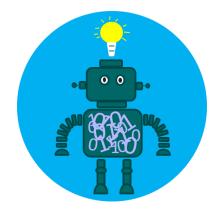
Applied Deep Learning

Introduction

February 8th, 2022

http://adl.miulab.tw

National Taiwan University 國立臺灣大學



What is Machine Learning?

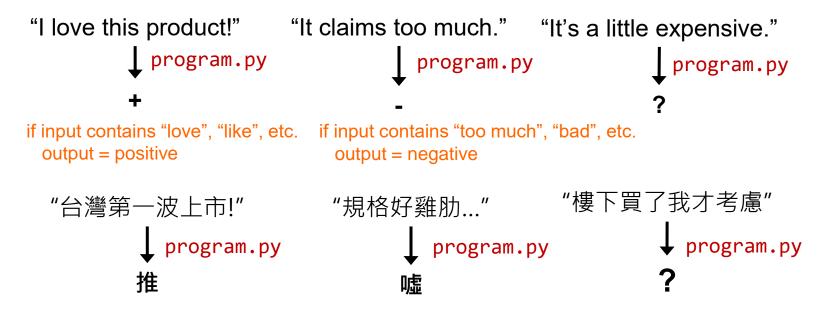
什麼是機器學習? 白話文讓你了解!

3—What Computers Can Do?

Programs can do the things you ask them to do

Program for Solving Tasks

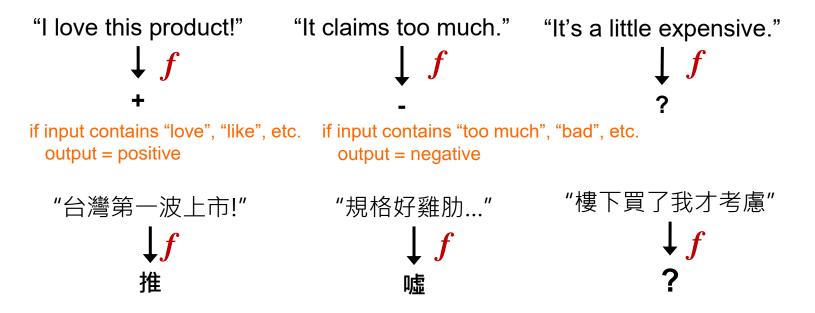
Task: predicting positive or negative given a product review



Some tasks are complex, and we don't know how to write a program to solve them.

5— Learning ≈ Looking for a Function

Task: predicting positive or negative given a product review



Given a large amount of data, the machine learns what the function f should be.

6 Learning ≈ Looking for a Function

f(

- Handwritten Recognition f(
- Weather forecast

f(\rightarrow Thursday)= " \rightarrow Saturday"

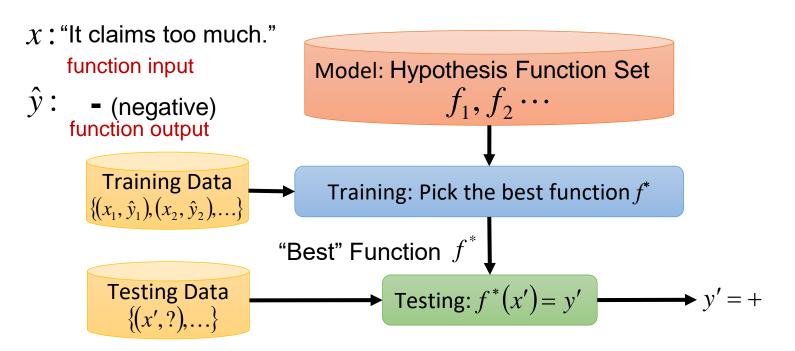
)= "2"

Play video games

2

)= "move left"

Machine Learning Framework



Training is to pick the best function given the observed data Testing is to predict the label using the learned function

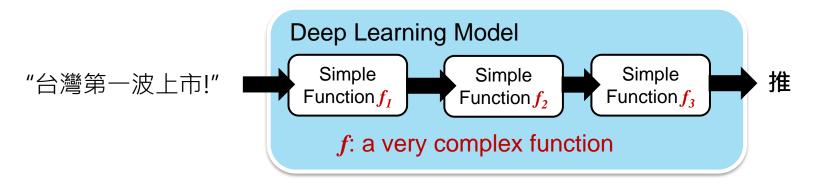
What is Deep Learning?

什麼是深度學習?

A subfield of machine learning

Stacked Functions Learned by Machine

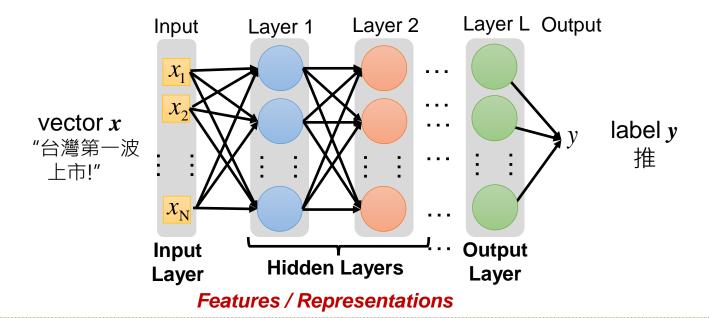
● Production line (生產線)



End-to-end training: what each function should do is learned automatically

Deep learning usually refers to neural network based model

Output Description of the second structure of the s

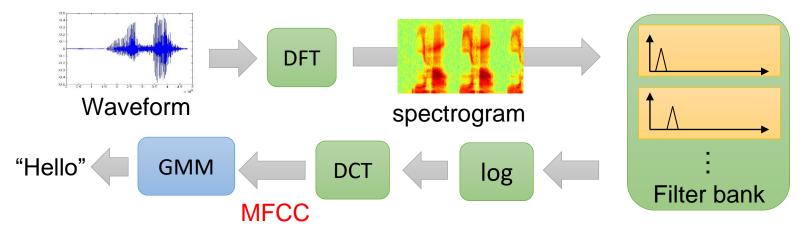


Representation Learning attempts to learn good features/representations

Deep Learning attempts to learn (multiple levels of) representations and an output

Deep v.s. Shallow – Speech Recognition

Shallow Model



Each box is a simple function in the production line:

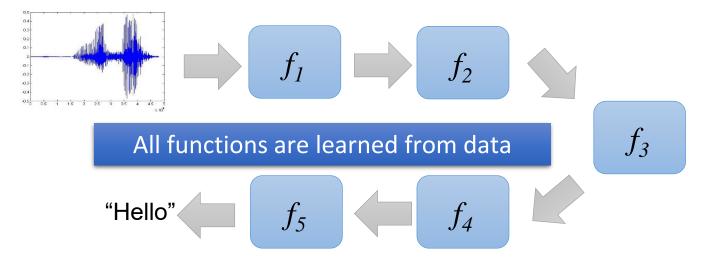
:hand-crafted

:learned from data

Deep v.s. Shallow – Speech Recognition

"Bye bye, MFCC" - Deng Li in Interspeech 2014

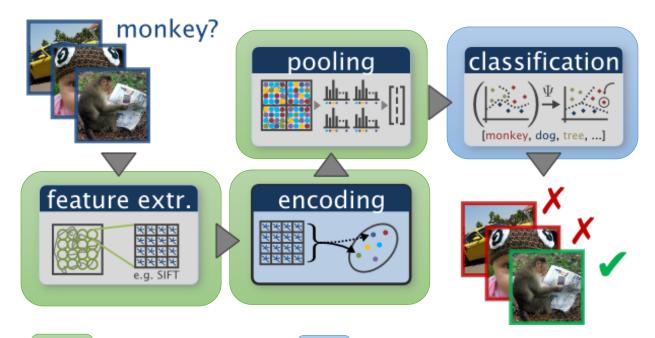
Deep Model

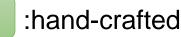


Less engineering labor, but machine learns more

13— Deep v.s. Shallow – Image Recognition

• Shallow Model





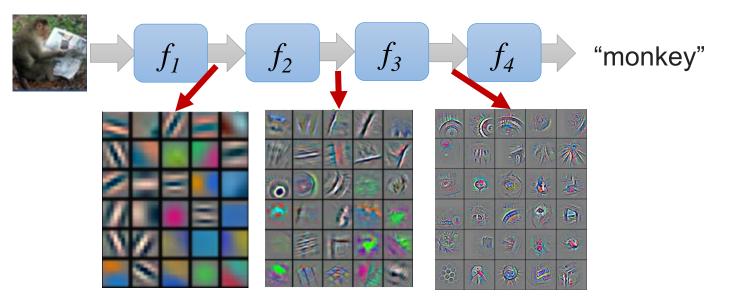
:learned from data

14 Deep v.s. Shallow – Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833)

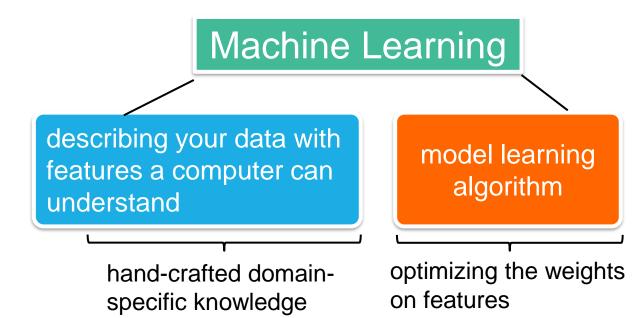
Deep Model

All functions are learned from data

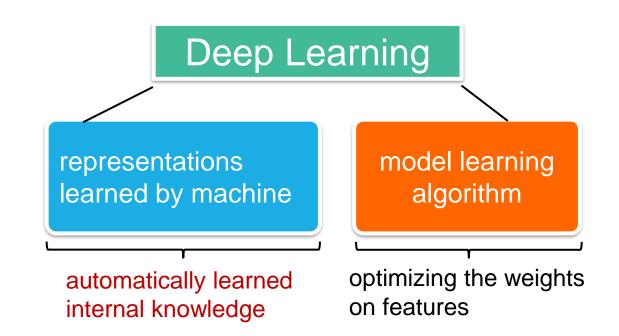


Features / Representations

Machine Learning v.s. Deep Learning

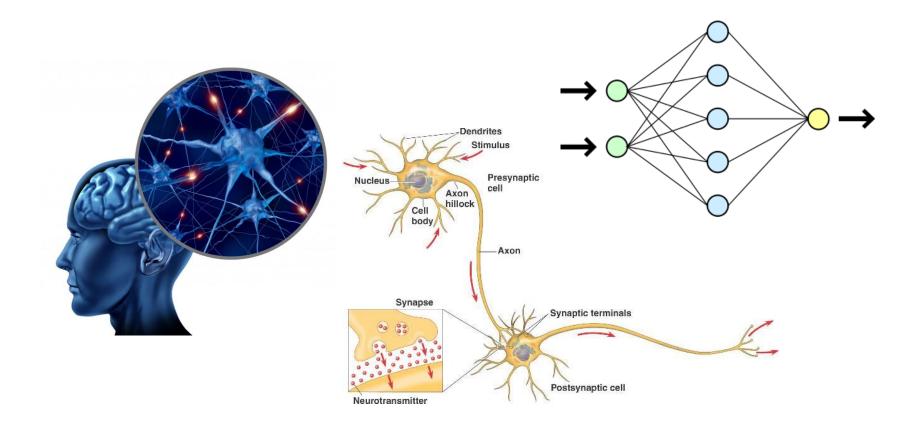


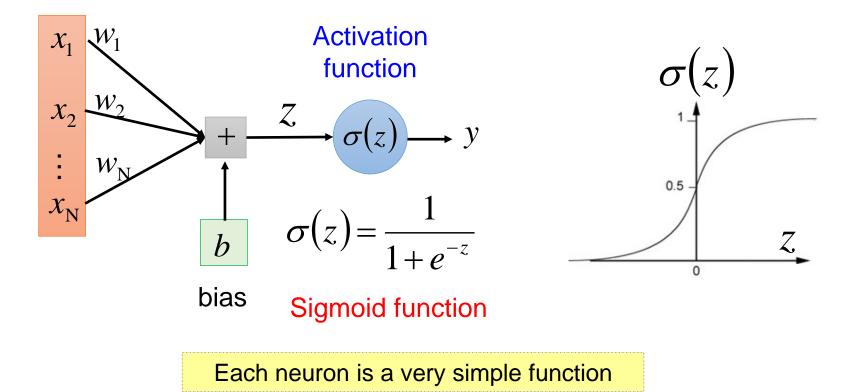
Machine Learning v.s. Deep Learning



Deep learning usually refers to *neural network* based model

10— Inspired by Human Brain

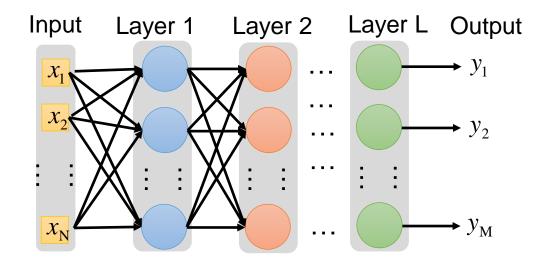




Deep Neural Network

A neural network is a complex function:
$$f: \mathbb{R}^N \longrightarrow \mathbb{R}^M$$

Cascading the neurons to form a neural network



Each layer is a simple function in the production line

20 History of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition

Deep Learning Breakthrough 21

Phonemes/Words

First: Speech Recognition

Acoustic Model	WER on RT03S FSH	WER on Hub5 SWB
Traditional Features	27.4%	23.6%
Deep Learning	18.5% (-33%)	16.1% (-32%)

Second: Computer Vision

flamingo

partridge

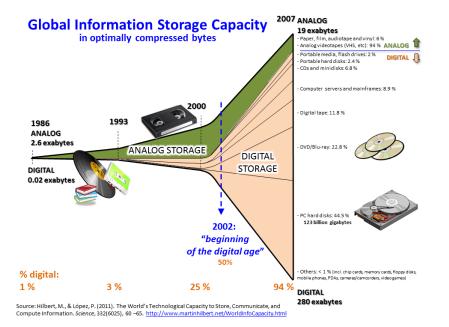
Egyptian cat

22— History of Deep Learning

- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
- 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2010: breakthrough in Speech Recognition (Dahl et al., 2010)
- 2012: breakthrough in ImageNet (Krizhevsky et al. 2012)
- 2015: "superhuman" results in Image and Speech Recognition

Why does deep learning show breakthrough in applications after 2010?

Reasons why Deep Learning works



TITAN X FOR DEEP LEARNING

GPU

Big Data

Why to Adopt GPU for Deep Learning?

• GPU is like a brain

O Human brains create graphical imagination for mental thinking

台灣好吃牛肉麵

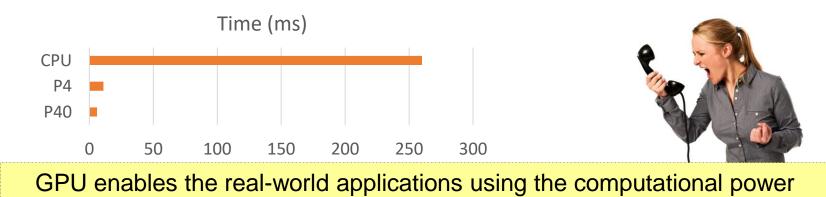
25 Why Speed Matters?

Training time

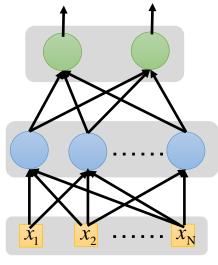
- Big data increases the training time
- Too long training time is not practical

Inference time

Users are not patient to wait for the responses



 \bigcirc Deeper \rightarrow More parameters

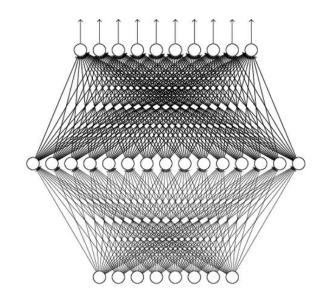


Shallow



- \bigcirc Any continuous function f
 - $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$

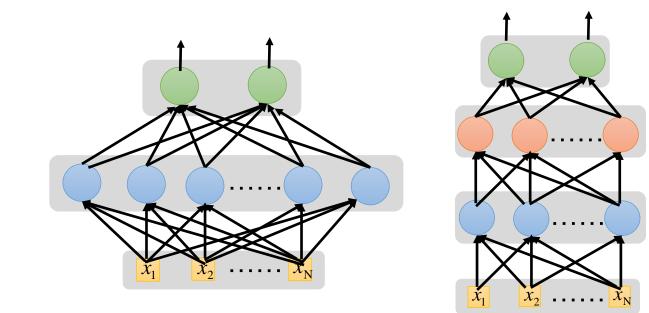
• can be realized by a network with only hidden layer



Why "deep" not "fat"?

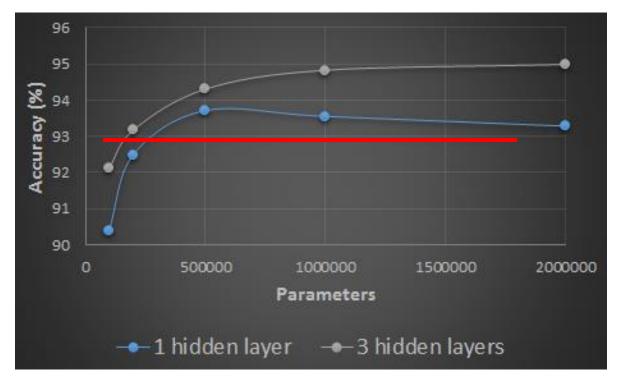
Fat + Shallow v.s. Thin + Deep

• Two networks with the same number of parameters



Fat + Shallow v.s. Thin + Deep Hand-Written Digit Classification

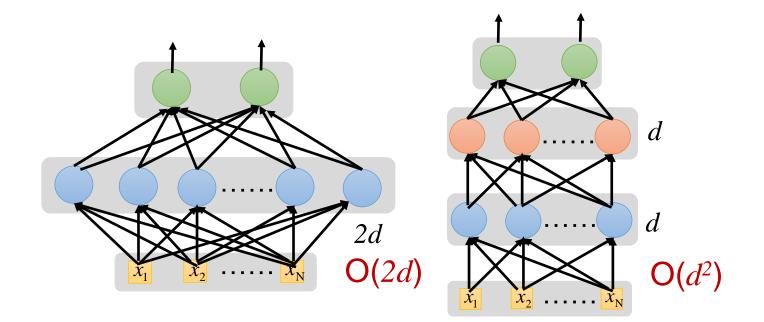
29



The deeper model uses less parameters to achieve the same performance

Fat + Shallow v.s. Thin + Deep

• Two networks with the same number of parameters



32 How to Frame the Learning Problem?

• The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

Input domain: word, word sequence, audio signal, click logs

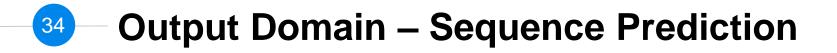
Output domain: single label, sequence tags, tree structure, probability distribution

Output Domain – Classification

Sentiment Analysis

Speech Phoneme Recognition

→ 2

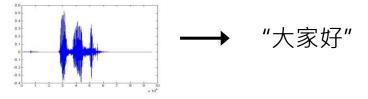


POS Tagging

"推薦我台大後門的餐廳"

→ 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



"How are you doing today?" → "你好嗎?"

Learning tasks are decided by the output domains

35— Input Domain – How to Aggregate Information

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
 - CNN (convolutional neural network): local connections, shared weights, pooling
 - AlexNet, VGGNet, etc.
 - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

36— How to Frame the Learning Problem?

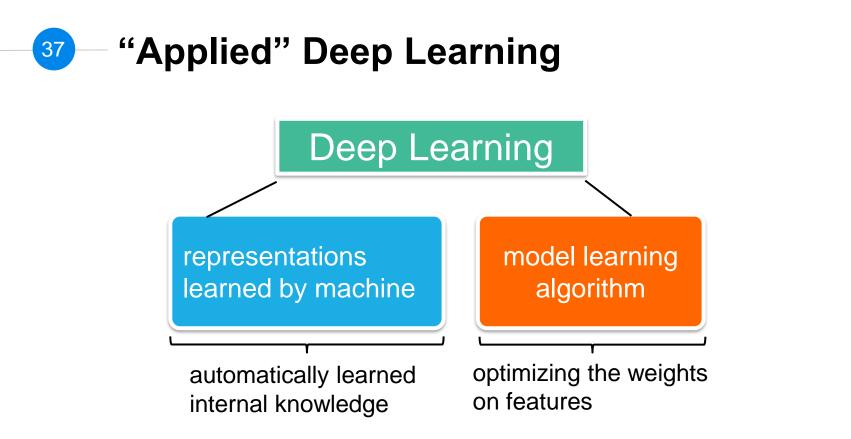
• The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure, probability distribution

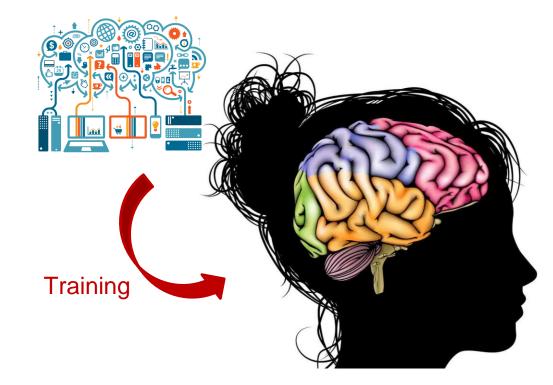
Network design should leverage input and output domain properties

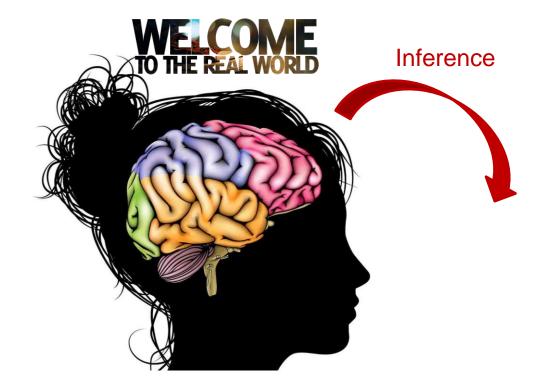


How to frame a task into a learning problem and design the corresponding model

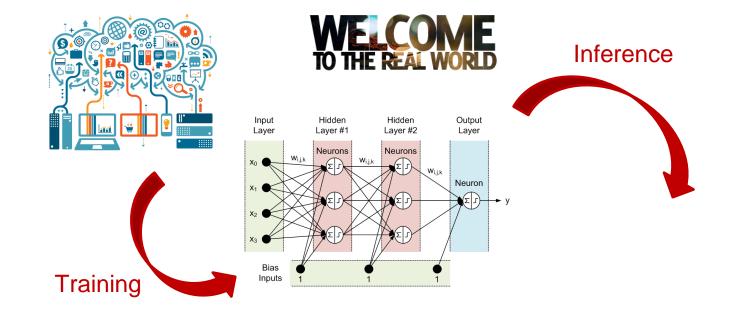
38— Core Factors for Applied Deep Learning

- 1. Data: big data
- 2. Hardware: GPU computing
- **3.** Talent: design algorithms to allow networks to work for the specific problems





41— Concluding Remarks



Main focus: how to apply deep learning to the real-world problems

- Reading Materials
 - Academic papers will be put in the website
- Deep Learning
 - Goodfellow, Bengio, and Courville, "Deep Learning," 2016. <u>http://www.deeplearningbook.org</u>
 - Michael Nielsen, "Neural Networks and Deep Learning" <u>http://neuralnetworksanddeeplearning.com</u>

Any questions ?

You can find the course information at

- http://adl.miulab.tw
- adl-ta@csie.ntu.edu.tw
- slido: #ADL2022
- YouTube: Vivian NTU MiuLab