

We will use WebGL 1.0. WebGL 2.0 is now being supported by most
browsers but requires a better GPU so may not run on older computers
or on most cell phones and tablets. See http://webglstats.com/. We will
note some of the new features supported by WebGL 2.0 at the end of
the course. three.js is starting to support WebGL 2.0.

2

3

OpenGL is a library of function calls for doing computer graphics. With
it, you can create interactive applications that render high-quality color
images composed of 2D and 3D geometric objects and images.

Additionally, the OpenGL API is independent of all operating systems,
and their associated windowing systems. That means that the part of
your application that draws can be platform independent. However, for
OpenGL to be able to render, it needs a window to draw into. Generally,
this is controlled by the windowing system on whatever platform you are
working on. Likewise, interaction is not part of the API. Although the
graphics part of the application is independent of the OS, applications
must be recompiled on each architecture.

4

OpenGL ES is a smaller version of OpenGL that was designed for
embedded systems which did have the hardware capability to run
desktop OpenGL. OpenGL ES 2.0 is based on desktop OpenGL2.0 and
thus is shader based. Each application must provide both a vertex
shader and a fragment shader. Functions from the fixed function
pipeline that were in ES 1.0 have been deprecated. OpenGL ES has
become the standard API for developing 3D cell phone applications.

WebGL runs within the browser so is independent of the operating and
window systems. It is an implementation of ES 2.0 and with a few
exceptions the functions are identical. Because WebGL uses the HTML
canvas element, it does not require system dependent packages for
opening windows and interaction.

WebGL 2.0 is a JS implementation of ES 3.0

Basic graphics concepts are those in fundamentals course, including
the basics of image formation.

For this course, experience with C/C++, Java, Python should suffice.

We assume you are comfortable running remote applications in a
browser.

6

Cube is one of the geometries built into three.js. Because WebGL has a
limited set of primitives, with WebGL we must model the cube with
triangles. three.js includes libraries with interactive controls. With
WebGL we can use libraries available on the Web such as jQuery or
code devices through HTML. The standard lighting models are included
with three.js. With WebGL we can build our lighting models in a variety
of ways including within the shaders. Both three.js and WebGL support
texture mapping using either images available in standard formats (gif,
jpeg) or images defined in the code.

8

The initial version of OpenGL implemented a fixed-function pipeline, in
which all the operations that OpenGL supported were fully-defined, and
an application could only modify their operation by changing a set of
input values (like colors or positions). The other point of a fixed-function
pipeline is that the order of operations was always the same – that is,
you can’t reorder the sequence operations occur. Modern GPUs and
their features have diverged from this pipeline, and support of these
previous versions of OpenGL are for supporting current applications. If
you’re developing a new application, we strongly recommend using the
techniques that we’ll discuss. Those techniques can be more flexible,
and will likely perform better than using one of these early versions of
OpenGL since they can take advantage of the capabilities of recent
Graphics Processing Units (GPUs). To allow applications to gain access
to these new GPU features, OpenGL version 2.0 officially added
programmable shaders into the graphics pipeline. This version of the
pipeline allowed an application to create small programs, called
shaders, that were responsible for implementing the features required
by the application. In the 2.0 version of the pipeline, two programmable
stages were made available:
•  vertex shading enabled the application full control over manipulation

of the 3D geometry provided by the application
•  fragment shading provided the application capabilities for shading

pixels (the terms classically used for determining a pixel’s color).
Until OpenGL 3.0, features have only been added (but never removed)
from OpenGL, providing a lot of application backwards compatibility (up
to the use of extensions). OpenGL version 3.0 introduced the
mechanisms for removing features from OpenGL, called the
deprecation model.

9

WebGL is becoming increasingly more important because it is
supported by all browsers. Besides the advantage of being able to run
without recompilation across platforms, it can easily be integrated with
other Web applications and make use of a variety of portable packages
available over the Web.

On Windows systems, Chrome and Firefox use an intermediate layer
called ANGLE, which takes OpenGL calls and turns them into DirectX
calls. This is done because the DirectX drivers are generally more
efficient for Windows, since they've undergone more development.
Command-line options can disable the use of ANGLE.

10

Once our JS and HTML code is interpreted and executes with a basic
OpenGL pipeline. Generally speaking, data flows from your application
through the GPU to generate an image in the frame buffer. Your
application will provide vertices, which are collections of data that are
composed to form geometric objects, to the OpenGL pipeline. The
vertex processing stage uses a vertex shader to process each vertex,
doing any computations necessary to determine where in the frame
buffer each piece of geometry should go.

After all the vertices for a piece of geometry are processed, the
rasterizer determines which pixels in the frame buffer are affected by
the geometry, and for each pixel, the fragment processing stage is
employed, where the fragment shader runs to determine the final color
of the pixel.

In your OpenGL/WebGL applications, you’ll usually need to do the
following tasks:
•  specify the vertices for your geometry
•  load vertex and fragment shaders (and other shaders, if you’re using

them as well)
•  issue your geometry to engage the pipeline for processing
Of course, OpenGL and WebGL are capable of many other operations
as well, many of which are outside of the scope of this introductory
course. We have included references at the end of the notes for your
further research and development.

11

Although OpenGL source code for rendering should be the same
across multiple platforms, the code must be recompiled for each
architecture, In addition, the non-rendering parts of an application such
as opening windows and input are not part of of OpenGL and can be
very different on different systems. Almost all OpenGL applications are
designed to run locally on the computer on which they live.

12

A typical WebGL application consists of a mixture of HTML5, JavaScript
and GLSL (shader) code. The application can be located almost
anywhere and is accessed through its URL . All browsers can run
JavaScript and all modern browsers support HTML. The rendering part
of the application is in JavaScript and renders into the HTML5 Canvas
element. Thus, the WebGL code is obtained from a server (either locally
or remote) and is compiled by the browser’s JavaScript engine into
code that run on the local CPU and GPU.

13

OpenGL is not object oriented. three.js is a scene graph which supports
a variety of objects including geometric objects (boxes, spheres,
planes), cameras, materials, lights and controls and methods for
creating and manipulating them. three.js also supports high level
functionality such as shadows and kinematics. three.js supports
rendering by WebGL, SVG and the HTML Canvas although most
applications use WebGL.

WebGL can be looked at in two ways> First as an API that we can use
to build graphics applications. Second as a rendering library that that
can be accessed by other APIs such three.js.

You can also download the demo programs from http://bit.ly/
eric3demos.

16

17

You’ll find that a few techniques for programming with modern WebGL
goes a long way. In fact, most programs – in terms of WebGL activity –
are very repetitive. Differences usually occur in how objects are
rendered, and that’s mostly handled in your shaders.
There four steps you’ll use for rendering a geometric object are as
follows:
1.  First, you’ll load and create WebGL shader programs from shader

source programs you create
2.  Next, you will need to load the data for your objects into WebGL’s

memory. You do this by creating buffer objects and loading data into
them.

3.  Continuing, WebGL needs to be told how to interpret the data in
your buffer objects and associate that data with variables that you’ll
use in your shaders. We call this shader plumbing.

4.  Finally, with your data initialized and shaders set up, you’ll render
your objects

19

HTML (hypertext markup language) is the standard for describing Web
pages. A page consists of a several elements which are described by
tags, HTML5 introduced the canvas element which provides a window
that WebGL can render into. Note other applications can also render
into the canvas or on the same page.

Generally, we use HTML to set up the canvas, bring in the necessary
files and set up other page elements such as buttons and sliders. We
can embed our JavaScript WebGL code in the same file or have the
HTML file load the JavaScript from a file or URL. Likewise with the
shaders.

20

In OpenGL, as in other graphics libraries, objects in the scene are
composed of geometric primitives, which themselves are described by
vertices. A vertex in modern OpenGL is a collection of data values
associated with a location in space. Those data values might include
colors, reflection information for lighting, or additional coordinates for
use in texture mapping. Locations can be specified on 2, 3 or 4
dimensions but are stored in 4 dimensional homogeneous coordinates.

The homogenous coordinate representation of a point has w = 1 and for
a vector w = 0. Perspective cameras can change the value of w. We
return to normal 3D coordinates by perspective division which replaces
p = [x, y, z, w] by p’= [x/w, y/w, z/w].

Vertices must be organized in OpenGL server-side objects called vertex
buffer objects (also known as VBOs), which need to contain all of the
vertex information for all the primitives that you want to draw at one
time.

22

To form 3D geometric objects, you need to decompose them into
geometric primitives that WebGL can draw. WebGL (and modern
desktop OpenGL) only knows how to draw three things: points, lines,
and triangles, but can use collections of the same type of primitive to
optimize rendering.

The next few slides will introduce our example program, one which
simply displays a cube with different colors at each vertex. We aim for
simplicity in this example, focusing on the WebGL techniques, and not
on optimal performance. This example is animated with rotation about
the three coordinate axes and interactive buttons that allow the user to
change the axis of rotation and start or stop the rotation.

24

To simplify our application development, we define a few types and
constants to make our code more readable and organized.

Our cube, like any other cube, has six square faces, each of which we’ll
draw as two triangles. In order to size memory arrays to hold the
necessary vertex data, we define the constant numVertices.

As we shall see, GLSL has vec2, vec3 and vec4 types. All are stored as
four element arrays: [x, y, z, w]. The default for vec2’s is to set z = 0
and w =1. For vec3’s the default is to set w = 1.

MV.js also contains many matrix and viewing functions. The package is
available on the course website or at www.cs.unm.edu/~angel/WebGL.
MV.js is not necessary for writing WebGL applications but its functions
simplify development of 3D applications.

25

To provide data for WebGL to use, we need to stage it so that we can
load it into the VBOs that our application will use. In your applications,
you might load these data from a file, or generate them on the fly. For
each vertex, we want to use two bits of data – vertex attributes in
OpenGL speak – to help process each vertex to draw the cube. In our
case, each vertex has a position in space, and an associated color. To
store those values for later use in our VBOs, we create two arrays to
hold the per vertex data. Note that we can organize our data in other
ways such as with a single array with interleaved positions and colors.

We note that JavaSript arrays are objects and are not equivalent to
simple C/C++/Java arrays. JS arrays are objects with attributes and
methods.

26

In our example we’ll copy the coordinates of our cube model into a VBO
for WebGLto use. Here we set up an array of eight coordinates for the
corners of a unit cube centered at the origin.

You may be asking yourself: “Why do we have four coordinates for 3D
data?” The answer is that in computer graphics, it’s often useful to
include a fourth coordinate to represent three-dimensional coordinates,
as it allows numerous mathematical techniques that are common
operations in graphics to be done in the same way. In fact, this four-
dimensional coordinate has a proper name, a homogenous coordinate.
We could also use a vec3 type, i.e.

vec3(-0.5, -0.5, 0.5)

which will be stored in 4 dimensions on the GPU.

In this example, we will again use the default camera so our vertices all
fit within the default view volume.

27

Just like our positional data, we’ll set up a matching set of colors for
each of the model’s vertices, which we’ll later copy into our VBO. Here
we set up eight RGBA colors. In WebGL, colors are processed in the
pipeline as floating-point values in the range [0.0, 1.0]. Your input data
can take any for; for example, image data from a digital photograph
usually has values between [0, 255]. WebGL will (if you request it),
automatically convert those values into [0.0, 1.0], a process called
normalizing values.

28

flatten() is in MV.js.

Alternately, we could use typed arrays as we did for the triangle
example and avoid the use of flatten for one-dimensional arrays.
However. we will still need to convert matrices from two-dimensional to
one-dimensional arrays to send them to the shaders. In addition, there
are potential efficiency differences between using JS arrays vs typed
arrays. It’s a very small change to use typed Arrays in MV.js. See the
website.

29

As our cube is constructed from square cube faces, we create a small
function, quad(), which takes the indices into the original vertex color
and position arrays, and copies the data into the VBO staging arrays. If
you were to use this method (and we’ll see better ways in a moment),
you would need to remember to reset the Index value between setting
up your VBO arrays.

Note the use of the array method push() so we do not have to use
indices for the point and color array elements

30

Here we complete the generation of our cube’s VBO data by specifying
the six faces using index values into our original positions and
colors arrays. It’s worth noting that the order that we choose our
vertex indices is important, as it will affect something called backface
culling later.

We’ll see later that instead of creating the cube by copying lots of data,
we can use our original vertex data along with just the indices we
passed into quad() here to accomplish the same effect. That
technique is very common, and something you’ll use a lot. We chose
this to introduce the technique in this manner to simplify the OpenGL
concepts for loading VBO data.

31

While we’ve talked a lot about VBOs, we haven’t detailed how one goes
about creating them. Vertex buffer objects, like all (memory) objects in
WebGL (as compared to geometric objects) are created in the same
way, using the same set of functions. In fact, you’ll see that the pattern
of calls we make here are like other sequences of calls for doing other
WebGL operations.
In the case of vertex buffer objects, you’ll do the following sequence of
function calls:
1.  Generate a buffer’s by calling gl.createBuffer()	
2.  Next, you’ll make that buffer the “current” buffer, which means it’s

the selected buffer for reading or writing data values by calling
gl.bindBuffer(), with a type of GL_ARRAY_BUFFER. There are
different types of buffer objects, with an array buffer being the one
used for storing geometric data.

3.  To initialize a buffer, you’ll call gl.bufferData(), which will copy
data from your application into the GPU’s memory. You would do
the same operation if you also wanted to update data in the buffer

4.  Finally, when it comes time to render using the data in the buffer,
you’ll once again call gl.bindVertexArray() to make it and its
VBOs current again.

We can replace part of the data in a buffer with gl.bufferSubData()

32

To complete the “plumbing” of associating our vertex data with variables
in our shader programs, you need to tell WebGL where in our buffer
object to find the vertex data, and which shader variable to pass the
data to when we draw. The above code snippet shows that process for
our two data sources. In our shaders (which we’ll discuss in a
moment), we have two variables: vPosition, and vColor, which we
will associate with the data values in our VBOs that we copied form our
vertex positions	and colors arrays.

The calls to gl.getAttribLocation() will return a compiler-generated
index which we need to use to complete the connection from our data
to the shader inputs. We also need to “turn the valve” on our data by
enabling its attribute array by calling gl.enableVertexAttribArray()
with the selected attribute location.

Here we use the flatten function to extract the data from the JS arrays
and put them into the simple form expected by the WebGL functions,
basically one dimensional C-style arrays of floats.

33

34

To initiate the rendering of primitives, you need to issue a drawing
routine. While there are many routines for this in OpenGL, we’ll discuss
the most fundamental ones. The simplest routine is glDrawArrays(),
to which you specify what type of graphics primitive you want to draw
(e.g., here we’re rending triangles), which vertex in the enabled vertex
attribute arrays to start with, and how many vertices to send. If we use
triangle strips or triangle fans, we only need to store four vertices for
each face of the cube rather than six.

This is the simplest way of rendering geometry in WebGL. You merely
need to store you vertex data in sequence, and then gl.drawArrays()
takes care of the rest. However, in some cases, this won’t be the most
memory efficient method of doing things. Many geometric objects
share vertices between geometric primitives, and with this method, you
need to replicate the data once for each vertex.

35

The vertex shader the stage between the application and the raster. It
operates in four dimensions and is used primarily for geometric
operations such as changes in representations from the object space to
the camera space and lighting computations. A vertex shader must
output a position in clip coordinates or discard the vertex. It can also
output other attributes such as colors and texture coordinates to the
rasterizer.

36

The final shading stage that OpenGL supports is fragment shading
which allows an application per-pixel-location control over the color that
may be written to that location. Fragments, which are on their way to
the framebuffer, but still need to do some pass some additional
processing to become pixels. However, the computational power
available in shading fragments is a great asset to generating images.
In a fragment shader, you can compute lighting values – similar to what
we just discussed in vertex shading – per fragment, which gives much
better results, or add bump mapping, which provides the illusion of
greater surface detail. Likewise, we’ll apply texture maps, which allow
us to increase the detail for our models without increasing the
geometric complexity.

37

Generally, GLS Lcode is compiled by WebGL as opposed to the HML
and JS code which is interpreted. After successful compilation the
shaders are put into a program object which is linked with the
application code. WebGL allows for multiple program objects and thus
multiple shaders within an application.

39

As with any programming language, GLSL has types for variables.
However, it includes vector-, and matrix-based types to simplify the
operations that occur often in computer graphics.

In addition to numerical types, other types like texture samplers are
used to enable texture operations. We’ll discuss texture samplers in the
texture mapping section.

The vector and matrix classes of GLSL are first-class types, with
arithmetic and logical operations well defined. This helps simplify your
code, and prevent errors.

Note in the above example, overloading ensures that both a*m and m*a
are defined although they will not in general produce the same result.

40

In addition to types, GLSL has numerous qualifiers to describe a
variable usage. The most common of those are:
•  attribute	qualifiers indicate the shader variable will receive data

flowing into the shader, either from the application,
•  varying	qualifier which tag a variable as data output where data will

flow to the next shader stage
•  uniform qualifiers for accessing data that doesn’t change across a

draw operation

Recent versions of GLSL replace attribute and varying qualifiers by in
and out qualifiers

41

GLSL also provides a rich library of functions supporting common
operations. While pretty much every vector- and matrix-related function
available you can think of, along with the most common mathematical
functions are built into GLSL, there’s no support for operations like
reading files or printing values. Shaders are data-flow engines with
data coming in, being processed, and sent on for further processing.

42

Fundamental to shader processing are a couple of built-in GLSL
variable which are the terminus for operations. Vertex data, which can
be processed by up to four shader stages in desktop OpenGL, are all
ended by setting a positional value into the built-in variable,
gl_Position.

Additionally, fragment shaders provide seversal of built-in variables.
For example, gl_FragCoord is a read-only variable, while
gl_FragDepth is a read-write variable. Recent versions of OpenGL
allow fragment shaders to output to other variables of the user’s
designation as well.

43

44

Here’s the simple vertex shader we use in our cube rendering example.
It accepts two vertex attributes as input: the vertex’s position and color,
and does very little processing on them; in fact, it merely copies the
input into some output variables (with gl_Position being implicitly
declared). The results of each vertex shader execution are passed
further down the pipeline, and ultimately end their processing in the
fragment shader.

45

Here’s the associated fragment shader that we use in our cube
example. While this shader is as simple as they come – merely setting
the fragment’s color to the input color passed in, there’s been a lot of
processing to this point. Every fragment that’s shaded was generated
by the rasterizer, which is a built-in, non-programmable (i.e., you don’t
write a shader to control its operation). What’s magical about this
process is that if the colors across the geometric primitive (for multi-
vertex primitives: lines and triangles) is not the same, the rasterizer will
interpolate those colors across the primitive, passing each iterated
value into our color variable.

The precision for floats must be specified. All WebGL implementations
must support medium precision.

Shaders need to be compiled before they can be used in your program.
As compared to C programs, the compiler and linker are implemented
within WebGL , and accessible through function calls from within your
program. The diagram illustrates the steps required to compile and link
each type of shader into your shader program. A program must contain
a vertex shader (which replaces the fixed-function vertex processing), a
fragment shader (which replaces the fragment coloring stages).

Just a with regular programs, a syntax error from the compilation stage,
or a missing symbol from the linker stage could prevent the successful
generation of an executable program. There are routines for verifying
the results of the compilation and link stages of the compilation
process, but are not shown here. Instead, we’ve provided a routine that
makes this process much simpler, as demonstrated on the next slide.

46

To simplify our lives, we created a routine that simplifies loading,
compiling, and linking shaders: InitShaders(). It implements the
shader compilation and linking process shown on the previous slide. It
also does full error checking, and will terminate your program if there’s
an error at some stage in the process (production applications might
choose a less terminal solution to the problem, but it’s useful in the
classroom).

InitShaders() accepts two parameters, each a filename to be loaded
as source for the vertex and fragment shader stages, respectively.
The value returned from InitShaders() will be a valid GLSL program
id that you can pass into glUseProgram().

47

48

OpenGL shaders, depending on which stage their associated with,
process different types of data. Some data for a shader changes for
each shader invocation. For example, each time a vertex shader
executes, it’s presented with new data for a single vertex; likewise for
fragment, and the other shader stages in the pipeline. The number of
executions of a particular shader rely on how much data was
associated with the draw call that started the pipeline – if you call
glDrawArrays() specifying 100 vertices, your vertex shader will be
called 100 times, each time with a different vertex.

Other data that a shader may use in processing may be constant
across a draw call, or even all the drawing calls for a frame. GLSL calls
those uniform varialbes, since their value is uniform across the
execution of all shaders for a single draw call.

Each of the shader’s input data variables (ins and uniforms) needs to
be connected to a data source in the application. We’ve already seen
glGetAttribLocation() for retrieving information for connecting vertex
data in a VBO to shader variable. You will also use the same process
for uniform variables, as we’ll describe shortly.

49

Once you know the names of variables in a shader – whether they’re
attributes or uniforms – you can determine their location using one of
the glGet*Location() calls.
If you don’t know the variables in a shader (if, for instance, you’re
writing a library that accepts shaders), you can find out all the shader
variables by using the glGetActiveAttrib() function.

50

You’ve already seen how one associates values with attributes by
calling glVertexAttribPointer(). To specify a uniform’s value, we use one
of the glUniform*() functions. For setting a vector type, you’ll use one of
the glUniform*() variants, and for matrices you’ll use a glUniformMatrix
*() form.

51

Uniform qualified variables are constant for an execution of
gl.drawArrays(), i.e. are constant for each instantiation of the vertex
shader.

52

The multiplication operation is overloaded so we can use vec4 =
float*vec4 in shader but we must set the w component back to zero or
the effect of the scaling will be cancelled by the perspective division
when we go from homogeneous coordinates back to three dimensions
in the pipeline

53

id allows us to refer to button in JS file. Text between <button> and </
button> tags is placed on button. Clicking on button generates an event
which we will handle with a listener in JS file.

Note buttons are part of HTML not WebGL.

54

The event of clicking a button (onclick) occurs on the display
(document). Thus the name of the event is document.button_id.onclick.
For a button, the event returns no information other than it has been
clicked. The first three buttons allow us to change the axis about which
we increment the angle in the render function. The variable flag is
toggled between true and force. When it is true, we increment the angle
in the render function.

55

This completes the rotating cube example.

Other interactive elements such as menus, sliders and text boxes are
only slightly more complex to add since they return extra information to
the listener. We can obtain position information from a mouse click in a
similar manner.

56

57

Matrix operations are supported directly in GLSL where matrices and
vectors are atomic types. In the application code, we either carry out
the operations in our code or use a library such as MV.js or glMatrix.

Recall that WebGL uses four dimensional homogeneous coordinates (x,
y, z, w). If we use 3D in our application, w defaults to 1.

Clip coordinates and screen coordinates are the only ones required by
WebGL. However, applications prefer to use their own coordinates and
convert to clip coordinates in the vertex shader.

59

60

Note that human vision and a camera lens have cone-shaped viewing
volumes. OpenGL (and almost all computer graphics APIs) describe a
pyramid-shaped viewing volume. Therefore, the computer will “see”
differently from the natural viewpoints, especially along the edges of
viewing volumes. This is particularly pronounced for wide-angle “fish-
eye” camera lenses.

These transformations were built into the original fixed-function
OpenGL, Although the functions that used these coordinate systems
have been deprecated (other than the viewport transformation), most
applications prefer to build in all these transformations.

61

The processing required for converting a vertex from 3D or 4D space into a 2D
window coordinate is done by the transform stage of the graphics pipeline.
The operations in that stage are illustrated above. Each box represent a
matrix multiplication operation. In graphics, all our matrices are 4×4 matrices
(they’re homogenous, hence the reason for homogenous coordinates).

When we want to draw an geometric object, like a chair for instance, we first
determine all the vertices that we want to associate with the chair. Next, we
determine how those vertices should be grouped to form geometric primitives,
and the order we’re going to send them to the graphics subsystem. This
process is called modeling. Quite often, we’ll model an object in its own little
3D coordinate system. When we want to add that object into the scene we’re
developing, we need to determine its world coordinates. We do this by
specifying a modeling transformation, which tells the system how to move from
one coordinate system to another.

Modeling transformations, in combination with viewing transforms, which
dictate where the viewing frustum is in world coordinates, are the first
transformation that a vertex goes through. Next, the projection transform is
applied which maps the vertex into another space called clip coordinates,
which is where clipping occurs. After clipping, we divide by the w value of the
vertex, which is modified by projection. This division operation is what allows
the farther-objects-being-smaller activity. The transformed, clipped
coordinates are then mapped into the window.

62

By using 4×4 matrices, OpenGL can represent all geometric
transformations using one matrix format. Perspective projections and
translations require the 4th row and column. Otherwise, these
operations would require an vector-addition operation, in addition to the
matrix multiplication.

While OpenGL specifies matrices in column-major order, this is often
confusing for “C” programmers who are used to row-major ordering for
two-dimensional arrays. OpenGL provides routines for loading both
column- and row-major matrices. However, for standard OpenGL
transformations, there are functions that automatically generate the
matrices for you, so you don’t generally need to be concerned about
this until you start doing more advanced operations.
For operations other than perspective projection, the fourth row is
always (0, 0, 0, 1) which leaves the w-coordinate unchanged.

63

Another essential part of the graphics processing is setting up how much of
the world we can see. We construct a viewing frustum, which defines the
chunk of 3-space that we can see. There are two types of views: a
perspective view, which you’re familiar with as it’s how your eye works, is used
to generate frames that match your view of reality–things farther from your
appear smaller. This is the type of view used for video games, simulations,
and most graphics applications in general.
The other view, orthographic, is used principally for engineering and design
situations, where relative lengths and angles need to be preserved.
For a perspective, we locate the eye at the apex of the frustum pyramid. We
can see any objects which are between the two planes perpendicular to eye
(they’re called the near and far clipping planes, respectively). Any vertices
between near and far, and inside the four planes that connect them will be
rendered. Otherwise, those vertices are clipped out and discarded. In some
cases a primitive will be entirely outside of the view, and the system will
discard it for that frame. Other primitives might intersect the frustum, which we
clip such that the part of them that’s outside is discarded and we create new
vertices for the modified primitive.
While the system can easily determine which primitives are inside the frustum,
it’s wasteful of system bandwidth to have lots of primitives discarded in this
manner. We utilize a technique named culling to determine exactly which
primitives need to be sent to the graphics processor, and send only those
primitives to maximize its efficiency.

64

In OpenGL, the default viewing frusta are always configured in the
same manner, which defines the orientation of our clip coordinates.
Specifically, clip coordinates are defined with the “eye” located at the
origin, looking down the –z axis. From there, we define two distances:
our near and far clip distances, which specify the location of our near
and far clipping planes. The viewing volume is then completely by
specifying the positions of the enclosing planes that are parallel to the
view direction.

65

lookAt() generates a viewing matrix based on several points.
LookAt() provides natural semantics for modeling flight application,
but care must be taken to avoid degenerate numerical situations, where
the generated viewing matrix is undefined.
An alternative is to specify a sequence of rotations and translations that
are concatenated with an initial identity matrix.

lookAt() is in MV.js as are translation, scaling and rotation functions that
we discuss in the next few slides.

Note: that the name modelview matrix is appropriate since moving
objects in the model front of the camera is equivalent to moving the
camera to view a set of objects.

Here’s an example vertex shader for rotating our cube. We generate
the matrices in the shader (as compared to in the application), based on
the input angle theta. It’s useful to note that we can vectorize
numerous computations. For example, we can generate a vector of
sines and cosines for the input angle, which we’ll use in further
computations.

This example is but one way to use the shaders to carry out
transformations. We could compute the transformation in the application
each iteration and send it to the shader as a uniform. Which is best can
depend on the speed of the GPU and how much other work we need to
do in the CPU.

66

Completing our shader, we compose two of three rotation matrices (one
around each axis). In generating our matrices, we use one of the many
matrix constructor functions (in this case, specifying the 16 individual
elements). It’s important to note in this case, that our matrices are
column-major, so we need to take care in the placement of the values in
the constructor.

67

We complete our shader here by generating the last rotation matrix and
then using the composition of those matrices to transform the input
vertex position. We also pass-thru the color values by assigning the
input color to an output variable.

68

Finally, we merely need to supply the angle values into our shader
through our uniform plumbing. In this case, we track each of the axes
rotation angle, and store them in a vec3 that matches the angle
declaration in the shader. We also keep track of the uniform’s location
so we can easily update its value.

This is not the only approach. We could also have generated the
transformation matrix in the application and send it to the vertex shader
as a uniform, which may be more efficient. Either way, the
transformation approach should be better than transforming all the
vertices in the application and resending them to the shaders.

69

70

Lighting is an important technique in computer graphics. Without
lighting, objects tend to look like they are made from plastic.
The models used in most WebGL applications divide lighting into three
parts: material properties, light properties and global lighting
parameters.
While we’ll discuss the mathematics of lighting in terms of computing
illumination in a vertex shader, the almost identical computations can be
done in a fragment shader to compute the lighting effects per-pixel,
which yields much better results.

The lighting normal determines how the object reflects light around a
vertex. If you imagine that there is a small mirror at the vertex, the
lighting normal describes how the mirror is oriented, and consequently
how light is reflected.

WebGL can use the shade at one vertex to shade an entire polygon
(constant shading) or interpolate the shades at the vertices across the
polygon (smooth shading), the default.

The original lighting model that was supported in hardware and
OpenGL was due to Phong and later modified by Blinn.

Here we declare numerous variables that we’ll use in computing a color
using a simple lighting model. All the uniform values are passed in from
the application and describe the material and light properties being
rendered. We can send these values to either the vertex or fragment
shader, depending on how we want to do lighting computation, either on
per vertex basis or a per fragment basis.

74

75

Textures are images that can be thought of as continuous and be one,
two, three, or four dimensional. By convention, the coordinates of the
image are s, t, r and q. Thus for the two dimensional image above, a
point in the image is given by its (s, t) values with (0, 0) in the lower-left
corner and (1, 1) in the top-right corner.
A texture map for a two-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the
screen.

When you want to map a texture onto a geometric primitive, you need
to provide texture coordinates. Valid texture coordinates are between 0
and 1, for each texture dimension, and usually manifest in shaders as
vertex attributes. We’ll see how to deal with texture coordinates outside
the range [0, 1] in a moment.

In the simplest approach, we must perform these four steps.
Textures reside in texture memory. When we assign an image to a
texture it is copied from processor memory to texture memory where
pixels are formatted differently.
Texture coordinates are actually part of the state as are other vertex
attributes such as color and normals. As with colors, WebGL
interpolates texture inside geometric objects.
Because textures are discrete and of limited extent, texture mapping is
subject to aliasing errors that can be controlled through filtering.
Texture memory is a limited resource and having only a single active
texture can lead to inefficient code.

Specifying the texels for a texture is done using the
gl.texImage_2D() call. This will transfer the texels in CPU memory
to OpenGL, where they will be processed and converted into an internal
format.
The level parameter is used for defining how WebGL should use this
image when mapping texels to pixels. Generally, you’ll set the level to
0, unless you are using a texturing technique called mipmapping.

Just like vertex attributes were associated with data in the application,
so too with textures. You access a texture defined in your application
using a texture sampler in your shader. The type of the sampler needs
to match the type of the associated texture. For example, you would
use a sampler2D to work with a two-dimensional texture created with
gl.texImage2D(GL_TEXTURE_2D, …);

Within the shader, you use the texture() function to retrieve data values
from the texture associated with your sampler. To the texture() function,
you pass the sampler as well as the texture coordinates where you
want to pull the data from.

Note: the overloaded texture() method was added into GLSL version
3.30. Prior to that release, there were special texture functions for each
type of texture sampler (e.g., there was a texture2D() call for use with
the sampler2D).

80

Some common uses:

desktop OpenGL: used for large scientific applications
OpenGL ES: used to design smart phone apps
WebGL: Web applications, increasing interest in using it for games
three.js: CADV
Vulkan: high-end games

There are a couple of major areas we haven’t discussed. One is image
processing/texture. Support for texture and large amounts of texture
memory make GPUs well suited for imaging applications. Support for
off-screen rendering leads to a variety of applications such as shadow
mapping.

83

Only atomic primitives in JS are numbers (64 bit floats), strings and
booleans. Everything else is an object. Objects inherit from a prototype
object and thus even the simplest objects have some members and
functions that are defined in the prototype. JS uses function scope
rather than block scope as in most other languages. There are global
variables defined outside of your program, e.g. window.

Typing is dynamic so we can change the type of a variable anyplace in
the program.

JavaScript is a large language that has matured over the past few
years. However, there are multiple ways to accomplish a task with JS,
some good and some bad. See for example Crockford, JavaScript, the
Good Parts.

84

WebGL 2.0 is now supported in almost all browsers. Other types of
shaders are widely available as WebGL extensions.

85

Buffer array objects let us put multiple vertex attributes together. When
combined with transform feedback, simulation applications can be
executed entirely in the GPU.

86

Many of these variants allow programmers more familiar with Java and
Python to write JS code that is more familiar to them and avoids some
of the “gotchas” in JS. Some variants also allow the programmer to
write more concise code.

Some of the ES6 additions allow for more familiar object types and
scoping.

87

Generally, OpenGL programs are fairly small and the driver large.
Consequently, it is straightforward to write an OpenGL application since
the complexity is in the driver. But that limits the ability of the application
programmer to take advantage of many options that have been set in
the driver. Vulkan takes the opposite view and puts a tremendous
amount of control in the application and requires a relatively small
driver. Thus with Vulkan an application can adjust to the hardware, e.g.
an integrated processor vs separate CPU and GPU. For the most
applications, we can get the performance we need with WebGL and
OpenGL.

89

OpenGL may also continue to develop in parallel with Vulkan since
OpenGL has a large user community that does not need to deal with
the complexity of Vulkan.

90

91

All the above books except Angel and Shreiner, Interactive Computer
Graphics (Addison-Wesley) and Learning three.js, are in the Addison-
Wesley Professional series of OpenGL books.

92

93

94

Many example programs, a JS matrix-vector package and the
InitShader function are under the Book Support tab at www.cs.unm.edu/
~angel

95

