## **RNN Training Issue**

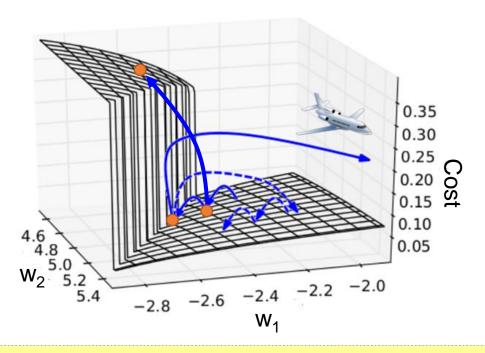
- The gradient is a product of Jacobian matrices, each associated with a step in the forward computation
- Multiply the <u>same</u> matrix at each time step during backprop

$$\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$$

The gradient becomes very small or very large quickly 

vanishing or exploding gradient

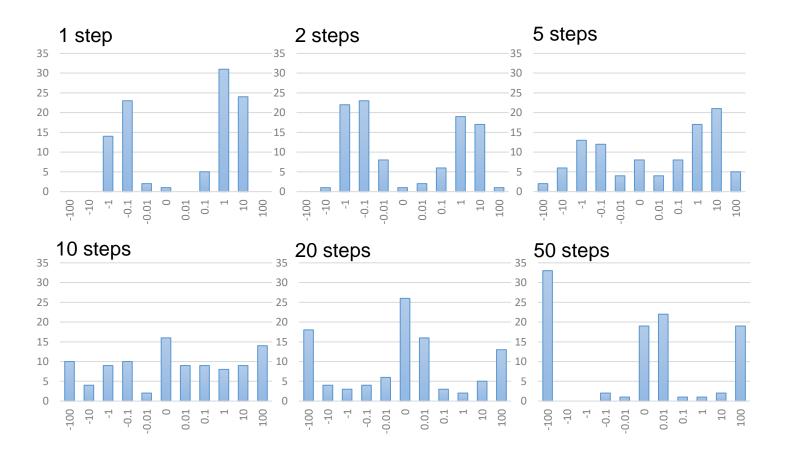
#### **Rough Error Surface**



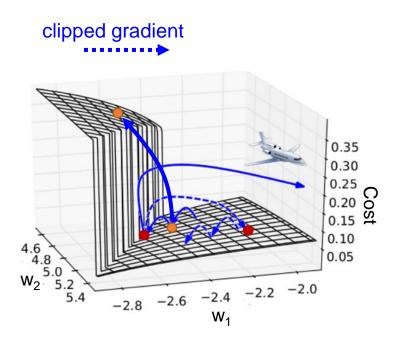
The error surface is either very flat or very steep

Bengio et al., "Learning long-term dependencies with gradient descent is difficult," *IEEE Trans. of Neural Networks*, 1994. [link] Pascanu et al., "On the difficulty of training recurrent neural networks," in *ICML*, 2013. [link]

## Vanishing/Exploding Gradient Example



## Solution for Exploding Gradient: Clipping



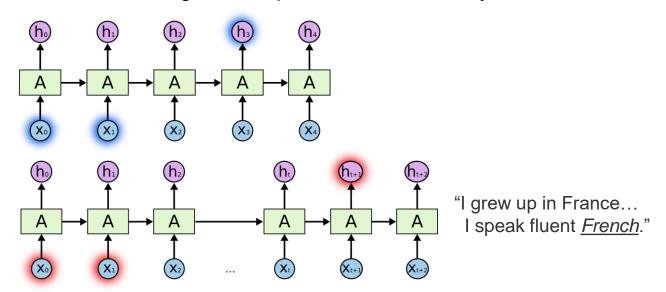
Idea: control the gradient value to avoid exploding

Algorithm 1 Pseudo-code for norm clipping 
$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 if  $\|\hat{\mathbf{g}}\| \geq threshold$  then 
$$\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$$
 end if

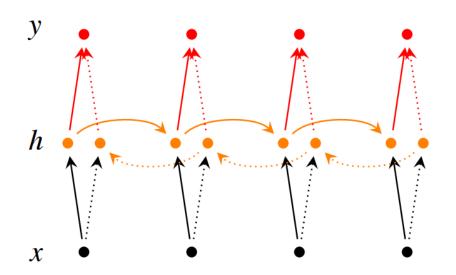
Parameter setting: values from half to ten times the average can still yield convergence

## **Solution for Vanishing Gradient: Gating**

- RNN models temporal sequence information
  - can handle "long-term dependencies" in theory



#### **Extension: Bidirectional RNN**



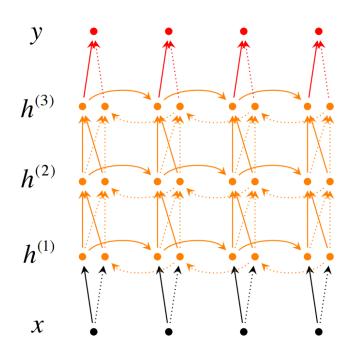
$$\vec{h}_t = f(\overrightarrow{W}x_t + \overrightarrow{V}\vec{h}_{t-1} + \vec{b})$$

$$\overleftarrow{h}_t = f(\overleftarrow{W}x_t + \overleftarrow{V}\vec{h}_{t+1} + \overleftarrow{b})$$

$$y_t = g(U[\overrightarrow{h}_t; \overleftarrow{h}_t] + c)$$

 $h = \begin{bmatrix} \vec{h}; \vec{h} \end{bmatrix}$  represents (summarizes) the past and future around a single token

## **Extension: Deep Bidirectional RNN**



$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\dot{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \dot{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(U[\vec{h}_{t}^{(L)}; \dot{h}_{t}^{(L)}] + c)$$

Each memory layer passes an intermediate representation to the next

**RNN Applications** 

RNN各式應用情境

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

# **How to Frame the Learning Problem?**

lacktriangle The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

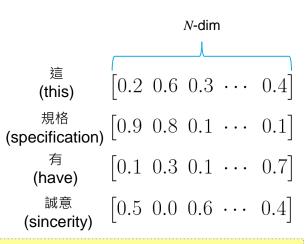
- Input domain: word, word sequence, audio signal, click logs
- Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
- Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

# Input Domain – Sequence Modeling

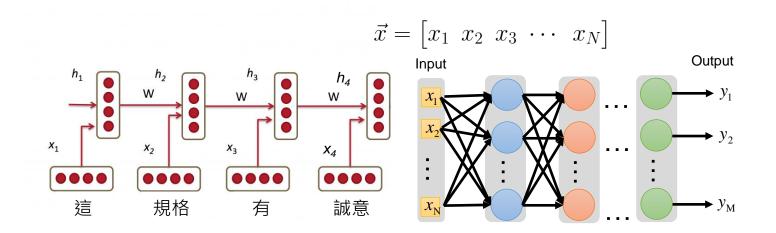
- Idea: aggregate the meaning from all words into a vector
- Method:
  - Basic combination: average, sum
  - Neural combination:
    - ✓ Recursive neural network (RvNN)
    - Recurrent neural network (RNN)
    - ✓ Convolutional neural network (CNN)



How to compute 
$$\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_N \end{bmatrix}$$

# **Sentiment Analysis**

Encode the sequential input into a vector using RNN



RNN considers temporal information to learn sentence vectors as classifier's input

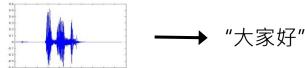
- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

# **Output Domain – Sequence Prediction**

POS Tagging

"推薦我台大後門的餐廳" → 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



Machine Translation

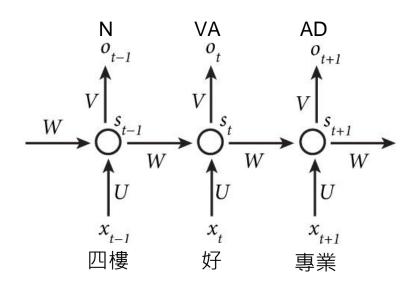
"How are you doing today?" → "你好嗎?"

The output can be viewed as a sequence of classification

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

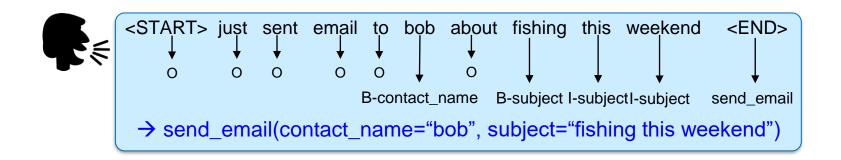
# **POS Tagging**

- Tag a word at each timestamp
  - Input: word sequence
  - Output: corresponding POS tag sequence



# **Natural Language Understanding (NLU)**

- Tag a word at each timestamp
  - Input: word sequence
  - Output: IOB-format slot tag and intent tag

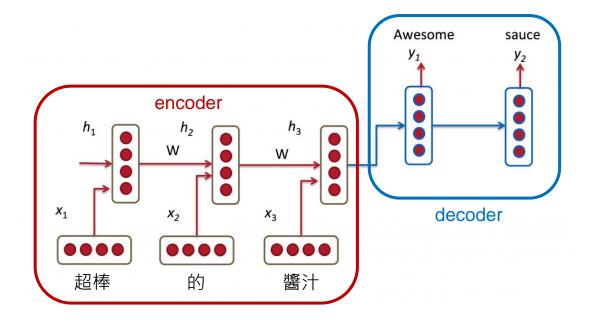


Temporal orders for input and output are the same

- Language Modeling
  - N-gram Language Model
  - Feed-Forward Neural Language Model
  - Recurrent Neural Network Language Model (RNNLM)
- Recurrent Neural Network
  - Definition
  - Training via Backpropagation through Time (BPTT)
  - Training Issue
  - Extension
- RNN Applications
  - Sequential Input
  - Sequential Output
    - Aligned Sequential Pairs (Tagging)
    - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

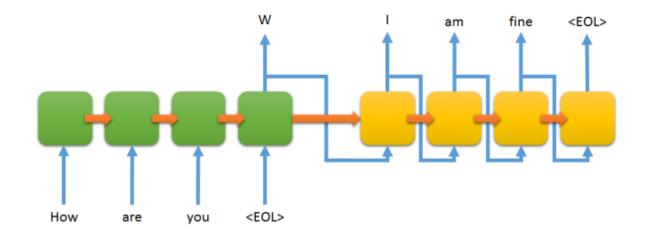
#### **Machine Translation**

- Cascade two RNNs, one for encoding and one for decoding
  - Input: word sequences in the source language
  - Output: word sequences in the target language



# **Chit-Chat Dialogue Modeling**

- Cascade two RNNs, one for encoding and one for decoding
  - Input: word sequences in the question
  - Output: word sequences in the response



Temporal ordering for input and output may be different



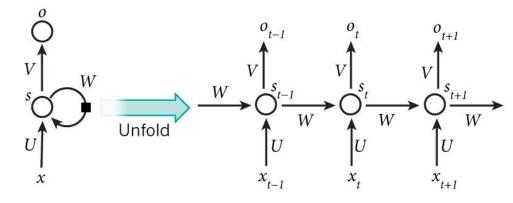
#### Sci-Fi Short Film - SUNSPRING



# **Concluding Remarks**

- Language Modeling
  - O RNNLM
- Recurrent Neural Networks
  - Definition

$$s_t = \sigma(W s_{t-1} + U x_t)$$
$$o_t = \operatorname{softmax}(V s_t)$$



- Backpropagation through Time (BPTT)
- Vanishing/Exploding Gradient
- RNN Applications
  - Sequential Input: Sequence-Level Embedding
  - Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)