OpenGL Transformations

Ed Angel
Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Learn how to carry out transformations in OpenGL
- Rotation
- Translation
- Scaling
- Introduce OpenGL matrix modes
- Model-view
- Projection

OpenGL Matrices

- In OpenGL matrices are part of the state
- Multiple types
- Model-View (GL_MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE) (ignore for now)
- Color(GL_COLOR) (ignore for now)
- Single set of functions for manipulation
- Select which to manipulated by
-glMatrixMode (GL_MODELVIEW) ;
-glMatrixMode (GL_PROJECTION) ;

Current Transformation Matrix (CTM)

- Conceptually there is a 4×4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM operations

- The CTM can be altered either by loading a new CTM or by postmutiplication
Load an identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Load an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{M}$
Load a translation matrix: $\mathbf{C} \leftarrow \mathbf{T}$
Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$
Load a scaling matrix: $\mathbf{C} \leftarrow \mathbf{S}$
Postmultiply by an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{C M}$
Postmultiply by a translation matrix: $\mathbf{C} \leftarrow \mathbf{C T}$
Postmultiply by a rotation matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{R}$
Postmultiply by a scaling matrix: $\mathbf{C} \leftarrow \mathbf{C ~ S}$
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
"L"' Rotation about a Fixed Point

Start with identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Move fixed point to origin: $\mathbf{C} \leftarrow \mathbf{C T}$
Rotate: $\mathbf{C} \leftarrow \mathbf{C R}$
Move fixed point back: $\mathbf{C} \leftarrow \mathbf{C T}^{-1}$
Result: $\mathbf{C}=\mathbf{T R ~ T}{ }^{-1}$ which is backwards.

This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $\mathbf{C}=\mathbf{T}^{-1} \mathbf{R} \mathbf{T}$
so we must do the operations in the following order
$\mathbf{C} \leftarrow \mathbf{I}$
$\mathbf{C} \leftarrow \mathbf{C T}^{-1}$
$\mathrm{C} \leftarrow \mathbf{C R}$
$\mathbf{C} \leftarrow \mathbf{C T}$
Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

CTM in OpenGL

- OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM
- Can manipulate each by first setting the correct matrix mode

Load an identity matrix:

glLoadIdentity()

Multiply on right:
glRotatef(theta, vx, vy, vz)
theta in degrees, (vx, vy, vz) define axis of rotation
glTranslatef(dx, dy, dz)
glScalef(sx, sy, sz)
Each has a float (f) and double (d) format (glScaled)

Example

- Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);
```

- Remember that last matrix specified in the program is the first applied

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program

```
glLoadMatrixf(m)
glMultMatrixf(m)
```

- The matrix m is a one dimension array of 16 elements which are the components of the desired 4×4 matrix stored by columns
- In glmultMatrixf, m multiplies the existing matrix on the right

Matrix Stacks

- In many situations we want to save transformation matrices for use later
- Traversing hierarchical data structures (Chapter 10)
- Avoiding state changes when executing display lists
- OpenGL maintains stacks for each type of matrix
- Access present type (as set by glMatrixMode) by

$$
\begin{aligned}
& \text { glPushMatrix() } \\
& \text { glPopMatrix() }
\end{aligned}
$$

Reading Back Matrices

- Can also access matrices (and other parts of the state) by query functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

- For matrices, we use as

```
double m[16];
glGetFloatv(GL_MODELVIEW, m);
```


Using Transformations

- Example: use idle function to rotate a cube and mouse function to change direction of rotation
- Start with a program that draws a cube (colorcube.c) in a standard way
- Centered at origin
- Sides aligned with axes
- Will discuss modeling in next lecture

main.c

The University of New Mexico

```
void main(int argc, char **argv)
{
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
            GLUT DEPTH);
    glutInitWindowSize(500, 500);
    glutCreateWindow("colorcube");
    glutReshapeFunc (myReshape);
    glutDisplayFunc(display);
    glutIdleFunc(spinCube);
    glutMouseFunc(mouse) ;
    glEnable(GL_DEPTH_TEST);
    glutMainLoop();
}
```


HII
 III
 Idle and Mouse callbacks

```
void spinCube()
{
        theta[axis] += 2.0;
        if( theta[axis] > 360.0 ) theta[axis] -= 360.0;
        glutPostRedisplay();
}
void mouse(int btn, int state, int x, int y)
{
    if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
    axis = 0;
    if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
    axis = 1;
    if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
    axis = 2;
}
```


Display callback

```
void display()
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glLoadIdentity();
    glRotatef(theta[0], 1.0, 0.0, 0.0);
    glRotatef(theta[1], 0.0, 1.0, 0.0);
    glRotatef(theta[2], 0.0, 0.0, 1.0);
    colorcube();
    glutSwapBuffers();
}
```

Note that because of fixed from of callbacks, variables such as theta and axis must be defined as globals

Camera information is in standard reshape callback

"-"' Using the Model-view Matrix

- In OpenGL the model-view matrix is used to
- Position the camera
- Can be done by rotations and translations but is often easier to use gluLookAt
- Build models of objects
- The projection matrix is used to define the view volume and to select a camera lens

Model-view and Projection Matrices

- Although both are manipulated by the same functions, we have to be careful because incremental changes are always made by postmultiplication
- For example, rotating model-view and projection matrices by the same matrix are not equivalent operations. Postmultiplication of the model-view matrix is equivalent to premultiplication of the projection matrix

Smooth Rotation

- From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly
- Problem: find a sequence of model-view matrices $\mathbf{M}_{0}, \mathbf{M}_{1}, \ldots ., \mathbf{M}_{\mathrm{n}}$ so that when they are applied successively to one or more objects we see a smooth transition
- For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
- Find the axis of rotation and angle
- Virtual trackball (see text)

Incremental Rotation

- Consider the two approaches
- For a sequence of rotation matrices $\mathbf{R}_{0}, \mathbf{R}_{1}, \ldots . ., \mathbf{R}_{\mathrm{n}}$, find the Euler angles for each and use $\mathbf{R}_{\mathrm{i}}=\mathbf{R}_{\mathrm{iz}} \mathbf{R}_{\mathrm{iy}} \mathbf{R}_{\mathrm{ix}}$
- Not very efficient
- Use the final positions to determine the axis and angle of rotation, then increment only the angle
- Quaternions can be more efficient than either

Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components $\mathbf{i}, \mathbf{j}, \mathbf{k}$

$$
q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k}
$$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
- Model-view matrix \rightarrow quaternion
- Carry out operations with quaternions
- Quaternion \rightarrow Model-view matrix

Interfaces

- One of the major problems in interactive computer graphics is how to use twodimensional devices such as a mouse to interface with three dimensional obejcts
- Example: how to form an instance matrix?
- Some alternatives
- Virtual trackball
- 3D input devices such as the spaceball
- Use areas of the screen
- Distance from center controls angle, position, scale depending on mouse button depressed

