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OPTIMAL BUY-AND-HOLD STRATEGIES FOR FINANCIAL
MARKETS WITH BOUNDED DAILY RETURNS*
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Abstract. In the context of investment analysis, we formulate an abstract online computing
problem called a planning game and develop general tools for solving such a game. We then use
the tools to investigate a practical buy-and-hold trading problem faced by long-term investors in
stocks. We obtain the unique optimal static online algorithm for the problem and determine its
exact competitive ratio. We also compare this algorithm with the popular dollar averaging strategy
using actual market data.
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1. Introduction. In an online problem, an online algorithm B is given one
input at a time from a sequence of inputs. B takes an action on each input before
seeing any remaining input. In contrast, an offline algorithm sees the entire input
sequence before it takes any action. Each action yields a positive accumulation. Let
E denote the set of all admissible input sequences. Let C(€) denote the (expected)
total accumulation of an online or offline algorithm C on € € E. Let A denote the
optimal offline algorithm, i.e., one that produces the largest total accumulation on
each admissible input sequence. In competitive analysis [4, 25, 27], B’s performance is
measured by its competitive ratio

Ae)
1) e =S B
The online player seeks to minimize this ratio by choosing a suitable B, while the
adversary attempts to maximize it by picking € after examining B. This paper assumes
that the adversary is oblivious, i.e., it fixes the input sequence before B performs any
computation such as generating random bits.

A planning game is an abstract online problem where the length of the input
sequence is fixed and known a priori to B. This time horizon feature captures many
important online problems including those for portfolio rebalancing [7,8,21], asset
trading [2,5,11,12], secretary selection [1,6, 13, 16], and bipartite matching [15,17].
A planning game is finite if the numbers of admissible sequences of actions and inputs
are both finite; otherwise, it is infinite. A finite planning game corresponds to a linear
programming problem, where an optimal randomized online algorithm corresponds to
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Exchange | Circuit Breaker
a1 1]

Amsterdam | 90% 110%
Bangkok | 90% 110%
Paris 95% 110%
Taipei 93% 107%
Tel-Aviv 95% 110%
Tokyo | 95% | 130%
Vienna 95% 105%

Fi1c. 1. Circuit breaker rules in various exchanges.

an optimal feasible solution. Consequently, we can show that the smallest competitive
ratio of any randomized online algorithm for such a game is the reciprocal of the value
of the game as a zero-sum two-person game.

In this general optimization framework, we investigate the buy-and-hold trading
problem defined as follows. An investor starts with some capital, which is normalized
to one dollar, and trades it for a certain security over n days, which is referred to
as the investment horizon. To avoid triviality, we assume n > 2. On each day, the
security has only one exchange rate, i.e., the number of shares of the security which
one unit of capital can buy. Upon seeing the exchange rate, the investor executes one
transaction for that day and may trade all or part of the remaining capital. All the
capital must be traded by the nth day, and converting the acquired security back to
capital is prohibited. The total accumulation of the investor is the number of shares
of the security she accumulates at the end of the investment horizon. Note that the
competitive ratio between the adversary’s and the investor’s accumulations is exactly
the competitive ratio between the dollar values of the accumulations. This problem is
faced by millions of investors who save for retirement purposes on a long-term basis;
for instance, a widely popular security for today’s investors would be a stock index
fund.

We employ the bounded daily return model, in which the next day’s exchange rate
€’ depends on the current day’s exchange rate e with e/ < ¢’ < ea for some fixed
a, 3 > 1. The values n, o, and 1/ are known a priori to the investor. We call « and
1/ the daily return bounds. Figure 1 gives some stock markets which enforce such
ratios through circuit breakers. This model can also be regarded as an approximation
to the geometric Brownian motion model used extensively in the finance community
[3,9, 14,18, 20, 24, 26].

A static algorithm is an online algorithm for the buy-and-hold trading problem
such that for 1 < i < n, the (expected) amount of dollars invested by the algorithm
on the ith day is the same for all exchange rate sequences. A dynamic algorithm refers
to any online algorithm for the problem which is not necessarily static. The static
buy-and-hold trading problem refers to the case of the problem where the investor
can use only a static algorithm.

We prove that the smallest possible competitive ratio for any randomized or de-
naf—(n=1)(a+B)+(n=2)

terministic static algorithm is ap 1 . We also obtain a deterministic
static algorithm with this competitive ratio, called the balanced strategy, and prove
that it is the only optimal deterministic static algorithm. In comparison, the popular
dollar averaging strategy has a strictly greater competitive ratio and thus is not op-
timal. The balanced strategy is so simple that it can be executed even by those who
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are not mathematically sophisticated. Starting with one dollar initially, the algorithm

. a(f—1 a—1)p
invests naﬁf(nfl()(a+)ﬁ)+(n72) dollar on the first day, naﬁ7(1lfl)(a)+ﬁ)+(n72) dollar on
the last day, and (a=1)(5-1) dollar on each of the other days.

naf—(n—1)(a+pB)+(n—2)

Previously, El-Yaniv [10] and El-Yaniv et al. [11,12] obtained optimal online
algorithms for this unidirectional trading problem under the assumption that the
daily exchange rates, instead of the daily returns, are between a pair of upper and
lower bounds. Al-Binali [2] further studied the same setting in a framework of risk
and reward [19]. Our model and that of El-Yaniv et al. [11,12] are each formulated
for real but different regulations of stock and foreign currency markets. A subtle
difference between these models is that their model fixes a upper bound and a lower
bound on the daily exchange rates globally for the entire investment horizon, while our
model sets new bounds dynamically every day. Interestingly, although this difference
might seem minor, they give rise to mathematical results of very distinct flavors using
significantly different techniques.

Section 2 discusses how to compute optimal randomized online algorithms for
finite planning games. Section 3 uses the general analysis in section 2 to derive
the balanced strategy and compare it with the dollar averaging strategy. Section 4
concludes the paper with some open problems.

2. General analysis of finite planning games. A finite planning game G can
be regarded as a finite zero-sum two-person game I'yr(m,n) defined as follows. For
any integer k > 0, let Z, = {1,2,... ,k}. The maximizing player is the online player,
whose pure strategies are the deterministic online algorithms B; of G indexed with
i € Z,,. The minimizing player is the adversary of G, whose pure strategies are the
input sequences &; of G indexed with j € Z,. The payoff matrix* H of ['y(m,n) is
defined by

Bi(7)
A7)

(2.1) H(i, j) = >0, i€ Z,andje€Z,.

Let ®(Zy) be the set of all probability density functions defined on Zy. For k =n or
m, each h € ®(Zy) is regarded as a point in the k-dimensional Euclidean space and
represents a mixed strategy that applies the ¢th pure strategy indexed by Z; with
probability h(¢). By von Neumann’s minimax theorem [22],

TR 1 sz 6.0)= 208 ) 1 )sz )

=1 j=1 =1 j=1

(2.2) = max min Zf(z)H i,]

FED(Zim) j€7n <

= o )ggzgmmm,

which is called the value v* of T'g(m,n).

A(e) B(e)

Hn (1.1), we use B(5) instead of A@ so that the competitive ratios of different online algorithms

are greater than 1 and therefore are easier to distinguish visually in Figures 6 and 9. In contrast, in

(2.1), we choose LZé;?; instead of & ((ﬂ )) in order to simplify the linear algebra involved.
i
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Let 7* be the smallest possible competitive ratio of any randomized online algo-
rithm for Gj i.e.,

r* = min max (

_AlG)
FED(Zm)i€Zn Y vy f(D)Bi(55)

A randomized online algorithm is optimal if its competitive ratio is r*.
The next theorem relates G and T g (m,n).
THEOREM 2.1.
1. r* = v%
2. An optimal mized strategy of the online player of T' g (m,n) induces an optimal
randomized online algorithm for G and vice versa.
Proof. This theorem follows from (2.2). O
In light of Theorem 2.1, we use G and ' (m, n) interchangeably. A main purpose
of this paper is to derive the exact value of r* and an optimal randomized online
algorithm for G. To do so by means of Theorem 2.1, the primal and dual problems of
T'g(m,n) or G are defined as follows:

Primal: Dual:

minimize zTu,, maximize yTun

subject to  zTH > uZ, subject to Hy < Uy,
x> 0; y=>0,

where uy, is the column vector of k copies of 1.

For each j € Z,, let H7 denote the jth column of H. Moreover, let X and Y
be the sets of feasible solutions to the primal and dual problems of G, respectively.
Let X and Y be the sets of optimal feasible solutions to these problems. Let X* and
Y™ be the sets of optimal mixed strategies of the online player and the adversary,
respectively.

The next lemma is useful for computing an optimal randomized online algorithm
for G and its competitive ratio via linear programming.

LEMMA 2.2.

1. For all nonzero x € X andy €Y, - and yTyun are mized strategies for
the online player and the adversary, respectively.

2. minxex 2T Uy, =1* = maxyey y Uy,

3. X =L X#0, andY* = LY #£0.

4. For each nonzero x € X, Zf_] € Zy satzsﬁes 2THI = mmgez 2THE, then 0j

Proof. This lemma follows from Theorem 2.1 and the basics of linear programming
[22]. d

The next fact is useful for analyzing the uniqueness of an optimal randomized
online algorithm for G.

FacT 2.3 (see [23]). Foranyx € X andy €Y, x and y are extreme points of the
convex polyhedra X and Y if and only if there is a square submatric H' =
of H for some I C Z,, and J C Z,, with the following properties:

1. H’ is nonsingular.
Yicr hijri =1 forall j € J.
Zje]hijyj =1 foralliel.
Forallig I, z; =0.
Forallj & J, y; =0.

(hij)iel,jeJ

e
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The next theorem combines Lemma 2.2 and Fact 2.3 for the case m = n.

THEOREM 2.4. Assume that m = n and H™' exists. Let v = (ulH )T and
Y= H'w,,. Further assume = >0 and y>0. Let b= szun'

1. Then, x and y are optimal feasible solutions to the primal and dual problems
of G, respectively.

2. T =r* = 2Tu,, where B is the randomized online algorithm corresponding
to the online player’s mized strateqy b; in other words, B is optimal for G.

3. Forallj=1,... ,n, % = Ypg; i.e., B has the same performance relative
to the adversary’s on every input sequence.

4. If every component of x and y is strictly greater than 0, then x and y are
the only optimal feasible solutions to the primal and dual problems of G, and,
consequently, B is the only optimal randomized online algorithm.

Proof.

Statement 1. By direct verification, 2 € X and y € Y. Then, since z7u, =
(yTun)T = yTuy, by Lemma 2.2(2) 2 € X and y € Y.

Statement 2. Note that 27w, = r* by Statement 1 and Lemma 2.2(2). Then, by
Statement 1 and Lemma 2.2(3), b is an optimal mixed strategy of the online player.
Thus, this statement follows from Theorem 2.1.

Statement 3. As pointed out in Statement 2, 27w, = r*. By direct evaluation
and Statement 2 bTH = T%un = *r%g“n Then this statement follows from the fact

that by definition, the jth component of b7 H equals i((‘?] ))

Statement 4. To prove the uniqueness of B, by Theorem 2.1(2) and Lemma 2.2
(3), it suffices to show that X has a unique element. By basics of linear programming
[22], X has only a finite number of extreme points, and any element in X is a finite
convex combination of these extreme points. Thus, it suffices to show that z is the
only extreme point of X as follows. Since H ! exists,  and y are extreme points of
X and Y by Fact 2.3 with I = J = Z,. On the other hand, let z be any extreme point
of X. Since y is an extreme point of Y, there is a square submatrix H’ = (hij)iel,jeJ
of H such that z and y satisfy the five conditions in Fact 2.3. Since y; > 0 for j € Z,,,
J = Z, by Condition 5. Since H’ is square, I = Z, and H' = H. Then, by Condition

2, 2TH = ul. Since 2T H = ul, we have z = z as desired. 0

3. Optimal static algorithms. This section applies the general tools in sec-
tion 2 to the static buy-and-hold trading problem to derive the smallest possible
competitive ratio for static algorithms.

3.1. Notations. As specified in section 1, the investor in the buy-and-hold trad-
ing problem is given «, 8, and n prior to an n-day investment horizon.

For ¢ € Z,, let e; be the given security’s exchange rate on the ith day of the
investment horizon. Let ep be the exchange rate on the Oth day, i.e., the day right
before the investment horizon. Without loss of generality, we normalize eg to 1 to sim-
plify the discussion. An admissible exchange rate sequence is any € = (e, ea, ... ,ep)
where ¢; € [e; 1371, e;_1a].

As in section 1, let F denote the set of all admissible exchange rate sequences.
Let A denote the optimal offline trading algorithm. Let B be the investor’s online
trading algorithm. After the adversary examines B but before the investor starts
executing B, the adversary picks and fixes some € € E. On the ith day for i € Z,,
upon seeing e;, B decides the amount of remaining capital to be traded for shares
of the security without knowing any future exchange rate, i.e., e; with j > 4. Note
that A(€) = maxi<;<n €;, and B(€) = Y. | a;e;, where a; is the (expected) amount
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of dollars invested by B on the ith day and depends only on the current and past
exchange rate ej,es, ..., ¢€;.

For i € Z,, the algorithm S; which trades the entire initial capital of one dollar
on the ¢th day is called the trade-once algorithm on the ith day. Note that S; is static
and S@ (a = €;.

Let S be a randomized static algorithm. Let s; be the expected amount of dollars
invested by S on the ith day. Note that s; > 0 for all ¢ and ) ;" ; s; = 1. Thus, let
S’ be the deterministic static algorithm that invests s; on the ith day. Also, since
the amounts sq,... , s, define a probability density function in ®(Z,), let S” be the
randomized static algorithm that applies S; with probability s;.

LEMMA 3.1. S, 8§, and 8" are equivalent in the sense that for all € € F,
5(0) = 8'(@) = §"(?).

Proof. The proof is straightforward. ]

By Lemma 3.1, we identify S,S’, and 8”. Also, let ¥ be the smallest competitive
ratio for the static algorithms; then by Lemma 3.1,

. A(€)
(1) T bt R T PO 8@

3.2. Reduction to finite games. The static buy-and-hold trading problem
is an infinite planning game because the adversary has an infinite number of pure
strategies, while by Lemma 3.1 the online player has n pure strategies S;. In order to
use the tools in section 2, we need to reduce the game to a finite one by eliminating the
adversary’s dominated pure strategies, i.e., non-worst-case exchange rate sequences,
so that the remaining exchange rate sequences are finite in number.

Forj=1,... n,let

J n—j

o 2 i g1 Aig—2 | 39—
ej:<a,a,...,a],a3ﬁ 7ajﬁ ,...,O[‘jﬁ‘] n)

We call these n exchange rate sequences the downturns; see Figure 2 for an illustration.

LEMMA 3.2.
1. Given a static algorithm S, each € € E is dominated by downturn €j, i.e.,
A@E)  A&)

@ < 5@ where e; = max;__; ;.
J
2. The smallest competitive ratio for the static algorithms is

r; = inf max Al —.
ree(z.) 1<i<n 350 f(@) Si(€5)
3. The static buy-and-hold trading problem can be regarded as a finite zero-sum
two-person game ' (n,n) with the payoff matriz K defined by K (i,j) = a*~J
ifi <jorBFTVifi> g, de.,

1 al a2 al”

g1 1 a ! o~

K — ﬂ72 ﬁfl 1 asf
ﬂlfn 62771 53711 .. 1

Proof. Statement 1 follows from the fact that ZJ <ol 7tifi<jand L < B
otherwise. Statement 2 follows from (3.1) and Statement 1. For Statement 3, we
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Fi1G. 2. The downturns.

let S; be the online player’s ith pure strategy and let &; be the adversary’s jth pure

strategy. As in section 2, the payoff matrix K is defined by K(i,j) = ‘i((gj)) The
statement then follows from the facts that A(€;) = o/ and that S;(€;) = o’ if i < j
or o/ 377" otherwise. a

In light of Lemma 3.2, an optimal mixed strategy of the online player of 'k (n,n)
corresponds to an optimal static algorithm. Thus, we next solve I'k(n,n) to derive
an optimal static algorithm.

3.3. Deriving an optimal static algorithm.

LEMMA 3.3. Forn >2, det(K) = (1—a 181" 1 > 0.

Proof. We use K,, to emphasize the dimension n of K. Let A;; be the submatrix
of K, obtained by deleting row i and column j. To expand det(K,) along the first
row of K,,, observe that A;; = K, _;. Furthermore, the first column of A5 equals
B! times that of Ay;, while the other columns of A5 equal the corresponding ones
of Aq1; thus det(A12) = B tdet(Ayy). For j = 3,...,n, det(A4;;) = 0 because
in Ay, the first column equals 3! times the second column. Hence, det(K,) =
det(A11)—a "t det(An) = det(K, 1)—a 187 1det(K, 1) = (1—a 137 1) det(K, 1).

The lemma immediately follows by induction on n. ]
Let b* be the column vector of n components defined by
a(f-1) R
naf—(n—1)(a+pB)+(n—2)" t= 1’
(3:2) b; = nagf(,(:l,ill)(ﬂil) 1<i<my

T =n.

Y@+ B)+(n-2)
(a=1)8
naf—(n—1)(a-+B)+(n-2)

Since b* > 0 and b*Tu, = 1, b* represents a mixed strategy of the online player.
Therefore let BAL denote the static algorithm which applies S; with probability b}
note that by Lemma 3.1, BAL is equivalent to the deterministic static algorithm which
invests b} dollars on the ith day. Let ¢* be the vector obtained by swapping the first
and nth components of b*. Similarly, ¢* > 0 and ¢*Tu, = 1, and we intend ¢* to
represent, a mixed strategy of the adversary.

The next theorem analyzes BAL. In light of Statement 3 of the theorem, we call
BAL the balanced strategy.
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THEOREM 3.4. Letr = ”“ﬂ_("_i)éatﬁ)“"_z).
1. BAL is an optimal static algorithm, and YgarL =r; = 1.
2. BAL is the only optimal static algorithm subject to the equivalence stated in
Lemma 3.1. .
3. Forj=1,... ,n,%
mance relative to the adversary’s on every downturn.

Proof. Let b = rb*, and ¢ = r¢*. By Lemma 3.3, K ! exists. Below we prove
b" = ' K~! and & = K~'u,. Then, Statement 1 follows from Theorem 2.4(2) and
the fact that b > 0, ¢ > 0, and b u,, = r. Statement 2 follows from Theorem 2.4(4)
and the fact that every component of b and ¢ is greater than 0. Statement 3 follows
from Theorem 2.4(3)

To prove bT = vIK ! and ¢ = K lu,, observe that ¢ can be obtained by
swapping « and 3 in b, and the jth column K7 of K can be obtained from the jth
row of K by the same operation. Therefore, b' K = ul' if and only if Ké = u,, and
we need only to establish b7 K = ul. Since T K! = 1 if and only if 57 K™ = 1, we
show only b7 K7 =1 for 1 < j < n as follows:

= TgaL; in other words, BAL has the same perfor-

VKT = biK (i, )
1=1

- a@lf [ [eB-1at + zjq(a — (B8~ 1)a"
+ D0 (a=1(B- DT+ (a - 1B
1 2-; 2—j
=g T @B D+(@-a"E-1)
o= L= ) + (o= )T
1
=511
=1. 0

3.4. Comparison with the dollar averaging strategy. The dollar averaging
strategy (DA) is the static algorithm which invests an equal amount of capital, i.e., 1/n
dollars, on each trading day. Thus, by Lemma 3.1, DA is the uniformly mixed strategy
for the online player in the game ' (n,n). By Theorem 3.4, DA is not an optimal
static algorithm, and Ygar, < Ypa. The next lemma gives a closed-form formula of
Tpa- Figure 3 plots the relationship between Tpa and Ygar, for 2 < n < 100.

LEMMA 3.5. Tpa = max{ ™) nA-f 0y

Proof. Let B; =% " | K(i,7). By Lemma 3.2, Tpa = maxi<j<p B%-‘ By algebra,
Bjt1 — Bj is a decreasing function of j. Thus, B; is a function of j whose minimum
occurs at one end of the domain {1,... ,n}. The lemma follows from this concavi-
ty. 0

We have also experimented with BAL and DA using Taiwan’s market data. As
shown in Figure 1, the Taipei Stock Exchange (TSE) adopts o = 1/0.93 and 8 = 1.07.
We select the Taiwan Semiconductor Manufacturing Company (TSMC) and Acer
Computer Company (Acer) for experimental analysis. TSMC is the largest foundry
of wafer manufacturing in the world and is listed on both TSE and the New York
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Fic. 3. The dashed and solid dotted lines denote Ypa and YTparL, respectively, with o = 1/0.93
and 3 = 1.07.
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Fic. 4. TSMC’s daily closing stock prices in 1997.

Stock Exchange (NYSE) under the symbol TSM. Acer is the world’s third largest PC
manufacturer as well as the fifth largest mobile PC manufacturer.

Figure 4 shows the daily closing prices of TSMC in 1997. All stock prices are
quoted in the New Taiwan dollar (NT dollar). One investment plan is executed each
month. Each plan buys shares of TSMC with an initial capital of one NT dollar
as in section 3; however, the exchange rate of a day is the reciprocal of that day’s
share price without an initial normalization to one. A monthly accumulation is the
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Fic. 5. Accumulations of BAL and DA on TSMC.
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FI1G. 6. Realized competitive ratios of BAL and DA on TSMC.

total number of shares acquired over a month. For ease of comparison, a monthly
accumulation is expressed in NT dollar by converting the acquired shares into NT
dollars at the price of the last trading day of each month. Figure 5 shows the monthly
accumulations of BAL and DA on TSMC for each month of 1997. Notice that BAL
and DA are money-making except in September, October, and December. Figure
6 shows the realized competitive ratios of BAL and DA, which are the performance
ratios as defined in (1.1) but with € set to the actual exchange rate sequences. Note
that for all 12 months, these ratios are less than 1.35. For visual clarity, we join the
monthly accumulations and competitive ratios by line segments and use the solid and
dotted lines to denote the graphs of BAL and DA, respectively. Observe that, overall,
BAL outperforms DA.
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FiG. 7. Acer’s daily closing stock prices in 1997.
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Fia. 8. Accumulations of BAL and DA on Acer.

Figure 7 shows the daily closing prices of Acer in 1997. Figures 8 and 9 show the
monthly accumulations and realized competitive ratios of BAL and DA, respectively.
The experimental results for Acer lead to similar conclusions to those for TSMC.

4. Open problems. We have presented the balanced strategy BAL and proved
its unique optimality among the static algorithms. Furthermore, each of its exact
competitive ratio and daily investment amounts has a closed-form expression which
takes O(1) time to evaluate. In light of these results, an immediate open problem is
whether there are similar results for dynamic online trading algorithms. There are
two orthogonal directions for further research as follows.

One direction is to change the assumption that the time horizon is fixed and
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Conpetitive
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F1G. 9. Realized competitive ratios of BAL and DA on Acer.

known a priori to B. For instance, it would be meaningful to consider the scenario
that there is a cash stream instead of a one-time capital at the beginning of the
investment horizon. For this scenario, an investor might need to guess when the cash
stream will end.

The other direction is to replace a and 8 with a known probability distribution
of the ratio % This would be an example of the standard approach in finance of con-
sidering the average-case performance under an assumed probabilistic model. While
the worst-case approach in computer science is unnecessarily pessimistic, the average-
case approach in finance is overly dependent on the chosen model. In general, it
would be of interest to combine these two approaches to formulate more informative
computational problems than either approach could.

Acknowledgment. We wish to thank the anonymous referees for very thought-
ful comments. Some of the comments have resulted in open problems in section 4.

REFERENCES

[1] M. AyTAl, N. MEGIDDO, AND O. WAARTS, Improved algorithms and analysis for secretary prob-
lems and generalizations, in Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, WI, 1995, pp. 473—482.

[2] S. AL-BINALL, The competitive analysis of risk taking with application to online trading, in
Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science,
Miami Beach, FL, 1997, pp. 336—-344.

[3] M. BAXTER AND A. RENNIE, Financial Calculus: An Introduction to Deriwative Pricing, Cam-
bridge University Press, Cambridge, UK, 1996.

[4] A. BoropIN AND R. EL-YANIV, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, UK, 1998.

[5] A. CHou, J. COOPERSTOCK, R. EL-YANIV, M. KLUGERMAN, AND T. LEIGHTON, The statis-
tical adversary allows optimal money-making trading strategies, in Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1995,
pp. 467 476.

[6] Y. S. CHow, S. MoRIGUTI, H. ROBBINS, AND S. M. SAMUELS, Optimal selection based on
relative rank (the secretary problem), Israel J. Math., 2 (1964), pp. 81-90.



[8]
[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

18]
[19]
[20]
(21]

[22]
23]

[24]
[25]
[26]

[27]

H

o IOH

P.

J.

OPTIMAL BUY-AND-HOLD STRATEGIES 459

. COVER AND E. ORDENTLICH, Universal portfolios with side information, IEEE Trans. Inform.
Theory, 42 (1996), pp. 348—-363.

. M. COVER, Universal portfolio, Math. Finance, 1 (1991), pp. 1-29.

. DUFFIE, Dynamic Asset Pricing Theory, Princeton University Press, Princeton, NJ, 1996.

. EL-YANIV, Competitive solutions for online financial problems, ACM Comput. Surveys, 30
(1998), pp. 28-69.

. EL-YANiv, A. Fiar, R. M. KArp, AND G. TurpPIN, Competitive analysis of financial games,
in Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science,
Pittsburgh, PA, 1992, pp. 327-333.

. EL-Yanrv, A. Fiat, R. M. KArp, AND G. TURPIN, Optimal search and one-way trading
online algorithms, Algorithmica, 30 (2001), pp. 101-139.

FREEMAN, The secretary problem and its extensions, Internat. Statist. Rev., 51 (1983),

pp. 189-206.
HuLL, Options, Futures, and Other Derivatives, 3rd ed., Prentice-Hall, Upper Saddle River,
NJ, 1997.

M. Y. KAaOo AND S. R. TATE, Online matching with blocked input, Inform. Process. Lett., 38

(1991), pp. 113-116.

M. Y. KAOo AND S. R. TATE, On-line difference mazimization, in Proceedings of the Eighth

Annual ACM-STIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 175—
182.

R. M. KaArp, U. V. VAZIRANI, AND V. V. VAZIRANI, An optimal algorithm for on-line bipartite

matching, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, 1990, pp. 352-358.

Y. D. Lyuu, Financial Engineering and Computation: Principles, Mathematics, Algorithms,

E

L.

Cambridge University Press, Cambridge, UK, 2001.
. R. MACCRrRIMMON AND D. A. WEHRUNG, Taking Risks: The Management of Uncertainty,
Free Press, New York, 1986.

. N. NEFTCI1, An Introduction to the Mathematics of Financial Derivatives, Academic Press,

New York, 1996.

. ORDENTLICH AND T. COVER, On-line portfolio selection, in Proceedings of the Ninth Confer-

ence on Computational Learning Theory, Desenzano del Garda, Italy, 1996, pp. 310-313.
A. PETROSJAN AND N. A. ZENKEVICH, Game Theory, World Scientific, Singapore, 1996.

T. RAGHAVAN, Zero-sum two-person games, in Handbook of Game Theory, Vol. 2, R. Aumann

and S. Hart, eds., North-Holland, Amsterdam, 1994, pp. 735-768.

W. F. SHARPE, G. J. ALEXANDER, AND J. V. BAILEY, [nvestments, 5th ed., Prentice-Hall,

D

Upper Saddle River, NJ, 1995.
. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules, Comm.
ACM, 28 (1985), pp. 202-208.

P. WiLmorT, S. HOWISON, AND J. DEWYNNE, The Mathematics of Financial Derivatives,

A

Cambridge University Press, Cambridge, UK, 1995.
. C. C. Yao, New algorithms for bin packing, J. ACM, 27 (1980), pp. 207—227.



