A Fully Public-Key Traitor-Tracing Scheme

YUH-DAUH LYUU
Dept. of Computer Science & Information Engineering and Dept. of Finance
National Taiwan University
No 1, Sec 4, Roosevelt Rd, Taipei, Taiwan
lyuu@csie.ntu.edu.tw  http://www.csie.ntu.edu.tw/~lyuu/lyuu.html

MING-LUEN WU
Dept. of Computer Science & Information Engineering
National Taiwan University
No 1, Sec 4, Roosevelt Rd, Taipei, Taiwan
d5526009Qcsie.ntu.edu.tw

Abstract: - We propose a fully public-key traitor-tracing scheme in which each subscriber can choose his or her own
private decryption key without others learning the key. The distributor of the digital content utilizes the public
data coming from all subscribers to compute a public encryption key. The paid contents are then transmitted to
the subscribers, after being encrypted with the public key. Each subscriber can decrypt the data using his or her
own secret key. Even if a coalition of subscribers conspire to create a pirate decoder with a tamper-free decryption
key, we have a tracing algorithm to trace them. Our scheme is long-lived, which means that the subscribers’ secret
keys need not be regenerated after the pirate key is detected or when subscribers join or leave the system. Finally,

our scheme guarantees anonymity.
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Anonymity.

1 Introduction

In an open broadcast network, a distributor transmits
digital contents to a large number of users in such a way
that only subscribers are authorized to extract the con-
tents. Applications include such fee-based services as
pay-per-view television and Web financial information
channel. Clearly, anyone connected to the open network
is able to pick up the data that flow through the broad-
cast channel, whether authorized or not. A straightfor-
ward solution to this problem is for the distributor to
separately encrypt the contents with each subscriber’s
key before broadcasting the ciphertext. Now, only the
subscribers have the corresponding private keys to de-
crypt the ciphertext. This issue of secure broadcasting is
first addressed in [6]; however, the proposed method car-
ries out n-times encryptions for one copy of data, where
n is the number of subscribers. Later, broadcast en-
cryption is proposed [2, 9, 12]. A broadcast-encryption
scheme prevents nonsubscribers from extracting the con-
tents. By properly generating keys, the distributor can
encrypt the contents with the encryption key derived
from all subscribers’ secret keys, and the subscribers
have the decryption key to decrypt the ciphertext. The
tradeoff between the bandwidth requirement and the
keys’ storage space is studied in [3, 13].

A broadcast-encryption scheme remains prone to the

collusion attack. Some subscribers may collude to create
new decryption keys, and the resulting pirate decoder al-
lows nonsubscribers to extract the contents. To discour-
age subscribers to reveal their private keys, traitor trac-
ing is initiated in [7] and studied further in [10, 14, 18].
The idea is an algorithm that uses the confiscated pi-
rate decoder to track down at least one colluder with-
out wrongly accusing noncolluders with high probability.
Most of these schemes are so-called black-box traceable.
This means that the pirate decoder can be queried on
different inputs as an oracle but cannot be opened to re-
veal its private key. Most of the traitor-tracing schemes
are secret-key systems. Although they can be founded
on public keys, complex protocols may result [14]. More
recent work in [4] proposes a public-key traitor-tracing
scheme; furthermore, as long as the number of colluders
is below some threshold, the tracing algorithm catches
all and only traitors. The scheme has two disadvan-
tages: It is only partially black-box traceable, and the
secret keys of the subscribers are generated by a trusted
center (the system is hence not fully public-key). We
will present a traitor-tracing scheme with these follow-
ing strong features: The tracing algorithm is black-box
traceable, it tracks down all the colluders regardless of
their size, and the subscribers generate their own secret
keys (it is thus fully public-key).



Key management is a critical issue. Subscribers’ keys
be affected for at least two reasons. First, a key must
be discarded if it is found to be pirated or if its user
leaves the system. But then the remaining subscribers’
keys may be subject to changes when even one user’s
key is discarded. Second, when a new subscriber joins
the system, the existing subscribers’ keys may need to
be changed to prevent the new subscriber from decrypt-
ing the ciphertext received before the new user joins the
system. Both scenarios become problematic if pirating
is frequent or if the subscriber base is fluid. In order for
the subscribers to easily manage their own keys, the sys-
tem should minimize the need to regenerate subscribers’
secret keys. Such a scheme is said to be long-lived. This
attribute is studied in [11]. In that proposed scheme,
some subscribers may need to be rekeyed when a suf-
ficient number of keys are discarded. In contrast, our
scheme does not require the regeneration of the secret
keys in the above two scenarios. It is therefore perfectly
long-lived.

Anonymity is another critical issue for any traitor-
tracing schemes because the promise of anonymity usu-
ally promotes subscription [12]. We list two cases which
may compromise anonymity. When new subscribers
join the service, their identities may be revealed be-
cause of their interaction with the distributor. Second,
the broadcast contents themselves may disclose the sub-
scribers’ identities, which makes eavesdropping threaten
the privacy of the subscribers. Our scheme solves both
problems: Registering with the service is noninteractive,
and analyzing the transmissions does not reveal the sub-
scribers’ identities. Thus, the subscribers’ identities are
not known to anyone except the distributor.

We now summarize the features of our traitor-tracing
scheme. The traitor-tracing scheme is perfectly long-
lived and achieves anonymity. It is a fully public-key
system, without relying on a trusted center to generate
the keys. The scheme is based on the following ideas.
Each subscriber randomly selects a secret key to com-
pute a number which is sent to the distributor. After
the distributor receives the numbers from all the sub-
scribers, it combines them to create a single encryption
key. Using the ElGamal encryption scheme, digital con-
tents are encrypted with the encryption key. Hence-
forth, each subscriber uses his or her own secret key to
decrypt the ciphertext.

This paper is organized as follows. In Section 2, ba-
sic terms are defined. Then in Section 3, useful facts in
number theory are presented. Section 4 describes our
scheme and discusses its security. Important attributes
of our scheme are analyzed in Section 5. Conclusions
are given in Section 6.

2 Key Terms

Broadcast encryption consists of three components: key
generation, encryption, and decryption. It specifies the

way to encrypt and decrypt the digital contents with
the generated keys in a broadcast network. The im-
portant task facing broadcast encryption is to prevent
nonsubscribers from decrypting the encrypted content.
Like the point-to-point encryption scheme, a broadcast-
encryption scheme can be secret-key or public-key.
Traitors are subscribers who allow nonsubscribers to
extract the contents. When a broadcast-encryption
scheme has the capability to track down traitors, it is
said to be traitor-tracing. Traitor tracing involves a
tracing algorithm, which uses the confiscated pirate de-
coder to track down traitors. The tracing algorithm is
k-traceable if at least one of the traitors can be iden-
tified given any pirate decoder created by at most k
traitors. The tracing algorithm is said to be black-box
if the pirate decoder can only be queried as an oracle but
not opened to reveal its internal key. The perfect long-
livedness attribute means that rekeying the subscribers
is unnecessary in the following two situations:

1. An existing key is discarded to prevent its future
use.

2. New subscribers join the system without being
able to decrypt earlier ciphertext.

The anonymity attribute means that the subscribers’
identities are not known to anyone except the distrib-
utor. Our proposed traitor-tracing scheme will be per-
fectly long-lived and anonymous.

A public-key traitor-tracing scheme consists of four
components [4]:

1. Key generation: Given a security parameter s
and a number n, the key-generation algorithm out-
puts a public encryption key e and n private de-
cryption keys dy, do, . .., d,. Any decryption key d;
can be used to decrypt a ciphertext created with
the public encryption key e.

2. Encryption: Given a public key e and a message
x, the encryption algorithm outputs a ciphertext
C.

3. Decryption: Given a ciphertext C' and any de-
cryption key d;, the decryption algorithm outputs
the message x. The algorithm itself is public. Only
the decryption keys are secret as in the point-to-
point cryptosystem.

4. Tracing: Given a pirate decryption box D, the
tracing algorithm outputs at least one traitor if
at most k of the decryption keys are involved in
creating the box. The tracing algorithm may be
black-box or otherwise.

A fully public-key traitor-tracing scheme strengthens the
key-generation part as follows:

e Key generation*: Given a security parameter
s, the n private decryption keys dy,ds,...,d, are
generated at random. The corresponding public



key e; for each d; is computed. The public encryp-
tion key e depends on e, e, ..., e,. Any decryp-
tion key d; can be used to decrypt a ciphertext
created with the public encryption key e.

The secret keys are now known only to their subscriber
owners. This is clearly desirable.

3 Number-theoretic Preliminaries

We next present some number-theoretical results. See
[15, 16] for additional information. Let ¢(n) denotes
Euler’s phi function, which gives the number of positive
integers m € {1,2,...,n — 1} such that gcd(m,n) = 1.

Lemma 3.1. If ¢ and p = 2q + 1 are both primes and
a is a positive integer with 1 < a < p—1, then —a?® is a
quadratic nonresidue and a primitive root modulo p.

Proof. There are ¢(2q) = ¢ — 1 primitive roots of p, ¢
quadratic residues of p, and ¢ quadratic nonresidues of
p. None of the g quadratic residues of p can be prim-
itive roots. Furthermore, —1, a quadratic nonresidue,
cannot be a primitive root either. Thus, the remaining
q—1 quadratic nonresidues of p must be all the primitive

roots. The number —a? is a quadratic nonresidue of p
because
2 2
— -1
(3)-G)E)- e
p p p
Hence —a? is a primitive root modulo p. ]

Fact 3.1 (Chinese remainder theorem). Let
mi,mao,..., My, be positive integers that are rela-
tively prime in pairs. Then, for any given integers

b1,ba,...,b,, the system of congruences
x=b; (modm;),1<i<n
has a unique solution modulo M = mimg---m,. The

solution is given by x = Z b; M;y; mod M, where M; =
M/m; and M;y; =1 (mod m;).

Assume s is the length of every modulus. The
computational complexity of applying the Chinese re-
mainder theorem is Op(M (sn)logn)+Op(nM(s)logs),
where M (x) is the time of multiplying two x bit integers,
and Op indicates order of magnitude in bit operations
[1, Theorem 8.21].

Fact 3.2. Simultaneous congruences

x=b; (modm;),1<i<n

have a solution if and only if ged(m;, m;) divides b; — b;
for all pairs of integers (i,j) with 1 < i < j < n,
i which case the solution is unique modulo M =
lem(my, ma,...,my) and is given by the Chinese re-
mainder theorem with the said M.

Let ged(g,n) = 1. The least positive integer d such
that ¢ = 1 (mod n) is called the order of g modulo n,
and is denoted by ord,g. A universal exponent of n is
a positive integer u such that g* = 1 (mod n) for all g
relatively prime to n. The minimal universal exponent
of n is denoted by A(n).

Fact 3.3. Let M be a positive integer with odd prime
factorization M = pi1pa---pp. (1)

= lem(¢(p1), d(p2), - - -, d(Pn))-

(2) There exists an integer g such that ordprg = N(M),
the largest possible order of an integer modulo M. (3)
Let r; be a primitive root modulo p;. The solution
of simultaneous congruences x = r; (mod p;),
1,2,...,n, produces such an integer g.

A(M)

——

The above fact implies that if M is a product of large
primes p; = 2¢; + 1 where ¢; are also primes, then there
exists a g whose order contains large prime factors. The
reason is that

A(M) (1)
Fact 3.4. Suppose that g and n are relatively prime with
n > 0. Then ¢ = ¢ (mod n) if and only if i = j
(mod ord,g).

=lem(p1—1,p2—1,...,pn—1) = 2q1q2 - - - qn-

4 The Public-key Traitor-Tracing
Scheme

Let s be a security parameter and n be the number of
subscribers. Choose s-bit primes p; = 2¢; + 1, where
¢; are odd primes. For convenience, assume p; < p2 <
- < pp. The primes will be such that q%/ 2
n
enough. Let M = [] pi.
i=1
text) are elements of Z, . Let g be a common primi-
tive root modulo each of the p;’s. By Lemma 3.1 such
a g exists because any —a? is a valid candidate when
1 < a < p; —1. We now describe the four components
of our scheme.

is large

Assume the contents (plain-

1. Key generation: Each subscriber ¢ chooses a
private decryption key d; € Z; randomly and
sends (f;,p;) to the distributor, where 3; =
gdi mod p;. Next, the distributor computes 3 =

Z BiM;y; mod M, where M; = M /p; and M;y; =

(mod pi), for 1 < i < n. The triple (g,5,M)
is the public encryption key. Note that § = ;
(mod p;).

2. Encryption: Let the plaintext be x € Z,.
The distributor picks a random element r from
{0,1,...,p1 — 1} and computes

z1 = ¢" mod M,
29 = /3" mod M.



The ciphertext is C' = (21, z2). Note that the dig-
ital content is encrypted only once not n times.

3. Decryption: Given a ciphertext C' = (z1, 22),
the decryption algorithm computes the plaintext
x = ZQ(zf")*l mod p;.

4. Tracing: The tracing algorithm is described in
Section 5.

The encryption and decryption algorithms are simi-
lar to those in the ElGamal cryptosystem. The content
is encrypted once, and each subscriber can decrypt us-
ing his or her own decryption key. There is no need of
a key generation center to generate the decryption keys.
Instead, subscribers generate their own keys at ran-
dom. The distributor creates the encryption key with-
out knowing any decryption key. The decryption keys
are therefore private to their respective owners. This is
identical to the standard point-to-point public-key cryp-
tosystem setup. Our scheme is hence fully public-key.

Consider this straightforward approach to secure
broadcasting in a full public-key setting [6]: Before
broadcasting, the plaintext is encrypted n times with all
subscribers’ public keys, and then the Chinese Remain-
der algorithm is applied. If the straightforward approach
uses the ElGamal probabilistic encryption, the number
of modular multiplications and squarings in perform-
ing encryptions is n-times ours because we encrypt the
plaintext only once. The fast modular multiplication al-
gorithm devised in [5] requires ¢ 4 7 clock pluses, where
t is the length of the modulus. Assume our encryption
needs a total of £ modular multiplications and squarings.
For each plaintext, our encryption needs time ¢(ns+7),
but the straightforward approach needs time ¢n(s + 7)
plus Op(M (ns)logn)+Op(nM(s)log s) for performing
the Chinese Remainder algorithm. Hence, our scheme
is more efficient.

4.1 Security Analysis

We will show that our scheme is plaintext-secure against
a passive generic adversary if q%/ % s large enough. We
now explain the terms. A passive generic adversary is a
generic algorithm and can only eavesdrop the network.
A generic algorithm does not exploit any special proper-
ties of the encodings of group elements except that each
group element is encoded as a unique bit string [17]. An
encryption system is plaintexrt-secure if the full plaintext
about a content cannot be derived from its encryption
form.

Let M’ be a product of k primes p;, say,
M'" = pi,piy - - Diy.-

Let 3 = 3 mod M’. As before, g is a common primi-
tive root modulo p;, i = 1,2,...,n. The Diffie-Hellman
problem (DH) in a group with generator g is to compute
g2 from ¢g"* and ¢g"?. Shoup shows that any generic al-
gorithm must perform Q(qlln/fx) group operations for the

problem, where g, is the largest prime dividing the or-
der of the group [17]. Because g is a common primitive
root modulo each of the p;s, the largest possible order of
g modulo M" is A\(M") = 2g;,¢i, - - - gi,, by equation (1).
So the subgroup H of Z3, generated by g has order
A(M'). The order of H surely contains a prime factor
which is not smaller than ¢;. As we choose a large q}/ 2 ,
the DH problem in H is intractable for a generic adver-
sary. Based on this intractability, we next prove that
our encryption scheme is plaintext-secure against a pas-
sive generic adversary. But first we need the following
lemma.

Lemma 4.1. If the ElGamal cryptosystem in Z3; can
be broken, then the Diffie-Hellman problem in the sub-
group H of Z%,, generated by g can be solved efficiently.

Proof. Suppose that there is an algorithm A that breaks
the ElGamal cryptosystem in Z%,. Given g, M', ', 2
and zo, algorithm A computes the plaintext z =
29(3"°% )L mod M.

Assume that 3,y € H. When given inputs g, M’, 3
and ~ for the Diffie-Hellman problem, A can be invoked
to solve this DH problem by

A(g7M/7ﬁ/777 1)_1 = ((6/10gg"/)—1)_1 mod M/

_ glogg B’ log, v mod M.
]

Theorem 4.1. Our encryption scheme is plaintext-
secure against a passive generic adversary.

Proof. A passive adversary can only eavesdrop to get
C = (z1,22). For such an adversary, to derive plain-
text is equivalent to breaking the ElGamal encryption
scheme in Z3,. Nevertheless, by Lemma 4.1, break-
ing the ElGamal scheme in Z},, implies solving the DH
problem in the subgroup H of Z;,, generated by g. For a
generic algorithm, solving the DH problem for the sub-
group H needs at least Q(qi/ 2) time. Because qi/ % s
chosen to be large, the theorem is proved. O

4.2 Semantic Security
The security of our scheme is based on the ElGamal
encryption scheme in Z3,. To enhance the security, we
show how to choose the generator of subgroups and limit
the message so that our scheme is semantically secure.
Because g is the common generator of the ZJ s, g°
has order ¢; and generates all the ¢; quadratic residues
in Z, for each i = 1,2,...,n. Similarly, g® has order
AXM')/2 = qi,qi, - - - ¢, and generates all the quadratic
residues in Z3,,. So the cyclic subgroup of 73, gener-
ated by ¢* has order g¢;,qi, - - - gi,, each of whose prime
factors is at least q;. The decision Diffie-Hellman
problem (DDH) in group G generated by h with a
large order is to efficiently distinguish the two distri-
butions: (h"',h"™, h*) where 71,79,z are random and



(k"™ h™ h""2) where 11,9 are random. Any generic al-
gorithm must perform Q(qun/li) group operations for the
DDH problem, where gy, is the smallest prime dividing
the order of the group [17]. Modify the parameters in
our scheme: Let the common generator be ¢g? and as-

sume the plaintext (contents) in Z, must be a common

quadratic residue of all the p;’s. Because qi/ ? is chosen
to be large, the DDH problem for the subgroup gener-
ated by ¢2 is intractable for a generic adversary. Based
on this intractability, our scheme can be shown to be se-
mantically secure by using a similar result in [19] after
replacing the modulus p there with our M’.

The parameters were modified so that each plain-
text * € Zp, is a common quadratic residue of all the
pi’s. That is very inconvenient. Here is an alternative.
Encrypt z? instead of x. After decryption, subscriber i
obtains 2’ = 22 mod p;. As p; = 3 (mod 4), the solu-
tions to 22 = 2’ (mod p;) are z = £2’/P Y4 (mod p;).
Note that one of the solutions is odd and the other even.
If we always pad one bit in the least significant bit of
x to make it, say, odd, the plaintext can be uniquely
decided. So we have the following theorem.

Theorem 4.2. Our scheme modified as described above
1s semantically secure against a passive generic adver-
sity.

4.3 Forgery of Decryption Keys

Recall that 8, M, 5;,p;, g, and d;, for i =1,2,...,n, are
all the keys in the system, among which only d; are not
public. The ciphertext (z1,22) is also public. Because
our encryption scheme is plaintext-secure, it is impossi-
ble to fake subscribers’ keys or create new decryption
keys from the public information. This implies that
combining d;’s is the only way to create decryption keys.
Suppose k of the d;’s are used to create a new decryp-
tion key dg, say di,ds,...,d;. Because di,do,...,dg
are involved in creating dp, we solve dy from

d

gdH =g% (mod p;)

(2)

for i = 1,...,k. Let M}, = pip2---pk. The following
lemma proves that this dg works.

Lemma 4.2. Suppose that di,do, ..., dy are used to cre-
ate a new decryption key dgr. Then dy exists and equals
k

> diMpy,y; mod My if and only if ged(p; —1,p; —1) di-
i=1

vides d; —dj, where My =lem(p1 —1,po—1,...,pr—1),
My, = My /(pi — 1), and Mpy,y; = 1 (mod p; — 1) for
1=1,2,...,k.

Proof. By equation (2), dp satisfies g% = g
(mod Mj;). Hence di and M}, can be used to decrypt
the ciphertext. By Fact 3.4, g% = g% (mod p;) implies
dig = d; (mod p; — 1). The rest of the lemma follows
from Fact 3.2. O

The next theorem is immediate.

Theorem 4.3. For a passive generic adversary, the
only way to create a new decryption key dg in our
scheme is to combine the d;’s in the way mentioned in
Lemma 4.2.

5 Traceability,

Anonymity
Traceability. The tracing algorithm shall utilize the
pirate decoder to apprehend the traitors. First, assume
that the pirate decryption key dy and M}, are revealed
by opening the decoder box to simplify the analysis. The
tracing algorithm uses M}, to detect all traitors as fol-
lows: If M}; =0 (mod p;), then subscriber 7 is a traitor;
otherwise, he is innocent. Thus all traitors will be cap-
tured, and innocent subscribers will not be accused. Be-
cause p; are public, the tracing algorithm does not need
the private keys of subscribers to succeed.

Long-Livedness,

Now suppose that the decoder cannot be opened (it
is a black box). Then the black-box tracing algorithm
performs the following steps for each i = 1,2,...,n to
trace all traitors.

Step 1: Compute «; = (# mod M;, where M; = M/p;,
for M = pipa- - pn.

Step 2: Choose a plaintext . Compute the ciphertext
C with the public key (o, g, M;).

Step 3: Feed C to the black-box decoder. If the output
is not equal to x, then subscriber ¢ is a traitor.

The tracing algorithm flags the subscribers whose

moduli are the prime factors of Mj;. Thus the trac-
ing algorithm does track down all and only traitors. Of
course, its performance suffers from not being able to
open the box.
Perfectly long-lived keys. When an existing decryp-
tion key is discarded or when a new subscriber joins
the system, the system shall not require the other sub-
scribers to perform any interaction with the distribu-
tor to change their secret keys. The public encryption
key will be modified to achieve this goal. Assume that
(8,9, M) is the original public encryption key.

Suppose that subscriber i’s key is disabled because
he is a traitor or he wants to leave the system. Then
the new public encryption key is

(B,gr M) = (ﬁ mod (M/pi)vgv M/pZ)

No rekeying is required for the remaining subscribers.
By disabling a traitor’s key, the pirate decoder using
that key also becomes useless.

Now suppose that a new subscriber n + 1 joins the
system. Then the new public encryption key is

(8,9, M)
=(Bpns1v + Brny1Mw mod Mppi1, 9, Mpny1),



where pn4+1 is a new prime distinct from p1,po,..., pn,
Pry1v =1 (mod M), and Mw =1 (mod pp41). Exist-
ing subscribers do not need to update their secret keys,
and the new subscriber cannot decrypt the contents re-
ceived before he joins. After the public encryption key
has been changed, the traitor-tracing scheme still satis-
fies the same properties. The following theorem demon-
strates that our method obtains the correct encryption
key.

Theorem 5.1. Let p1,p2,...,pnt+1 be distinct primes.
Suppose that for any integers (31, Bs, ..., On, the system
of congruences

r = f

has a unique solution B modulo M = pips---pn. Then
B = B mod M, where M, = M/py, is the unique solu-
tion modulo M, to the system of congruences

Furthermore, 3" = Bpni1v + Bpi1Mw mod M” is the
unique solution modulo M" to the system of congruences
x=0 (modp;), i1=1,2,...,n+1,
where M" = Mpp11, ppyiv =1 (mod M), and Mw =

1 (mod puy1).

Proof. Both 8 and (' are solutions to congruences (3).
As the solutions are congruent modulo M,,, we have
B3 = B mod M,. That 8" is the desired solution fol-
lows from Fact 3.2. O

(mod p;), i=1,2,...,n,

(mod p;), i=1,2,...,n—1.

Anonymity. In our scheme, a subscriber registers by
sending his or her own public information to the dis-
tributor. This part is noninteractive. Because all the
subscribers receive the same ciphertext, the broadcast
message need no addressing. Even when one obtains
the plaintext and the public key of another subscriber,
the subscriber’s identity remains hidden. As the en-
cryption scheme is probabilistic, encrypting a plaintext
with anyone’s public keys and then comparing the re-
sulting ciphertext with any historical ciphertext for clues
is wasted efforts. Our scheme is hence anonymous.

6 Conclusions

In order to prevent others from learning the secret keys,
we propose a fully public-key traitor-tracing scheme.
Perfect long-livedness and anonymity are achieved. Fur-
thermore, it is a simple task to recompute the encryption
key if needed. By the choice of parameters, our scheme
can be plaintext-secure or semantically secure against a
passive generic adversary. The tracing algorithm is n-
traceable and captures all and only traitors. This holds
even if the pirate decoder is a black box.

References:

[1] A. V. Aho, J. E. Hopcroft and J. D. Uliman.
The Design and Analysis of Computer Algorithm.
Addison-Wesley, 1974.

2]

3]

[10]

[11]

S. Berkovits. “How to broadcast a secret.” In Proc.
FEurocrypt’91, pp. 535-541.

C. Blundo, L. A. F. Mattos and D. R. Stinson.
“Trade-offs between communication and storage
in unconditionally secure systems for broadcast
encryption and interactive key distribution.” In
Proc. Crypto’96, pp. 387-400.

D. Boneh and M. Franklin. “An efficient public key
traitor tracing scheme.” In Proc. Crypto’99, pp.
338-353.

E. F. Brickell. “A fast modular multiplication algo-
rithm with application to two key cryptography.”
In Proc. Crypto’82, pp. 51-60.

C. H. Chiou and W. T. Chen. “Secure broadcasting
using the secure lock.” IEEFE Trans. on Software
Engineering, 15, No. 8 (August 1989), 929-934.
B. Chor, A. Fiat and M. Naor. “Tracing traitors.” In
Proc. Crypto’94, pp. 257-270. Final version with
B. Pinkas in IFEFE Trans. on Information Theory,
46, No. 3 (May 2000), 893-910.

T. ElGamal. “A public key cryptosystem and a
signature scheme based on discrete logarithms.”
IEEE Trans. on Information Theory, 31, No. 4
(July 1985), 469-472.

A. Fiat and M. Naor. “Broadcast encryption.” In
Proc. Crypto’93, pp. 480—-491.

E. Gafni, J. Staddon and Y. L. Yin. “Efficient meth-
ods for integrating traceability and broadcast en-
cryption.” In Proc. Crypto’99, pp. 372-387.

J. Garay, J. Staddon and A. Wool. “Long-lived
broadcast encryption.” In Proc. Crypto 2000, pp.
333-352.

M. Just, E. Kranakis, D. Krizanc and P. van
Oorschot. “On key distribution via true broadcast-
ing.” In Proc. of 2nd ACM Conference on Com-
puter and Communications Security, 1994, pp. 81—
88.

M. Luby and J. Staddon. “Combinatorial bounds
for broadcast encryption.” In Proc. Furocrypt’98,
pp. 512-526.

B. Pfitzmann. “Trials of traced traitors.” In Proc.
Information Hiding Workshop, 1996, pp. 49-64.
K. H. Rosen. Elementary Number Theory and Its
Applications. Addison-Wesley, 1988.

H. N. Shapiro. Introduction to the Theory of Num-
bers. John Wiley & Sons, 1983.

V. Shoup. “Lower bounds for discrete logarithms
and related problems.” In Proc. Eurocrypt’97, pp.
256—-266.

D. R. Stinson and R. Wei. “Key preassigned trace-
ability schemes for broadcast encryption.” In Proc.
SAC’98, pp. 144-156.

Y. Tsiounis and M. Yung. “On the security of El-
Gamal based encryption.” In Proc. PKC"98, pp.
117-134.



