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Abstract

A general solution is presented for any finite request-
answer game to derive its optimal competitive ratio and
optimal randomized on-line algorithm against the obliv-
ious adversary. The solution is based on game theory.
We then apply the framework to the practical buy-and-
hold trading problem and find the exact optimal com-
petitive ratio and an optimal randomized on-line algo-
rithm. We also prove the uniqueness of the solution.

1 Introduction

Ben-David et al. [BDBK*94] formulated on-line prob-
lems as request-answer games. In the request-answer
game, the on-line algorithm acts on each request be-
fore it serves the next one. Each such action generates
a certain gain. In competitive analysis, an algorithm’s
performance is defined to be the ratio of the total gain
of the best off-line algorithm and that of the on-line
algorithm that services the same sequence of requests
over the worst-case inputs. See [BEY98, Hoc97, MR95]
for surveys. This ratio is called the competitive ratio,
which the on-line algorithm seeks to minimize.

We present a general solution to any finite request-
answer game by identifying the problem of solving the
game with its corresponding linear programming prob-
lem. The optimal competitive ratio emerges as the
reciprocal of the value of the game, and the optimal
randomized on-line algorithm emerges from the optimal
feasible solution. By this correspondence, we can solve
for the optimal randomized on-line algorithm against
the oblivious adversary. An adversary is oblivious if he
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does not have access to the on-line algorithm’s random
bits.

Previously, the use of game theory had been focused
on deriving lower bounds, the so-called Yao Principle
[Yao77] being a well-known result. Tt seems no one has
recognized that, in fact, solving a game actually gives
us the optimal competitive ratio and optimal random-
ized on-line algorithms for finite request-answer games.
The discovery of this general methodology is a main
contribution of this paper.

As an application of this general paradigm, we con-
sider the buy-and-hold trading problem. This is a prob-
lem that faces millions of investors who save for retire-
ment purposes on a long term basis. We find an optimal
strategy that can be executed even by small investors
who are not mathematically sophisticated. The buy-
and-hold trading problem is an on-line financial problem
that can be described as follows. An on-line investor
proposes an n-day investment plan. The investor starts
with some capital and plans to trade it for a certain
security. The investor executes one transaction per day
and may trade only partial capital. However, all the
capital must be traded by the end of the investment
horizon, and converting security back to capital is inhib-
ited. For ease of expression, we will assume the capital
is dollars and the security is yen throughout the paper.
In this case, the relative price between the capital and
the security used in determining the number of units
purchased becomes the exchange rate. Note that any
commodities in which relative prices are obtainable fit
the above setup.

We adopt the bounded daily return model. This
model assumes the next exchange rate ¢/ depends on
the current exchange rate e in a geometric manner, i.e.,
e/ < e < efl for some 6 > 1. We call such 6 the daily
fluctuation ratio. Stock markets often enforce such ra-
tios through circuit breakers. In this paper, we assume
that the problem horizon n and the bound of the daily
fluctuation ratio # are prior knowledge.

This financial model is mentioned in [BEY9S,
CCEY ™95, EY98] and is related to the geometric Brow-
nian motion model used extensively in the finance com-
munity [Hul97, Lyu99]. Under this model, we derive
an optimal static buy-and-hold trading strategy called



the balanced strategy, derive its competitive ratio, and
prove the uniqueness of the optimal strategy. Specif-
ically, the optimal competitive ratio is n8-(n=2) The

0+1
optimal strategy works as follows, starting with one dol-
lar initially: It invests m dollars on the first and

last days and ﬁ dollars on other days. We also
design a dynamic strategy that improves the perfor-
mance of optimal strategies on non-worst-case inputs.

There are few papers on on-line computation con-
cerning the systematic solution to deriving the lower
bound of optimal competitive ratio. The Yao Principle
1s the first application of the minimax theorem to derive
the lower bound of optimal performance for randomized
algorithms [Yao77]. Borodin et al. [BEY97] used the
Yao Principle to summarize lower bounds for request-
answer games with finite or infinite time horizon. The
use of these formulas must efficiently specify a mixed
strategy for the adversary to raise the lower bound.
For that purpose, the uniformly mixed strategy is a
common heuristic [Yao77]. However, §3.5 will present
a case for which uniformly mixed strategy is not opti-
mal. Specifically, that practice implies a lower bound
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our optimal competitive ratio.

Our paper is organized as follows. In §2 we present
a general solution for any finite request-answer game
to derive its optimal randomized strategy against the
oblivious adversary. In §3 we employ the general solu-
tion to derive an optimal buy-and-hold trading strat-
egy called the balanced strategy. Furthermore, we de-
rive the optimal competitive ratio exactly and prove
the uniqueness of the optimal strategy. In §4 we dicuss
whether real-time information can help static strategies
and derive some theoretical properties. Section 5 con-
cludes the paper and points to future directions.

, which is strictly lower than

2 Optimal Solution to Finite Request-
Answer Games

There are few papers on on-line computation concern-
ing about the systematic approach to derive the lower
bound of optimal competitive ratio. The Yao Principle
is the first application of the minimax theorem in this
regard for randomized algorithms [Yao77].

We fix some game-theoretical notations used for the
rest of the paper. Let

Ze={1,2,... k}.

Denote by T'gr(m, n) a finite zero-sum two-person game,
where the set of pure strategies for maximizing and min-
imizing players are indexed by 7, and Z,, respectively.
The payoff of players using strategies : € Z,, and j € Z,

is denoted by H (4, j). Let S(Zx) be the set of all proba-
bility density functions defined on Zj. Each f € &(Z)
determines a mixed strategy that applies pure strategy
i € Zy with probability f(4).

2.1 Definitions and Terminology

Ben-David et al. [BDBK*94] formulated on-line prob-
lems as request-answer games. This paper considers fi-
nite request-answer games with finite problem horizon.
By finiteness we mean the number of possible request
sequences and that of deterministic on-line algorithms
are both finite. Deterministic on-line algorithms and re-
quest sequences can be viewed as pure strategies, while
randomized on-line algorithms of the on-line player can
be viewed as mixed strategies. In particular, both the
on-line player and the adversary have a finite number
of pure strategies.

For profit maximization problems, Z,, and 7, de-
note the set of pure strategies for the on-line player
and the adversary, respectively. Let A; i € Z,,, and
e;,j € Zy,, denote the deterministic on-line algorithm
and the request sequence, respectively. Finally, let
H(i,j) be the ratio of the profit of A; on e; to the
profit of the optimal off-line algorithm OPT on e; as

Ai(e))
OPT(ej) ’

H(i, ) 1€ Zm,J € Zn. (1)

Cost minimization problems can be formulated sim-
ilarly. For convenience, the finite request-answer game
1s always assumed to be of the profit maximization kind
throughout this paper.

Clearly each finite request-answer game is a finite
zero-sum two-person game I'g(m,n), and each payoff
value is positive, H(i,j) > 0. The optimal competitive
ratio r* of randomized on-line algorithms against the
oblivious adversary is defined as

. OPT(e;)

r*= Iinf max ——""—. 2
1€8(Zn) i€7n ByiyAi(ej) ()

A randomized on-line algorithm will be called optimal
if it achieves the above competitive ratio.

2.2 Minimax Theorem and Its Applications

Since T'g(m,n) is a finite zero-sum two-person game,
the minimax theorem of von Neumann holds [PZ96,
Theorem 1.6.1]. Thus,

v* = max min E;yE i H(i,
FES(Zm) g€S(Z0) F(i)Hg(4) ( ])

= mi ;i) By H (i, 4),
seoiD ) semex BBy H0,5)



where v* is called the value of the game. With (1), (2)
and [PZ96, Theorem 1.7.3], we also obtain the following
relationship for the optimal competitive ratio,

— = max min E;;H(i,j
T fE€S(Zm)i€Zn 1) (i,4)

= ol gL B ) =0 )

We conclude that the optimal mixed strategy of the
on-line player i1s the optimal randomized on-line algo-
rithm against the oblivious adversary and r* = 1/v*.
One of our main purposes in this paper is to derive the
exact value of r* and the optimal randomized on-line
algorithm.

Note that 1/r* < maxicz,, Ey;)H(i,j) for any
mixed strategy ¢ of the adversary. Thus the value of
min;ez,, (Eg(j)H(z',j))_ is a lower bound of r*. This
is called the Yao principle [BEY97].

Note also that if the payoff function defined in
(1) is defined by H'(i,j) = H(i,j)~!, and the on-
line player and the adversary are the minimizing
and maximizing player respectively, then the value of
min;ez,, Eg;)H'(2, j) is not guaranteed to be a lower
bound for r*. The fallacy of believing otherwise comes
from the dubious identity marked with a question mark
below

1
r"= Inf max———
F€S(Zm)i€Zn By H (1, 7)
1
H(1,j)

= inf maxE;;H'(i,j
F€S(Z)j€EZn @) ( ])

Z inf maxE ()
FE€S(Zm) €7

= sup min E,;\H'(4,j)

4€5(2,)i€%m g(i)
> min E,;yH'(4, 7).
> min By H'(i, j)

This wrong use of the Yao Principle was pointed
out by Borodin et al. [BEY97]. Based on the Yao
Principle, they summarized lower bound formulas for
request-answer games with finite or infinite time hori-
zon. However, in order to obtain a tight lower bound
with these formulas, one must specify a sufficiently
bad mixed strategy for the the adversary to maximize
minjez,, (Ey)H(i,4))"
employ the uniformly mixed strategy [YaoT77]. Section
3.5 will present a case in which the uniformly mixed
strategy is not optimal.

A common heuristic is to

2.3 Request-Answer Games and the Primal and
Dual Problems

For convenience, We view each mixed strategy as a
point in the Euclidean space and represent the payoff

function by a matrix. Let H be the payoff matrix of
the finite request-answer game T'g(m,n). We adapt a
theorem from [PZ96, Theorem 1.6.2] as follows.

Lemma 1 For ecach finite request-answer game
T (m,n), define its corresponding primal and dual
problems as follows,

Primal: Dual:
minimize X Up mazrimize 'y uy
subject to xT H > ug

x>0

subject to Hy < u,,
y=>0

where u; is the vector consisting of i 1’s. Let X and
Y denote the set of optimal feasible solutions to the pri-
mal and dual problems, respectively and let X* and Y*
denote the set of optimal mized strategies of the on-line
player and the adversary, respectively. Then the follow-
ing properties hold:

1.X #0,Y # 0, and 1/v* = mingx"u,, =
maxy yTu,, where x and y range over feasible so-
lutions.

2 X*=v*X and Y*=v*Y.

Solving any finite request-answer game is therefore
equivalent to the corresponding primal and dual prob-
lems. Lemma 1 will help us to find optimal random-
ized strategy and its competitive ratio for finite request-
answer games.

By Equation (3), we have the following corollary.

Corollary 2 For each finite request-answer game
Tz (m,n), let x andy denote the feasible solutions to its
corresponding primal and dual problems, respectively.
The following properties hold:

* : T _ T
1. r* = ming X" U, = maxy y U,.

2. yTu, < r* < xTu,,.

$x' = A andy = yTLun, where y # 0, are
muxed strategies for the on-line player and the ad-

versary.

4. The pure strateqy j of adversary that xT HI =
minez, xTH' is a worst case for the on-line
player’s mized strateqy x'.

Observe that for any feasible solution y to the dual
problem, the value yTu,, is a lower bound for the opti-
mal competitive ratio of randomized on-line algorithms
against the oblivious adversary.

In Lemma 1, if H is symmetric and square, and x
is a feasible solution to the primal and dual problems,
then x is an optimal feasible solution to the primal and
dual problems, and r* = xTu,, [CZ96, Theorem 17.1].
This useful observation is summarized below.



Lemma 3 For each finite request-answer game
Ly (m,n), if m = n, HT = H and there exists an
x > 0 such that Hx = u,,, then x s an optimal feasible
solution to the primal and dual problems.

3 Applications to Optimal Static Buy-and-
Hold Strategies

In this section, we will apply the general paradigm in §2
to solve a practical and complicated buy-and-hold trad-
ing problem. In particular, we derive explicitly both the
optimal competitive ratio and the algorithm to achieve
it.

3.1 Problem Definition and Notations

Start with #, the maximum fluctuation ratio of two ad-
jacent daily exchange rates, and n, the problem hori-
zon (the number of trading days), such that 1 <  and
n > 2. The numbers § and n are known a priori to the
on-line investor. We consider exchange rate sequences
e = (e1,€a,...,¢en) satisfying the bounded fluctuation
ratio, i.e., ¢; € [e;_1071,e;_10]. We normalize ¢y to
1 to simplify the presentation. The exchange rate se-
quence e will be revealed sequentially to the on-line in-
vestor. Upon each revelation, the investor must decide
on the fraction of dollars to be traded for yen without
any information regarding future exchange rates. All
dollars must be traded for yen in n transactions and
converting yen back to dollars is not allowed. Without
loss of generality, the investor starts with one dollar.

Let £ = {e : e = (e1,e3,...,en) and ¢ €
[e;_107 Y e;_10], for i € Z,}, denote the set of all
admissible exchange rate sequences. OPT will de-
note the optimal off-line trading algorithm. The re-
turn of OPT on an admissible exchange rate sequence
e={(e1,€3,...,¢n)is clearly OPT(e) = maxi<i<n €;.

For any deterministic (randomized, resp.) on-line
trading algorithm S, define its return (expected re-
turn, resp.) on the exchange rate sequence e by S(e) =
Yoi_ | a;ei, where a; is the amount (expected amount,
resp.) of dollars invested by S on the ith day. (The a;’s
may be dependent on the current and past exchange
rates, €1, €a,...,¢€;.) Its competitive ratio against the
oblivious adversary is defined as

OPT(e)
Ts = sup ————=,
ST Se)

where the oblivious adversary does not have access to
S’s future coin flips.

We say an on-line trading algorithm is static if the
(expected) amount of dollars invested by the algorithm
on the ith day is fixed for all exchange rate sequences.
An algorithm is dynamic otherwise.

For the on-line trading algorithm S; which trades
all the dollars on the ith day, we call it a trade-once
algorithm on the ¢th day. Clearly this algorithm is static
and its return on e is S;(e) = e;.

The optimal competitive ratio for static trading al-
gorithms is defined as

. OPT(e)
* = infsup ———, 4
"= TS "

where S ranges over all static trading algorithms. For
each static trading algorithm S, let s; be the (expected)
amount of dollars invested by S on the ith day. Then
the (expected) return of S on e is S(e) = Y. s;e;.
Since s; > 0 for all i and 2?21 s; = 1, these s;’s de-
fine a probability density function f € &(Z,) in which
f(#) = s; is the probability of applying the trade-once
algorithm S;. In other words,

S(e) = Zf(z’) Si(e) = E¢(5)Si(e).

Thus $(Z,) can represent the set of all static trading
algorithms.

The above and (4) combined, the optimal compet-
itive ratio of static trading algorithms can be restated
as follows,

r= inf sup OL@. (5)
F€3(72) cee Ef(i)Si(e)

(By “optimal” we mean, throughout the rest of the pa-

per, “optimal in terms of competitive ratio.”)

We can view the buy-and-hold trading problem as
an infinite request-answer game. The on-line player has
only n pure strategies, but the adversary has infinite
pure strategies. In order to use our general solution
in §2, we will reduce this infinite request-answer game
to be finite. We need to eliminate the dominated pure
strategies (non-worst-case exchange rate sequences) of
adversary in the next subsection.

3.2 Elimination of Dominated Pure Strategies of
Adversary

An important step in finding a problem’s worst case for
competitive analysis is in reducing the infinite number
of possibilities to a finite number. We will carry out
that step here.

Let S be a static trading algorithm and f € $(7,)
be its corresponding probability density function. Con-
sider an exchange rate sequence e = (e1,€2,...,€n) €
E. We define its corresponding fluctuation ratio se-
quence by d = {(di1,ds,...,dy), where d; = e;/ei_1.
Recall that eg = 1. Let j be such that e; = OPT(e).



Since the competitive ratio of S is

_ OPT(e)
Ts = su —n /N 7
ST et o J(0)Si(e)

the adversary must make the remaining rates decrease
monotonically with the maximum ratio =1; i.c., d; =
6=t for i = j+ 1,...,n. Fix an arbitrary | < j.
Define A > 1 such that df = Ad; = 6 and let d' =
(d,d, ... d,) where di = d; for i # . Then for i <,

Si(e')  di---d; < didi Si(e)
OPT(e) Ady---d; — dy---d;  OPT(e)’
while for ¢ > [,

Si(e)) _ Adi---di  di-di  Sile)

OPT(e/)  Ady---d; dy---d;
Thus e is dominated by e’. So

Se) _S(e)
OPT(e’) — OPT(e)’

for any static trading algorithm S. Therefore,

Lemma 4 Lete; = (e1,€es,...,en) €E, forj € Z,, be
the exchange rate sequence defined by

€= g

Then each worst-case sequence for any static algorithms
1s dominated by e; for some j € 7,.

fi<j
ifi> 7.

Therefore, we need only consider the n exchange rate
sequences: e;, for j € Z,. We call each of these a
downturn. Figure 1 illustrates the relationships among
the e;’s.

Exchange e
Rate

Day

Figure 1: The patterns of downturns.

Lemma 4 and (5) show the optimal competitive ratio
of static trading algorithms to be
OPT(e]')

s = fegd‘%gn) 1<) Sn E;\Si(ej) (6)

3.3 Reduction to Finite Request-Answer Games

Our problem can now be reduced to a finite request-
answer game. By pure strategy ¢ (for the on-line player)
we mean the trade-once algorithm S; for ¢ € Z,,, and by
pure strategy j (for the adversary) we mean the down-
turn e; for j € Z,,. Denote the payoff function if players

use pure strategies ¢ and j by K(¢,j) = o%”}ii)-)' As
OPT(e;j) = 07, clearly

K(i,j) = 671"l fori,j€ Z,. (7)

The objective of the on-line player is to maximize this
payoff function, while that of the adversary the oppo-
site. Our finding is summarized below.

Lemma 5 Static buy-and-hold trading problem can be
formulated as a finite request-answer game T'g(n,n).
Furthermore, if the on-line player adopts pure strategy
1 € Z, and the adversary adopts pure strateqy j € Zy,,
then their payoff function is as defined in (7).

The optimal mixed strategy of the on-line player is
hence an optimal static trading algorithm. It only re-
mains to solve this game.

3.4 Deriving Optimal Competitive Ratio and Ran-
domized On-Line Algorithm

Since the payoff matrix K of T'k (n, n) is symmetric and
square, if we can find an n-dimensional vector b > 0
such that Kb = u,, then by Lemma 3 and Corollary
2, we have found the optimal competitive ratio r} =
bTu,. Let B* be the corresponding randomized on-
line algorithm of b* = b/r?. By Lemma 1, b* is the
optimal mixed strategy of the on-line player. Clearly
b* must satisfy

Kb* = —u,. (8)

*
rS

Thus, b* = (1/r}) K~ u, if det(K)# 0.

Equation (8) implies Ep.(; K (i,j) = 1/r} for j €
Zn. We therefore call B* the balanced trading algorithm
or balanced strategy in short. The intuition behind the
algorithm is that it balances the performance of the
on-line player on all downturns. We now proceed to
show the existence of the balanced algorithm and derive
explicitly its competitive ratio and strategy.

Recall from (7) that K(i,j) = 0~1"=7l. We can ex-
press the matrix form of K below,

90 9—1 9—2 . gl—n

9—1 90 9—1 . 92—n

K = 9—2 9—1 60 93—n
gl—n 62—71 93—n 90



The following lemma is easy to verify.

Lemma 6 The determinant of K s positive and 1is
equal to det(K) = (1 —0=2)""1 > 0 forn > 2.

Now that we have det(K) > 0, the existence of the
balanced trading algorithm is thus established. Clearly
b* = (1/r;) K~ u,,. We finally solve for b* and r} in
the following theorem.

Theorem 7 Let B* be a static trading algorithm that
invests b (i=1,2,...,n) dollars on the ith day where

. m i=1orn
i —f-1l __ =2 ... n—1andn>2.

Then B* is the unique balanced trading algorithm and
1s optimal for the class of static trading algorithms; in
other words,

OPT(e]') * .
——> =7, forj€Z,.

By o IS
Furthermore, the optimal competitive ratio for static
trading algorithms equals

*

nf — (n —2)
=
¢ 0+ 1

Proof.  Since these b}’s specify a probability density
function, B* is a static trading algorithm. To prove that
B* is balanced, it suffices to show that Y-, b¥ K (i, j) =

o+1 .

m fOI' ] € Zn

e For j=1orn:

(nf — (n—2)) > b K (i, j)

i=1
=00°+(0—-1)0"" + (0 - 1) +
+ (60— 16" 490"
=0+ 1.

e For2<j<n—-1:
(nf — (n — 2) Zb*[ﬁj)
= 0" + E

(0 — 1)g~li=il 4 ggi—n

2<i<n—1
=60+ 1.
Thus, for all j € Z,, the values of Y ! | b7 K(i, )
are 1dent1cal and equal % i.e., (8) is satisfied.

Therefore, algorithm B* is a balanced trading algorithm
and is optimal.

The uniqueness of the balanced trading algorithm
is obvious because the solution B* in (8) is unique. O

3.5 Comparison with the Dollar-Averaging Strategy

We analyze the popular dollar-averaging strategy (DA).
DA is a uniformly mixed strategy for the on-line player.
It invests equal amounts of dollars on each trading
day with a return on the exchange rate sequence e =
(e1,€2,...,€n) equal to DA(e) = (3°7_, &) /n.

By Lemma 4, the competitive ratio of DA 1s

n
Toa = % S5
_ n(l—6-1)
B 121]?2(” (I1+60-1)— (9—1' 4 gj—n—1) (9)
_ n(l—6-1)
=

By Equation (3), we apply the uniformly mixed
strategy (DA) to the Yao Principle, and obtain a lower
bound for r}.

s 2 Inin (EDA< VK (i, 7))

n

L6 S g-li-j]

. n(l—6-1)

1<j<n (1— 0-7) + (6-1 — gi—n—1)

B n(l—0-1)

- (1_9—[n/2])+(6—1 H—I_n/ZJ—l)

= r,. (10)

- 1<]<n Z

Then by (9) and (10), we have
ra < 7": < TDA~

Since the finite request-answer game T'k (n,n) in this
case 1s symmetric, each mixed strategy of the on-line
player can be viewed as a mixed strategy of the adver-
sary. As the balanced strategy is the optimal strategy
for the adversary by Theorem 7, the uniformly mixed
strategy (DA) is sub-optimal. The sub-optimality of
DA shows the common heuristic of the Yao Principle
mentioned in §2.2 may not lead to tight lower bounds
in general. Figure 2 illustrates the ratio r}/r, with
1 <f# <2and 2 < n < 100. Figure 3 shows the re-
lationships among Ypa, r; and ry in financial market

with § = 1.07 and 2 < n < 100.

3.6 Uniqueness of the Optimal Strategy

Based on the correspondence between the finite request-
answer game and the primal and dual problems, we can
prove the uniqueness of optimal strategy. (The unique-
ness of optimal strategies does not always hold for all
finite zero-sum two-person games.) To prove this asser-
tion, we need a few lemmas.



Figure 2: Plot of r}/ry.

Lemma 8 For the finite request-answer game
Tk (n,n), denote each mized strategy as a point
wn the Euclidean space R™. Let X* and Y* denote the
set of optimal mized strategies of the on-line player and
the adversary, respectively. Then the sets X* and Y*
are convex polyhedron. Moreover, the balanced strategy
1s an extreme point of Y*.

Proof. That X* and Y* are convex polyhedron is
guaranteed by [PZ96, Theorem 1.7.4]. We will prove
the second assertion with linear programming.

Since K is symmetric, by Lemma 1, the problem
of solving the finite request-answer game I'k(m,n) in
Lemma 5 is equivalent to the following primal and dual
problems

Primal: Dual:

maximize y’u,

subject to  y? K < ug
y=>0

minimize uZx
subject to Kx > u,
x>0

Recall that v* = 1/r] is the value of the game
Tk (n,n). Let X and Y denote the set of optimal feasi-
ble solutions to the primal and dual problems, respec-
tively. We have X* = v* X and Y* = v* Y by Lemma
1.

Let b* = [b7,85,...,b6%]7 and b = ! b*, where b}
is defined in Theorem 7. Since the payoff matrix K is
symmetric, the balanced strategy b* is also an optimal
strategy of the adversary. Moreover b = K~ 1u,.
Thus b is an extreme point of Y, and b*, the balanced
strategy, is hence also an extreme point of Y*. a

For our finite request-answer game 'k (n,n), we
need a useful theorem for the optimal strategy as an
extreme point due to Shapley and Snow [Rag94, p. 742].

Conpetitive
ratio

n
20 40 60 80 100

Figure 3: The dashed, solid and dotted lines de-

note the values of Tpa, ry, and ry, respectively.

Lemma 9 The claim that x* and y* are extreme points
of X* and Y*, respectively, holds if and only if there s
a square submatriz K' = (aij)ieljeJ of K such that

1. K’ is nonsingular.
2. ) ier Gijrl =7,
3. Zjejaijy; =v*, 1€elCZ,.
Joer=0ifigl.

5y =0ifj¢J.

Finally, we prove that the balanced algorithm is the
unique optimal static strategy for the static buy-and-
hold trading problem.

JjeJCZ,.

Theorem 10 A static trading algorithm that is not bal-
anced cannot be optimal for the class of static trading
algorithms.

Proof. We continue to use the notations defined in
Lemma 8. Since the convex polyhedron X* has only
a finite number of extreme points, any optimal mixed
strategy * € X* must be a finite convex combination
of these extreme points. Therefore it is sufficient to
show that these extreme points of X* are all equal to
b*.

Let z* be any extreme point of X*. By Lemma §, b*
is an extreme point of Y*. Then by Lemma 9, there is a
square submatrix K' = (aij)iel,jej of K such that the
conditions of Lemma 9 hold with y* = b*. Since each
b > 0, for j € Z,, Condition 5 there implies J = Z,.
By Condition 2, we have )", ;a;;z} = v*, for j € Z,.
With Condition 4, we have

n

E a;;x; = v

i=1

for j € 7,. (11)

Note that the system of equations in (11) is pre-
cisely (8) because v* = 1/rf. Therefore we have
Kx* = (1/r})u,. Then x* = (1/r})K~'u, =b*. O



4 Does Real-Time Information Help Static
Strategies?

In §3 we designed the balanced strategy and proved its
optimality, uniqueness and balance property. The bal-
anced strategy is a static strategy that ignores all real-
time information. It is an important issue whether real-
time information can be used to improve upon static
strategies. In other words, we ask if it is better for the
on-line player to sequentially optimalize the investment
on each daily rate.

4.1 Sequentially Optimized Strategy

At the kth day after the exchange rate is revealed,
the on-line player can formulate the remaining trading
problem as a new finite request-answer game and solve
for the optimal strategy by treating the remaining prob-
lem as a new problem of length n — k£ + 1. The on-line
player then invests according to this new strategy for
this day. The above steps are repeated at each day.
We call this strategy SOS (for Sequentially Optimized
Strategy). Clearly SOS is a dynamic strategy.

We now describe SOS in more details. Consider
the kth day, 1 < k < n, with the fluctuation ratios
up to then being p = {(di1,ds,...,dx). Define Oy =
max{ e1,es,...,ex }, where e; = [[,¢,«; di, i € Zg, and
Yi_1 and Dj_q to be the yen and dollar amounts at
the beginning of the kth day, respectively. Note that
Yo = 0 and Dy = 1. These parameters completely
specify the trading problem for the remaining m trans-
actions, where m=n — k + 1.

Let X(m,p) be the trading problem after the on-
line player has traded along p according to SOS for the
first & — 1 days, dynamically invests at the kth day,
and 1s static for the rest. The on-line player formulates
Y (m,p) as a finite request-answer game and solves for
its optimal strategy as follows. Let d’ = (dgt1,...,dn),
in which diy; € A, where A = [071,0], for | € 7, _y,
denotes the future fluctuation ratio sequence. Consider
the static strategy initially with Yz_1 yen and Dj_,
dollars. Thus the performance ratio of the trade-once
algorithm S;4;,i=0,1,...,n—k, to OPT on d’ is

Yi—1 4+ (Dr-1er) [Ti<i<i drpr

max{Of, 5 maxi<j<n—t [T1=y disi}
(12)

Skai(d) _
OPT(d)

Notice that Oy, eg, Yr—1, and Dg_q in (12) are all
known to the on-line player. With the same reason as in
§3.1, each worst case for the considered strategy is dom-
inated by one of the downturns d} = (dgt1,...,dn),

j=0,1,...,n—k, in which

0
dk-}-l = {9_1

where | € Z,_p. Strategy Fp for the on-line player
is then picked from one of the optimal strategies given
by the finite request-answer game T'g:(m, m) with the
payoff function K'(7,j), i,j € Zp, defined by

Sk+i-1(dj_4)
OPT(d, ;)

if1<j

13
it > g, (13)

K'(i,j) = (14)

By Lemma 1 and Corollary 2, the on-line player can
obtain Fy by solving its corresponding primal problem.
The on-line player thus invests a certain amount of dol-
lars at the kth day according to Fp. Let SOSy de-
note the amount of dollars invested along p at the kth
day according to Fp. Thus SOSj is a function from
AF to [0,1]. Denote SOS = (SOSy,...,S0S,). Thus
Ezzl SOS; = 1. We summarize the above in the next
algorithm.

Algorithm 11 SOS is a dynamic strateqy that se-
quentially optimizes its investment by solving the finite
request-answer game as defined in (14) at each day.

4.2 Properties of the Sequentially Optimized Strat-
egy

Let D be the set of all admissible fluctuation ratio se-
quences, and Dy be the set of all d € D having the
prefix segment p. Let Fy, where k € Z,,, denote the set
of all strategies that are admissible in X(m, p) for all
p € AF, and let 7 be the optimal competitive ratio for
the strategies in F;. Then we have

— inf OPT(d)
e = 1IN sup ———
F = rer, deg F(d)

Lemma 12 For k € Z,, we have

OPT(d) i}
G

rg = sup inf sup
peak F€Fk dep,

and there exists an optimal strategy ¥y, € Fy, such that
Fi achicves the optimal competitive ratio r.

Proof. Let 7}, denote the right-hand side in (15). Tt
is clear that ry > 7).
Given p € AF. Thus each F € Fj is static on

Dp. Let Fp be the static strategy solved in §4.1. Thus

Fp achieves the infimum infre 7, supgep, %d()d). Note

that Fp is defined only on d € Dp. Let Fi be the
aggregate of those F, for all p € A*. Thus we have



Fi(d) = Fp(d) for all d € Dy, and p € A*. Therefore,
Fy € Fi. By the definition of 7 and rg, we have

OPT(d) OPT(d)

/
T, = sup sup = sup > rg.
peakdep, Fp(d) aep Fr(d)
Thus Fy, is the required strategy. |

Note that SOS invests also according to Fjy at the

kth day. Thus SOS coincides with Fj for the first &
days.

Theorem 13 rq > ry > rg9--- > ry_1 = r, = Ts0s,
where ro and Ysos denote the competitive ratio of the
balanced strategy and SOS, respectively.

Proof. Given k € Z,. Let Fg denote the balanced
strategy. By the definition, Fg_; coincides with SOS
for the first £ — 1 days and is static for the rest. Thus
Fr_1 € Fg. Since g1 = Tp,_,, we have rp_1 > 7.

Notice that SOS coincides with F,,_ at the first n—1
days, and the on-line player has no choices at the last
day; thus F,_y = F, =SOS and r,,_1 = r, = Tsos. O

Given k € Z,_; and p € A*, we say an admissi-
ble strategy Fp, for X(m, p) is nice if it possesses the
optimality, uniqueness and balance properties (mean-
ing Fp is the unique optimal strategy for the reduced
finite request-answer game defined in (14) and Fp, bal-
ances the downturns defined in (13)). Note that the
balance condition is the same as the optimal solution
to the corresponding primal problem defined in Lemma
1 equalizing those constraints.

Let d;, for j € Z,, denote the fluctuation ratio se-
quence corresponding to the downturn e; defined in
Lemma 4. For the downturn d,,, we have an interesting
property in the following.

Property 14 When the adversary sequentially reveals
the exchange rates along the downturn d,, at each day
SOS s nice and coincides with the balanced strategy.

The proof of Property 14 is omitted.

Note that along the downturn d,, the balanced strat-
egy sequentially balances its return ratio on downturns
{dg,dk41,...,dn}. Since d, is a worst case for the
balanced strategy and it coincides with SOS on d,,, we
conclude Tgog > rg. Combine this with Theorem 13,
we have the next theorem.

Theorem 15 The competitive ratio of SOS equals that
of the balanced strategy.

Property 14 and Theorem 15 seem to suggest that
real-time information does not help improve the static
strategies on the worst cases. In the following, however,
we will illustrate a non-worst-case scenario for which
SOS is strictly better than the balanced strategy.

4.3 Performance Comparison Between the Bal-
anced Strategy and the Sequentially Optimized
Strategy on a non-worst-case scenario

We illustrate the sequential optimization process with
an example. Assume (n,k) = (6,2) and the revealed
daily fluctuation ratios are p = (#,1). Thus Y7 =

#Z—@ and D; = 1 — m. We formulate the

remaining trading problem as a request-answer game
T'k(5,5), where the payoff function is defined as

Y;

o + D07 for 4,5 € Zs.

K'(i,j) =

By Lemma 1 and Corollary 2, we solve T'k:(5,5) and

obtain the optimal competitive ratio Tgoq = %—‘f’ and

the optimal strategy SOS = [ f1,..., f5]T for X(5,p)

where
9(9—1 .
(5%—(3)_(59;—4) i=1
2(9—1)(36—2 .
fi= (56—3)(50—4) 1=2,3,4
26 (36—2) ..
(50—3)(50—4) t=9

In comparison, the competitive ratio Y, of the
balanced strategy for X(5, p) is

N —1

/ _ 1T yr1d
. 294(39—2)
TS0 +0-1

where b’ = [b, ..
1

, {—:9—_14 i=1,2,3,4
bi: 9 .
— 1=235

b5 1T and

Clearly, the dynamic strategy SOS is better than
the balanced strategy B*. Figure 4 illustrates the
competitive ratios of the balanced strategy and SOS.

Conpetitive
ratio

2.5 -7

Theta

1.2 1.4 1.6 1.8 2
Figure 4: Performance improvement over the balanced
strategy. The dashed and solid lines denote the values of
Yiar and Yhqs, respectively.



5 Conclusions and Future Work

In this paper, we presented a general solution for the
problem of deriving optimal randomized on-line algo-
rithms against the oblivious adversary. It is applicable
to any finite request-answer games. We also successfully
made use of this general strategy to derive an optimal
static buy-and-hold strategy and its competitive ratio.
Two future directions are possible from here. The first
is to characterize the payoff matrix of finite request-
answer game and systematically solve or approximate
the optimal strategy and its competitive ratio. The
second is to solve an infinite request-answer game with
game theory.
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