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Abstract

The GARCH model has been very successful in capturing the serial corre-
lation of asset return volatilities. As a result, applying the model to options
pricing attracts a lot of attention. However, previous tree-based GARCH op-
tion pricing algorithms suffer from exponential running time, a cut-off maturity,
inaccuracy, or some combination thereof. Specifically, this paper proves that
the popular trinomial-tree option pricing algorithms of Ritchken and Trevor
(1999) and Cakici and Topyan (2000) explode exponentially when the number
of partitions per day, n, exceeds a threshold determined by the GARCH pa-
rameters. Furthermore, when explosion happens, the tree cannot grow beyond
a certain maturity date, making it unable to price derivatives with a longer
maturity. As a result, the algorithms must be limited to using small n, which
may have accuracy problems. The paper presents an alternative trinomial-
tree GARCH option pricing algorithm. This algorithm provably does not have
the short-maturity problem. Furthermore, the tree-size growth is guaranteed
to be quadratic if n is less than a threshold easily determined by the model
parameters. This level of efficiency makes the proposed algorithm practical.
The surprising finding for the first time places a tree-based GARCH option
pricing algorithm in the same complexity class as binomial trees under the
Black-Scholes model. Extensive numerical evaluation is conducted to confirm
the analytical results and the numerical accuracy of the proposed algorithm.
Of independent interest is a simple and efficient technique to calculate the
transition probabilities of a multinomial tree using generating functions.
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1 Introduction

Efficient numerical algorithms play a critical role in derivatives pricing because it is of-

ten imperative to obtain prices fast, particularly when prices change quickly. In both

theory and practice, computational efficiency is measured in terms of running time.

Two types of algorithms are usually distinguished: polynomial-time algorithms and

exponential-time algorithms (Papadimitriou (1995)). Because the exponential func-

tion grows extremely fast, exponential-time algorithms highlight the tradeoff between

accuracy and speed much earlier than polynomial-time algorithms. Exponential-time

algorithms are therefore said to suffer from combinatorial explosion and should be

avoided wherever possible.

In the numerical pricing of derivatives, the continuous diffusion process for the

asset price is often discretized to yield a tree first. Derivatives are then priced on the

tree by standard backward induction. The lognormal diffusion, for instance, gives

rise to the well-known CRR binomial tree of Cox, Ross, and Rubinstein (1979). Two

critical features of the CRR tree, as well as its many binomial and trinomial variants,

stand out: It recombines and an N -period tree contains only O(N2) nodes; i.e., it

exhibits a quadratic growth (see Fig. 1). As a consequence, simple derivatives such

as vanilla options, barrier options, and lookback options can be efficiently priced as

surveyed in Lyuu (2002). However, a polynomial-sized tree may still give rise to an

exponential-time pricing algorithm if the derivative’s payoff is complex. The Asian

option with a payoff depending on the arithmetic price average fits this characteri-

zation. Specifically, the vast number of extra states (the running averages) needed

by the Asian option’s path-dependent feature makes pricing on an N -period tree

take time exponential in N . Approximations are mandatory for such derivatives to

regain efficiency. Of course, approximation algorithms must not sacrifice accuracy.

Important numerical techniques include the tree method with interpolation such as

Hull and White (1993a), the PDE method such as Forsyth, et al. (2002), and the

linear-programming technique such as Dempster and Richards (2000).

A fundamentally more difficult problem emerges when the explosion arises from

the model itself. If the model generates trees that do not recombine, pricing is ex-

pensive even for the simplest of derivatives like vanilla options. For example, when

the volatility is not a constant, such as the interest rate model of Cox, Ingersoll, and

Ross (1985), a brute-force discretization leads to exploding binomial trees that do not

recombine. The problem may be rectified by the standard technique of Nelson and

Ramaswamy (1990) that transforms the diffusion process into one with a constant

volatility. But this methodology does not guarantee to do away with combinatorial

explosion when the diffusion process is bivariate. For example, Chien (2003) demon-

strated that the bivariate interest rate tree of Ritchken and Sankarasubramanian

(1995) can explode exponentially even after the said transformation. The focus of
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Figure 1: Binomial tree. Each node has two successor nodes. The number of nodes

at any time t is t + 1, a linear growth in time. The total number of nodes of an

N -period binomial tree is
∑N

t=0(t + 1) = (N + 2)(N + 1)/2 = O(N2), a quadratic

growth in maturity N .

this paper, the tremendously influential generalized autoregressive conditional het-

eroskedastic (GARCH) model, is also bivariate.

Bollerslev (1986) and Taylor (1986) independently proposed the GARCH process

for modeling the stochastic volatility of asset returns. Since then, the model has been

generalized and used extensively in the finance literature on the modeling of financial

time series; see Bollerslev et al. (1992) and Engle and Patton (2001). As the model

has received strong empirical support, its application to option pricing draws a lot of

attention. Duan (1995) was the first to propose a GARCH option pricing model. The

massive path dependency of the pricing model initially favors Monte Carlo simulation

over trees. But the Monte Carlo estimate is probabilistic; furthermore, options that

can be exercised early, the so-called American options, can be accurately priced only

with simulation schemes that employ advanced techniques. The appearance of the

trinomial tree of Ritchken and Trevor (1999) addresses these problems and makes a

strong case for trees. Their algorithm is simple and claims to be accurate and efficient.

It is also general enough to work beyond GARCH models. GARCH option pricing

techniques that are not based on trees include the Markov chain approximation of

Duan and Simonato (2001), the Edgeworth tree approximation of Duan et al. (2002),

and analytical approximations as in Heston and Nandi (2000). Among them, only

the Markov chain approximation approach is capable of handling American options.

This paper first investigates the performance of the Ritchken-Trevor algorithm

and its modified version by Cakici and Topyan (2000). The findings are mixed, both

theoretically and numerically. We prove that the Ritchken-Trevor-Cakici-Topyan

(RTCT) algorithm can easily result in exponential-sized trees. This theoretical result

is decisively backed up by numerical data. Interestingly, the simple condition for the

combinatorial explosion mirrors that for GARCH to be nonstationary and is satisfied

when the number of partitions per day, n, exceeds a typically small number. RTCT

is hence efficient only if it is restricted to small n. But a small n does not guarantee
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efficiency; in fact, even the smallest possible choice n = 1 can result in explosion

under some circumstances. A small n can also yield inaccurate option prices. We

note that the Cakici-Topyan algorithm is incompletely specified (see Section 4).

Even though raising n to improve accuracy will quickly incur exponential slow-

down, one may be willing to trade efficiency for accuracy. (For example, the slow

exponential-time algorithm can be run overnight on spare computers to obtain prices

for situations likely to happen on the next trading day.) But this sensible practice

turns out to be impossible for RTCT. Specifically, we prove that when explosion

occurs, the RTCT tree cannot grow beyond a certain maturity, making it useless for

pricing derivatives with a longer maturity. Numerical data again back up this analyt-

ical result. The strong impossibility result obliterates the tradeoff between accuracy

and efficiency for exploding RTCT trees. The loss of this tradeoff can be devastating

if the permissible n’s fail to give accurate prices. The result also throws into question

some of the calculated prices in Ritchken and Trevor (1999).

This paper then proposes a new trinomial-tree GARCH option pricing algorithm

that addresses the above-mentioned shortcomings of RTCT. In a trinomial tree, the

three successor nodes of each node must be such that their stock prices match the

mean and variance of the model’s stock price asymptotically. The three branches must

also carry valid branching probabilities. It is obvious that the higher the volatility,

the wider the nodes must be spaced to meet the requirements. The RTCT tree, like

typical trinomial trees, takes a flat middle branch from each node as in Fig. 2(a). Our

new tree departs from that by making the middle branch track the expected stock

price as closely as possible as in Fig. 2(b). Therefore, we call it the mean-tracking

(MT) algorithm. By tracking the mean, the two flanking branches are expected to

fan out less in their attempt to match the mean and variance of the next stock price.

This in turn yields more compact trees. Although the mean-tracking idea works for

any model, the effects are most striking for models with a stochastic volatility such

as GARCH. The above argument is both intuitively appealing and provably true as

this paper shows.

MT solves the short-maturity problem of RTCT. As a result, it accepts any

n without having to worry about the tree being cut short. The tradeoff between

efficiency and accuracy is thus restored. Because an exponential-sized tree consumes

so many resources, one may want to be assured that they are not building one before

committing the efforts. But is there a bound on n which guarantees a polynomial-

sized MT tree? Indeed, such a bound exists and is surprisingly simple. Perhaps

even more unexpectedly, the MT tree’s size is only quadratic in maturity if n does

not exceed that bound. MT is therefore the first tree-based GARCH option pricing

algorithm that is provably efficient. Interestingly, this result places MT in the same

complexity class as CRR under the much simpler Black-Scholes model. A level of
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(a) (b) (c)

Figure 2: Trinomial tree. (a) Three successor nodes follow each node. How widely

the two flanking branches fan out around the middle branch depends critically on

volatility. (b) The middle branch may maintain a drift to minimize that width. (c)

When the vertical node spacing is a constant, the number of nodes at any time t is

2t + 1, a linear growth. The total number of nodes of an N -period trinomial tree is

thus
∑N

t=0(2t + 1) = (N + 1)2 = O(N2), a quadratic growth in maturity N .

efficiency like this opens up opportunities for the practical use of MT in pricing.

The proof of the theoretical results requires only elementary techniques. Numerical

experiments demonstrate that a small n gives accurate results. They also definitively

confirm the quadratic node count.

In a general sense, the concept of mean tracking is not entirely new to the liter-

ature. Numerical pricing techniques that remove the growth trend in the asset price

can be said to adopt mean tracking, if only vaguely or implicitly at that. The idea,

for instance, is explicit in the algorithms of Hull and White (1993b) and Li et al.

(1995). Both works deal with the calibration of no-arbitrage interest rate models.

The advantages of mean tracking in reducing complexity, however, have not been

analytically explored until recently. For instance, Dai and Lyuu (2004) applied the

mean-tracking idea to develop the first exact trinomial-tree Asian option pricing al-

gorithm that breaks the long-standing 3N time barrier with a provable running time

of 3O(
√

N), where N is the number of periods of the tree.

Because the numerical performance of the Cakici-Topyan (CT) version of the

GARCH option pricing algorithm is slightly superior to that of the Ritchken-Trevor

(RT) version, we will compare MT with CT in the numerical valuation of option

prices. Our theoretical results on explosion and the shortened maturity of exploding

trees apply to both RT and CT. Therefore, we will simply refer to both as RTCT in

the analysis.

The paper is organized as follows. The GARCH model is presented in Section 2.

Section 3 reviews the RTCT tree from which the MT tree derives. Several differences

between the two will be pointed out along the way. A very simple and efficient way

to calculate the transitional probabilities using generating functions is also presented

there. Section 4 covers backward induction with interpolated volatilities, which are
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needed to reduce the state space. In Section 5, a condition for the RTCT tree to

explode exponentially is stated and proved. The nonexistence of the tradeoff between

efficiency and accuracy for the exploding RTCT tree is proved in Section 6. Section 7

provides numerical data to back up the theoretical results and other negative claims

regarding RTCT. Section 8 presents and analyzes MT. Section 9 proves that the

MT tree grows only quadratically when n does not exceed a simple bound. Section

10 evaluates the various GARCH option pricing algorithms numerically. Section 11

concludes.

2 The GARCH model

Let St denote the asset price at date t and ht the conditional volatility of the

return over the (t + 1)th day [ t, t + 1 ]. Here, “one day” is just a convenient term

for any elapsed time ∆t. The following risk-neutral process for the logarithmic price

yt ≡ ln St is due to Duan (1995):

yt+1 = yt + r − h2
t

2
+ htεt+1, (1)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (2)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return.

The model is bivariate as its state is described by (yt, h
2
t ). Updating rule (2) for the

squared volatility, due to Engle and Ng (1993), is also called the nonlinear asymmetric

GARCH or NGARCH for short. Other GARCH models are surveyed in Duan (1997).

A positive c represents a negative correlation between the shock for the asset

return and its conditional volatility. We assume β0, β1, β2 ≥ 0 to make the squared

volatilities h2
t positive. We further impose β1+β2 < 1 to make the model stationary.

The violation of a version of this inequality will be shown to make the RTCT tree

explode. Specifically, explosion occurs when β1+β2n > 1 given c = r = 0 (the general

case of nonzero c and/or c is similar, but the explicit formula is complex). In contrast,

the MT tree grows only quadratically in maturity when n ≤ (
√

1−β1

β2
− c)2. Note that

when c = 0, this bound becomes β1 + β2n ≤ 1, the exact complement of the bound

for RTCT to explode. Hence both bounds are optimal in a sense. Throughout the

paper, N will denote the maturity of the tree in days, which is also the maturity of

the option to be priced by the tree.
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3 The RTCT Tree

The RTCT trinomial tree approximates the continuous-state GARCH process with

discrete states as follows. Each state is represented as a node. Partition a day into

n periods. Three states follow each state (yt, h
2
t ) after a period. As the trinomial

tree recombines, 2n + 1 states at date t + 1 follow each state at date t. Let γ = h0

and γn = γ/
√

n . (Our theoretical results will turn out to be independent of how γ

is picked. Later, MT will choose a different γ for numerical reasons.) The tree is laid

over nodes that are spaced by γn in their logarithmic prices as depicted in Fig. 3(a).

Consequently, the logarithmic price yt on each node equals y0 + kγn for some integer

k.

(yt, h
2
t )

6
?
γn

6

?

ηγn

-¾ 1 period-¾ 1 period

(a) (b)

Figure 3: Jump parameter η and jump size ηγn. (a) The tree is laid over

a lattice whose vertically adjacent nodes are spaced by γn. (b) The two flanking

branches fan out around the middle branch to reach the two nodes that are η nodes

away from the center. Although 2(η− 1) hollow nodes are not reached from the node

on the left, they may be reached from other nodes. Here η = 3.

We next pick the jump size for state (yt, h
2
t ). The jump size determines how much

the state’s three successor states are spaced. As emphasized earlier, the magnitude

of the jump size depends on the volatility ht. By the geometry of the tree, the jump

size must be some integer multiple η of γn. We call η the jump parameter. The

jump parameter measures how much the two flanking branches fan out around the

middle branch. It must be large enough for the three branches to match the mean

and variance of yt+1. The three nodes one period hence extend over 2η + 1 nodes

(inclusively), and inductively the 2n + 1 nodes from (yt, h
2
t ) at date t + 1 extend

over 2nη + 1 nodes (inclusively). See Fig. 3(b) for illustration. The larger the jump

parameter η, the larger the tree because it extends over more nodes. The middle

branch of the RTCT tree leaves the underlying asset’s price unchanged. In contrast,

the MT tree lets the middle branch track the mean of yt+1, i.e., yt + r − (h2
t /2).
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This idea will result in a smaller jump parameter η, thus yielding a more compact

tree. Figure 4 illustrates a 1-day trinomial tree with each day partitioned into n = 3

periods.

(yt, h
2
t )

6

?
ηγn

-¾1 period

-¾ 1 day

Figure 4: RTCT trinomial tree for daily logarithmic price yt for the duration

of one day. A day is partitioned into n = 3 periods, and the jump size is ηγn. The

7 values on the right approximate the distribution of yt+1 given (yt, h
2
t ). Recall from

Fig. 3 that there are η − 1 nodes (which are not drawn), between any two vertically

adjacent (black) nodes.

The probabilities for the up, middle, and down branches are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (3)

pm = 1− h2
t

η2γ2
, (4)

pd =
h2

t

2η2γ2
− r − (h2

t /2)

2ηγ
√

n
. (5)

As the branching probabilities are picked to match the mean and variance of yt+1

given (yt, h
2
t ) asymptotically, the tree converges to the continuous-state model (1).

From Eqs. (3)–(5), it is not hard to verify that valid branching probabilities exist

(i.e., 0 ≤ pu, pm, pd ≤ 1) if and only if

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(
1− | r − (h2

t /2) |
2ηγ

√
n

,
1

2

)
. (6)

The node count can be reduced by a factor of n by getting rid of the intraday

nodes. The result is a (2n + 1)-nomial tree as in Fig. 5; it is multinomial with

2n + 1 branches from every state (yt, h
2
t ). These 2n + 1 successor nodes extend over
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2nη + 1 nodes (inclusively). This multinomial tree is the building block of the RTCT

tree. Numerical data will demonstrate that although only 2n + 1 of those 2nη + 1

nodes are immediately reachable from (yt, h
2
t ), the overwhelming majority of those

2nη + 1 nodes are reachable from the root state (y0, h
2
0). The implication is that the

overwhelming majority of the nodes extended over by the RTCT tree are occupied

by reachable states.

(yt, h
2
t )

A

6

?
ηγn

-¾ 1 day

Figure 5: RTCT multinomial tree for daily logarithmic price yt for the

duration of one day. This heptanomial tree is the outcome of the trinomial tree in

Fig. 4 after removing its intraday nodes. Recall that n = 3. In general, we infer from

Fig. 3 that there are 2nη +1 nodes at date t+1 between the top and bottom nodes

(inclusive) spaced γn apart, but only 2n+1 of which are reachable from (yt, h
2
t ) and

drawn above. The overwhelming majority of those 2n(η − 1) nodes not drawn are

reached from the root state as will be demonstrated by numerical data later.

Updating rule (2) must be modified to reflect the adoption of the discrete-state

tree model. State (yt, h
2
t ) at date t is now followed by state (yt + `ηγn, h

2
t+1) at date

t + 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (7)

ε′t+1 =
`ηγn − (r − h2

t /2)

ht

,

` = 0,±1,±2, . . . ,±n.

We will call the resulting tree the full RTCT tree. For example, node A in Fig. 5

contains state (yt+1, h
2
t+1), where

yt+1 = yt + (−1)ηγn,

h2
t+1 = β0 + β1h

2
t + β2h

2
t

{
(−1)ηγn − [ r − (h2

t /2) ]

ht

− c

}2

.
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As part of a larger RTCT tree, node A may contain other states which are reached

from states other than (yt, h
2
t ).

From the underlying trinomial model, the transition from state (yt, h
2
t ) to state

(yt + `ηγn, h2
t+1) happens with probability

P (`) ≡
∑

ju,jm,jd

n!

ju! jm! jd!
pju

u pjm
m pjd

d , (8)

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd. This seemingly compli-

cated formula for probabilities P (`) can be calculated very efficiently with the simple

generating-function technique in Lyuu (2002) as follows. Note that

(pux + pm + pdx
−1)n =

n∑

`=−n

P (`) x`.

Therefore, we can multiply out (pux+pm+pdx
−1)n and then retrieve the probabilities

P (`) by reading off the coefficients of the powers of x. The computation takes O(n2)

steps. Compared with the complex formula (8), the generating-function approach is

straightforward and stable.

As volatility ht changes through time, we may have to pick different jump pa-

rameters η for different states so that all branching probabilities pu, pm, and pd

lie between 0 and 1. This entails varying jump sizes. As the necessary requirement

pm ≥ 0 implies

η ≥ ht/γ, (9)

RTCT goes through

η = dht/γ e, dht/γ e+ 1, dht/γ e+ 2, . . . (10)

until valid probabilities are obtained or until their nonexistence is confirmed by in-

equalities (6). The latter case means the tree cannot grow further. Later proofs

depend critically on noting that the magnitude of η grows at least as fast as ht by

virtue of inequality (9). Hence when ht grows exponentially, the resulting tree must

do likewise.

Every node at date t on the tree carries a different logarithmic price yt. However,

more than one path from the root state (y0, h
2
0) may lead to the same node, each

yielding a different squared volatility h2
t . The number of possible values of h2

t at a

node thus equals the number of paths reaching the node. Each h2
t picks its own jump

parameter η. Figure 6 depicts a 3-day tree with n = 1. Nodes A and B each have one

h2
t , whereas node C has two. The h2

t at nodes A and B pick the same jump parameter

η = 2, whereas the two h2
t at node C pick different jump parameters η = 1, 2. The

overall tree structure is irregular because of the varying jump parameters. Hollow

nodes in Fig. 6 are not occupied because they are unreachable from the root state
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(y0, h
2
0). As will be shown later, their count is minuscule. This outcome is expected

by observing node C. Although the three branches from node A do not reach node

C, node C is nevertheless reached from the two nodes below node A. Another factor

contributing to making unreachable nodes few is the fact that most nodes contain

more than one squared volatility h2
t . If these squared volatilities pick different jump

parameters such as those at nodes C and D, more than three branches will emanate

from the node. More branches make more nodes reachable.

(y0, h
2
0)

A

B

C

D

6

?
γn = γ1

-¾ 3 days

Figure 6: Geometry of a 3-day RTCT tree. A day is partitioned into n = 1

period. Nodes A and B have a jump parameter of 2. Nodes C with two h2
t and D

with three h2
t have two jump parameters: 1 and 2. All other nodes have a jump

parameter of 1. Hollow nodes are not reachable from the root state (y0, h
2
0).

4 Interpolated Volatilities and Backward Induc-

tion

The number of possible volatilities ht at a node equals the number of paths reaching

it. An algorithm that keeps all of these volatilities cannot be efficient as their count is

exponential. Therefore, the full RTCT tree (7) must be approximated. The standard

approximation methodology by Hull and White (1993a) and Ritchken, Sankarasubra-

manian, and Vijh (1993) is adopted by both RTCT and, later, MT. The actual RTCT

tree now keeps only the maximum volatility hmax and the minimum volatility hmin
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hmax ...
ht ...

hmin

...
ht+1

...

-

Figure 7: Case where maximum volatility follows an interpolated volatility.

The maximum volatility ht+1 at the node on the right follows interpolated volatility

ht.

at each node. It then creates K − 2 volatilities between hmin and hmax (what values

these volatilities assume will be elaborated soon). Let us call these K − 2 volatilities

interpolated volatilities because they are not the results of actually following updat-

ing rule (7). Instead, they are artificial volatilities generated via interpolation. The

number of volatilities per node is now a constant K.

CT and RT differ in the way they calculate hmin and hmax at each node. RT

calculates them with the interpolated volatilities taken into consideration. This means

that every node at date i generates 2n + 1 volatilities for each of its K volatilities via

the updating rule. The number of volatilities generated per node is hence K(2n + 1).

These volatilities together with their associated branches then determine the hmin and

hmax at every node at date i + 1. CT, on the other hand, calculates hmin and hmax in

the tree-building process without the interpolated volatilities. This means that every

node at date i generates 2n+1 volatilities for each of its two volatilities hmin and hmax

via the updating rule. The number of volatilities generated per node is hence only

2(2n + 1). These volatilities together with their associated branches then determine

the hmin and hmax at every node at date i + 1. Both CT and RT use interpolated

volatilities in backward induction.

The interpolated volatilities between hmin and hmax at a node are artificial because

they are not the results of applying updating rule (7) starting from the root state

(y0, h
2
0) at time 0. For the same reason, hmin and hmax in CT are not artificial as they

are the results of following chains of updating rule without interpolation. For RT,

even hmin and hmax may be artificial if they are the results of applying the updating

rule to interpolated volatilities of the previous date (see Fig. 7 for illustration).

In RTCT, the K squared volatilities at a node are equally spaced between h2
min

and h2
max:

h2
min + j

h2
max − h2

min

K − 1
, j = 0, 1, 2, . . . , K − 1.

We call it the linear interpolation scheme. A different distribution will be used by MT.
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hmax ...
ht ...

hmin

¾

...
ht+1

...

Figure 8: Backward induction. Volatility ht+1 follows ht by the updating rule.

Because ht+1 does not match any interpolated volatility, its corresponding option

value is found by interpolating from the two option values whose volatilities bracket

it.

To be specific, the K logarithms of squared volatilities are equally spaced between

ln h2
min and ln h2

max in MT; they are

exp

[
ln h2

min + j
ln h2

max − ln h2
min

K − 1

]
, j = 0, 1, 2, . . . , K − 1.

Smaller volatilities are thus sampled more finely than larger volatilities. We call it

the log-linear interpolation scheme.

After the tree is built, backward induction commences. For the volatility ht+1

following state (yt, h
2
t ) via updating rule (7), RTCT finds the two volatilities that

bracket ht+1. The option price corresponding to ht+1 is then interpolated linearly

from the option prices corresponding to the bracketing volatilities. Figure 8 illustrates

this procedure for a branch. After the option prices from all 2n + 1 branches are

available, the option price for state (yt, h
2
t ) is calculated as their average discounted

value weighted by the branching probabilities.

Before closing this section, we remark that CT is under-specified. CT maintains

only hmin and hmax at each node in growing the tree. The interpolated volatilities at

each node are not involved in the tree-building process. Only in backward induction

are the K − 2 interpolated volatilities added to approximate the full RTCT tree.

It is therefore possible for an interpolated volatility’s successor volatility to reach a

node that is not reached during the tree-building process and thus has no option

prices at all. Take Fig. 8 for example. If ht+1 lies in a node not reached during

tree building, the node will not have option values at all and backward induction

must be terminated. Rare as these situations are, they do arise when n and N

are both large. RT, in contrast, has no such problems because the same volatilities

(interpolated or otherwise) used in building the tree are used in backward induction.

In other words, the interpolated volatilities’ branches have all been followed through

in the tree-building process. MT follows RT in using all interpolated volatilities, not

just hmin and hmax, in growing the tree.
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5 Sufficient Condition for RTCT To Explode

It is common practice to raise numerical accuracy by increasing n. Unfortunately,

this section proves that the largest value of ht at date t grows exponentially in t if n

exceeds a threshold. When this happens, the value of η must also grow exponentially

by virtue of inequality (9). Note that the 2n + 1 successor nodes of a state extend

over 2nη + 1 nodes (recall Fig. 5). So when η grows exponentially, the RTCT tree

explodes. We conclude that the RTCT tree must be restricted to small n to have

any hope of being efficient. A small n is no guarantee that the tree will not explode,

however, because our threshold for explosion is a sufficient condition only. Hence it

does not follow that an n not exceeding that threshold escapes explosion. Because

RTCT employs a search procedure (10), finding the necessary condition for explosion

seems difficult.

We now provide the simple argument for the exponential growth of the largest

value of ht at date t for RTCT. Assume r = 0 and c = 0. Updating rule (7) is now

h2
t+1 = β0 + β1h

2
t + β2

[
`ηγn + (h2

t /2)
]2

, ` = 0,±1,±2, . . . ,±n.

Set ` = n to make h2
t+1 as large as possible. The updating rule now becomes

h2
t+1 = β0 + β1h

2
t + β2

[√
n ηγ + (h2

t /2)
]2

as γn = γ/
√

n

≥ β0 + β1h
2
t + β2

[√
nht + (h2

t /2)
]2

as ηγ ≥ ht

≥ β0 + β1h
2
t + β2nh2

t

= β0 + (β1 + β2n) h2
t .

By induction,

h2
t+1 ≥ β0

t∑
i=0

(β1 + β2n)i + (β1 + β2n)t+1h2
0

=
β0

1− (β1 + β2n)
+

[
h2

0 +
β0

(β1 + β2n)− 1

]
(β1 + β2n)t+1.

The above expression grows exponentially in t if

β1 + β2n > 1. (11)

Interestingly, this inequality is reminiscent of the necessary condition β1 +β2 ≥ 1 for

GARCH to be nonstationary.

When r 6= 0 or c 6= 0, the largest value of ht at date t still grows exponentially

in t as long as n is suitably large. The argument is more tedious but essentially

identical. We conclude that the RTCT tree grows exponentially if n is large enough.
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6 The Shallowness of the Exploding RTCT Tree

Can a large n be picked assuming we are willing to accept long running times?

Unfortunately, as will be shown below, RTCT does not admit such a tradeoff between

accuracy and speed because it will be forced to be short-dated when explosion occurs.

Consequently, even if one is willing to accept inefficiency, the RTCT tree may not

grow to the desired maturity date. An exploding RTCT tree is therefore of very

limited use in practice for reasons other than exponential complexity.

The technical reason for shallowness is that there is a global ceiling on volatility

ht for valid branching probabilities to exist: h2
t ≤ 2(r+n)+2

√
2rn + n2 . This upper

bound depends only on r and n. So when the largest value of ht grows exponentially

in t, this ceiling will be quickly reached at a small t and the tree can grow no further.

We next derive the promised upper bound that leads to the impossibility result.

Inequalities (6) imply

| (h2
t /2)− r |
2ηγ

√
n

≤ h2
t

2η2γ2
,

h2
t

2η2γ2
≤ 1

2
.

Hence

h2
t ≤ (ηγ)2 ≤

[
h2

t

√
n

| (h2
t /2)− r |

]2

,

which can be simplified to yield

[
(h2

t /2)− r
]2 ≤ nh2

t .

The above quadratic inequality (in h2
t ) is equivalent to

2(r + n)− 2
√

2rn + n2 ≤ h2
t ≤ 2(r + n) + 2

√
2rn + n2 .

We conclude that

h2
t ≤ 2(r + n) + 2

√
2rn + n2 (12)

is necessary for the existence of valid branching probabilities for RTCT. As promised

earlier, the bound on h2
t does not depend on the choice of γ as the equation γ = h0

never enters the analysis.

This impossibility finding may sound puzzling at first. After all, under the Black-

Scholes model, valid branching probabilities always exist as long as n is suitably

large. Why, one may ask, can’t the same property hold here? The answer lies in

the volatility process. The daily volatility in the Black-Scholes model is a constant,

which amounts to setting ht to some fixed number. So every state solves the same

Eqs. (3)–(5) for the probabilities, and increasing n will eventually have inequality (12)

satisfied for all states. In contrast, the volatility fluctuates under GARCH. Thus each
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state (yt, h
2
t ) faces different Eqs. (3)–(5) in solving for the probabilities. Increasing

n beyond a certain threshold makes it impossible to satisfy inequality (12) when t is

suitably large. The reason is that the largest h2
t grows exponentially in t, eventually

breaching the upper bound at a suitably large t.

7 Numerical Evaluation of RTCT

The following parameters from Ritchken and Trevor (1999) and Cakici and Topyan

(2000) will be assumed throughout the section unless stated otherwise: S0 = 100,

r = 0, h2
0 = 0.0001096, γ = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and

c = 0. As r = c = 0, criterion (11) says combinatorial explosion occurs when

n >
1− 0.9

0.04
= 2.5.

Figure 9 confirms the exponential growth of the RTCT tree with n = 3, 4, 5 . Note

that the total node count increases with n. For comparison, the standard trinomial

tree contains only 2t + 1 nodes at date t.

25 50 75 100 125 150 175
Date

5000

10000

15000

20000

25000

Figure 9: Exponential growth of the RTCT tree. Each curve plots the number

of nodes at date t of the tree. The dotted line is based on n = 3, the dashed line

on n = 4, and the solid line on n = 5. The parameters are S0 = 100, r = 0,

h2
0 = 0.0001096, γ = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.

The number of nodes (call it M) is critical because the running time is proportional

to KM . We mention earlier that there may be nodes extended over by the tree which

are not reachable and are depicted as hollow nodes in Fig. 6. In principle, if such

nodes are numerous, RTCT can potentially run more efficiently by adopting clever
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programming techniques to skip them. But Figure 10 shows that the proportion

of unreachable nodes is small for n = 3, 4, 5. We will see shortly that the same

conclusion holds for larger n as well. As the overwhelming majority of nodes are

reachable, skipping unreachable ones brings no substantial benefits. Therefore, by

tree size we shall mean the number of nodes extended over by the tree regardless of

reachability.

25 50 75 100 125 150 175
Date

0.5

1

1.5

Figure 10: The percent of unreachable nodes. The plots show the percent

of unreachable nodes among all nodes at each date. The dotted line is based on

n = 3, the dashed line on n = 4, and the solid line on n = 5. The number of

unreachable nodes is insignificant in all 3 lines. The parameters are S0 = 100, r = 0,

h2
0 = 0.0001096, γ = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.

Suppose we select n = 100 to seek very high accuracy at the expense of efficiency.

The theory predicts that the RTCT tree’s final maturity will be cut short. Indeed,

with r = 0, inequality (12) imposes the universal upper bound of h2
t ≤ 4n = 400.

This means a node with ht > 20 cannot have valid branching probabilities and thus

the tree cannot grow beyond date t. As this ceiling is breached somewhere at date 9

because of the exponential growth of the largest value of ht, the tree stops growing

there. Table 1 lists the final dates under various n. Observe that the tree’s final

maturity date decreases rapidly as n increases. For example, it is 72 with n = 5, 34

with n = 10, and 12 with n = 50. To be useful, n cannot be so large as to make the

tree’s final maturity date fall short of the derivative’s. This concern sets a firm upper

bound on n. Table 1 also tabulates the total numbers of nodes and unreachable ones

among them. Again, the overwhelming majority of the nodes are reachable.

Some of the calculated option prices in Ritchken and Trevor (1999) use n as large

as 25 and option maturity dates as far as 200. These choices contradict our analysis
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and data. For example, according to Table 1, the RTCT tree with n = 25 stops

growing as early as date 18. Therefore, some of their prices should be viewed with

caution.

Cakici and Topyan (2000) used n = 1 throughout their paper. Explosion is

avoided for their choice of parameters, which are also used in this section. But there

are two problems with this choice of n. First, CT does not always generate accurate

option prices with n = 1. For example, suppose we select β0 = 0.000007 instead of

0.000006575. The option prices in Table 2 show that CT deviates from the Monte

Carlo estimates. Second, it is not true that the choice n = 1 always escapes explosion.

To support this point, we use the same parameters as Fig. 9 except for c = 2 and

n = 1. The resulting CT tree explodes as plotted in Fig. 11.

10 20 30 40 50
Date

500

1000

1500

2000

2500

3000

Figure 11: Exponential growth of the CT tree with n = 1. This CT tree

explodes. The final maturity date of the tree is 54. The parameters are S0 = 100,

r = 0, h2
0 = 0.0001096, γ = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, c = 2,

and n = 1.

One of the most critical questions to ask of an approximation algorithm such as

RTCT is whether it converges with increasing n. Table 3 and Figure 12 show that

there is a downward trend in the calculated option prices except for the very short

maturity of N = 2 days. Moreover, the downward trend accelerates as n increases.

To rule out the possibility that the problem originates from the discrete-state full

RTCT tree approximation of the continuous-state model, Monte Carlo simulation

of the full RTCT tree is carried out. The data in Table 3 demonstrate that the

tree model produces Monte Carlo estimates generally consistent with those of the

continuous-state model. Hence the problem lies mainly with the way the full RTCT

tree is in turn approximated. We will see later that a major reason causing RTCT
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to deviate numerically from the true option price is its use of the linear volatility

interpolation scheme.
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Figure 12: Select option prices from Table 3. MC lower bound equals ∞L; MC

upper bound equals ∞U .

8 The Mean-Tracking (MT) Tree

To recap, RTCT has at least four weaknesses. First, it explodes exponentially when

n exceeds a threshold. Second, it is not known whether there is a simple formula

for the threshold n∗ so that the RTCT tree escapes explosion as long as n ≤ n∗.

Third, when explosion happens, the tree is cut short, making it unable to price

derivatives with a longer maturity date. Fourth, option prices may fail to converge

as n increases. We next turn to MT that addresses these problems. MT makes

two critical changes to RTCT. The first is to replace the linear interpolation scheme
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with the log-linear interpolation scheme. This addresses the convergence problem

mentioned earlier. The second is to let the middle branch of the multinomial tree

track the mean of yt+1. This addresses the explosion problem and its consequence

of shortened maturity. It also yields a simple formula for the above-mentioned n∗.

Surprisingly, MT’s tree size grows only quadratically when n ≤ n∗. This result makes

the MT tree size asymptotically the same as that of the CRR binomial tree. The

analysis of MT will turn out to require only elementary techniques.

8.1 Volatility Interpolation Schemes

The distribution of the volatilities reaching a node plays a key role in pricing ac-

curacy. RTCT essentially assumes that the distribution is uniform: Interpolated

squared volatilities are equally spaced between the minimum and the maximum

squared volatilities. Figure 13, however, shows that the actual distribution is closer

to a lognormal distribution than a uniform one. It strongly suggests that there be

more interpolated volatilities at the lower values than at the higher values. This is the

rationale for MT’s adopting the log-linear interpolation scheme, in which the logarith-

mic volatilities are equally spaced. The log-linear scheme is also used by the Markov

chain approximation of Duan and Simonato (2001) for the same numerical consid-

erations. Similar findings in the case of the Asian option exist. For example, Dai

(2004) proved that linear interpolation schemes result in overestimates, and Forsyth,

et al. (2002) demonstrated that linear interpolation schemes may not converge to the

correct price.

8.2 Tree Building

At date t, let node A be the node closest to the mean of yt+1 given (yt, h
2
t ), which

equals yt + r − (h2
t /2). For convenience, we use µ to denote this conditional mean

minus the current logarithmic price:

µ ≡ r − h2
t

2

(see Fig. 14). By the geometry of the tree, node A’s logarithmic price equals yt +aγn

for some integer a. The criterion by which node A is chosen ensures that

| aγn − µ | ≤ γn

2
. (13)

To create the desired multinomial tree, make the middle branch of the (2n + 1)-

nomial tree line up with node A as in Fig. 15. Although a node reaches only 2n + 1

nodes after one day, the top and bottom nodes extend over

2nη + 1 (14)
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Figure 13: Histogram of volatility distribution. All parameters are from Table 3

with n = 10 and N = 10. Monte Carlo simulation of the full RTCT tree (7) is used

to record the volatilities at the middle node at maturity. Out of 500,000 paths, about

10,000 reach the node. The recorded minimum and maximum squared volatilities

are 0.000085 and 0.000217, respectively. Squared volatilities h2
t are multiplied by

1,000,000 for easier reading.

nodes as in RTCT. Amazingly, as will be demonstrated later, the overall node count

is only quadratic in N if n does not exceed a threshold. The probabilities for the

upward, middle, and downward branches equal

pu =
nh2

t + (aγn − µ)2

2n2η2γ2
n

− aγn − µ

2nηγn

,

pm = 1− nh2
t + (aγn − µ)2

n2η2γ2
n

,

pd =
nh2

t + (aγn − µ)2

2n2η2γ2
n

+
aγn − µ

2nηγn

.

As they match the mean and variance of the GARCH process at date t + 1 asymp-

totically, convergence is guaranteed. State (yt, h
2
t ) at date t is followed by state
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Figure 14: The next middle node via mean tracking. The cross identifies the

true mean of yt+1. Two nodes, A and B, bracket it. Between them, node A has a

logarithmic price closer to the mean. The number aγn denotes the difference between

yt and node A’s logarithmic price.

(yt + `ηγn, h2
t+1) at date t + 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′′
t+1 − c)2, (15)

ε′′t+1 =
`ηγn + aγn − (r − h2

t /2)

ht

,

` = 0,±1,±2, . . . ,±n.

We will call the resulting tree the full MT tree. Formulas for the transition probabil-

ities are stated in equation (8). As the full MT tree contains an exponential number

of states, it must be approximated. But unlike in the RTCT case, the approximated

MT will be efficient, accurate, and never cut short.

The conditions for the probabilities to lie within 0 and 1, i.e., 0 ≤ pu, pm, pd ≤ 1,

are

| aγn − µ |
2nηγn

≤ nh2
t + (aγn − µ)2

2n2η2γ2
n

, (16)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1

2
, (17)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1− | aγn − µ |
2nηγn

. (18)
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Figure 15: The MT multinomial tree for daily logarithmic price yt for a

duration of one day. A day is partitioned into n = 3 periods, and the three jump

sizes in each period are (aγn/n)+ηγn (upward), aγn/n (middle), and (aγn/n)−ηγn

(downward). The central branch of the tree lines up with node A, the node closest to

the mean of yt+1 as stated in Fig. 14. The solid nodes are actually used in pricing,

but the gray nodes are for illustration only. This heptanomial MT tree should be

compared with the RTCT counterpart in Fig. 5.

Inequalities (16)–(17) are equivalent to
√

nh2
t + (aγn − µ)2

nγn

≤ η ≤ nh2
t + (aγn − µ)2

nγn| aγn − µ | . (19)

Inequalities (13) and (17) together imply inequality (18) because

nh2
t + (aγn − µ)2

2n2η2γ2
n

+
| aγn − µ |

2nηγn

≤ 1

2
+

1

4nη
≤ 1.

Hence the probabilities are valid if and only if the much simpler inequalities (19) hold.

MT can avoid the short-maturity problem of RTCT. Let H2
min ≡ min(h2

0, β0/(1−
β1)) to make H2

min ≤ h2
t for t ≥ 0 (see Appendix A for justification). Now, a valid

integer η can always be found regardless of the value of n as long as γn is less than

some constant. More precisely, interval (19) contains positive integers for the jump

parameter η to take its value in when

γ2
n ≤ H2

min (20)

as proved in Appendix B. With the existence of η guaranteed, MT will never be cut

short, as promised.
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Rather than searching for an η to satisfy inequalities (19), MT simply sets

η =

⌈√
nh2

t + (aγn − µ)2

nγn

⌉
. (21)

Although other choices are clearly possible, this particular choice is amenable to the

analysis on the size of the MT tree later.

We proceed to choose γ, hence γn as well because γn = γ/
√

n . If γ ≤ Hmin,

then γn satisfies inequality (20) for all n. A smaller γ generally leads to larger trees,

hence longer running times. On the other hand, a smaller γ is expected to result

in better accuracy because of the finer grain. To strike an overall balance between

accuracy and convergence speed, we set γ = Hmin/2; thus

γn =
Hmin

2
√

n
. (22)

All the parameters of MT have now been specified.

9 A Sufficient Condition for the Nonexplosion of

MT

In practice, it is essential to know beforehand that the chosen n will not result in

an exploding tree before tree building is even attempted. Without this knowledge,

tree building may take a long time if the tree turns out to explode and may even end

up with a tree not meeting the required maturity if shortened maturity is an issue.

In the case of MT, the criterion for nonexplosion is simple: The MT tree does not

explode if

n ≤
(√

1− β1

β2

− c

)2

. (23)

Note that the threshold is independent of r. When inequality (23) holds, the tree-size

growth is only quadratic in maturity, the same as the CRR tree. (See Appendix C for

proof.) The MT tree is thus the first tree-based GARCH option pricing algorithm that

is provably efficient. This surprising finding makes MT a very practical algorithm.

Earlier, we show that the RTCT tree explodes if n exceeds some threshold; in

fact, the threshold is (1 − β1)/β2 when c = r = 0. But we are silent about the

tree size when that threshold is not breached. The positive result (23) for MT fills

that void because it says the MT tree is efficient if n does not exceed an explicit

threshold. Surprisingly, the sufficient condition for MT’s nonexplosion reduces to

n ≤ (1− β1)/β2 when c = 0. As the same (1− β1)/β2 is the threshold of explosion

for RTCT, criterion (23) can be said to be tight.
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10 Numerical Evaluation of MT

RTCT can be inaccurate in pricing options. This fact is documented in Table 4.

In every combination of n and K, RTCT deviates from the simulation results. In

contrast, MT produces prices within the 95% confidence interval for K ≥ 2 with

n = 1, K ≥ 10 with n = 2, and K ≥ 50 with n = 3, 4. Hence MT succeeds

where RTCT fails. Observe that K needs to be increased for a larger n because the

resulting increase in the number of volatilities per node demands more resolution.
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Figure 16: Select option prices from Table 5. MC lower bound equals ∞L; MC

upper bound equals ∞U . The option prices under the CT algorithm come from

Fig. 12.

Next we benchmark MT’s performance with increasing n. For this purpose, we

duplicate the settings in Table 3 for RTCT to produce Table 5 for MT. Select prices

are plotted in Fig. 16 for graphical depiction. Unlike RTCT, all prices generated by

MT are within the 95% confidence interval of Monte Carlo simulation of the full MT
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tree (15). Furthermore, MT provides results very close to the true option price even

with a small n. MT therefore outperforms RTCT in terms of overall accuracy and

convergence speed.

All the numerical experiments up to now assume r = c = 0. In Table 6, we

investigate MT’s options pricing accuracy with nonzero r and c, specifically, r = 5%

(annual) and c = 0.5 from Duan and Simonato (2001). Although a few of the

computed option prices are outside the 95% confidence interval, they are nontheless

quite close to the Monte Carlo estimates. Furthermore, they are as good as those

prices in Table 3 of Duan and Simonato (2001) that are allowed the most computation

times.

Criterion (23) is a sufficient condition for MT to be efficient. In this case, the

number of tree nodes at date t is the linear O(t); thus the total node count becomes

quadratic in maturity. We next use two concrete cases to cross-check the theoretical

result. The first setting adopts β1 = 0.8, β2 = 0.1, and c = 0. The tree should not

explode because

1 = n <

(√
1− 0.8

0.1
− 0

)2

= 2.

Indeed, the tree size grows linearly with date as shown in Fig. 17. The total number

of nodes is therefore quadratic in maturity, in complete agreement with the theory.

Take another setting with β1 = 0.8, β2 = 0.1, and c = 0.9. Criterion (23) is now

violated because

1 = n >

(√
1− 0.8

0.1
− 0.9

)2

= 0.264416.

The tree also turns out to grow exponentially as shown in Fig. 18. Unlike the RTCT

tree, however, an exploding MT tree remains useful because it will not be cut short.

Criterion (23) is a sufficient, but not a necessary, condition for the MT tree to

escape explosion. Hence its violation does not necessarily imply exponential running

time. Take the parameters β1 = 0.8, β2 = 0.1, and c = 0.5 in Table 6 for example.

The criterion for nonexplosion is violated for all n ≥ 1. But in fact, the case of n = 1

does not result in a tree of exponential size even though the total node count is more

than quadratic. Explosion sets in for n ≥ 2.

11 Conclusions

GARCH option pricing is difficult because of the GARCH model’s bivariate and

path-dependent nature. We prove that the Ritchken-Trevor-Cakici-Topyan (RTCT)

GARCH option pricing algorithm is inefficient as the RTCT tree explodes for n ex-

ceeding a threshold. Worse, a global upper bound on the volatility renders the tree

shallow when explosion occurs. Cakici and Topyan (2000) claimed that RTCT is
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10 20 30 40 50 60 70
t

100

200

300

400

Figure 17: Linear growth of the MT tree. The parameters are from Table 6

except for n = 1, c = 0, N = 74, and K = 20. Because this set of parameters

satisfy criterion (23), the tree should not explode. Indeed, the number of nodes at

date t grows linearly with t; the total number of nodes hence grows quadratically in

maturity N .

10 20 30 40 50 60 70
t

5000

10000

15000

20000

Figure 18: Exponential growth of the MT tree. The parameters are identical

to those in Fig. 17 except for c = 0.9. This set of parameters violate criterion (23).

The number of nodes grows exponentially with date t.

empirically accurate with n = 1 for vanilla options. Unfortunately, numerical data

demonstrate that both inaccuracy and even explosion can result with such under-

refined trees. These theoretical results literally carry over to the BDT-GARCH in-

terest rate model of Bali (1999).

The paper modifies RTCT to obtain a simple tree, the mean-tracking (MT) tree.

The MT tree is both accurate and provably efficient when n does not exceed a

simple threshold. Surprisingly, the tree-size growth is only quadratic in maturity

if n does not exceed the threshold. This is the first tree-based GARCH option

pricing algorithm that provably does not explode if certain conditions are met. The

complexity in fact matches that of the influential and popular CRR binomial tree.

Both the threshold and the quadratic size are optimal. Finally, the MT tree does not
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suffer from the short-maturity problem of the RTCT tree. We conclude that MT is a

provably efficient algorithm for derivatives pricing under the GARCH option pricing

model. All our theoretical results are proved and backed up by extensive numerical

experiments.

Appendix A

Updating rule (15) says h2
t ≥ β0 + β1h

2
t−1. By applying the inequality repeatedly,

h2
t ≥ β0 + β1h

2
t−1

≥ · · · ≥ β0(1 + β1 + β2
1 + · · ·+ βt−1

1 ) + βt
1h

2
0

=
β0

1− β1

+ βt
1

(
h2

0 −
β0

1− β1

)
. (24)

Suppose h2
0 ≥ β0/(1− β1). Then inequality (24) implies h2

t ≥ β0/(1− β1) for t ≥ 0.

On the other hand, suppose h2
0 < β0/(1− β1). Let h2

0 = β0/(1− β1) − ε for some

ε > 0. By inequality (24) again,

h2
t ≥

β0

1− β1

− βt
1ε ≥

β0

1− β1

− ε = h2
0

because β1 < 1. So h2
t ≥ h2

0 for t ≥ 0. Combine the two cases to yield

h2
t ≥ min(h2

0, β0/(1− β1)), t ≥ 0.

Appendix B

To confirm that interval (19) contains an integer, it suffices to establish
√

nh2
t + (aγn − µ)2

nγn

≤ nh2
t + (aγn − µ)2

nγn| aγn − µ | − 1. (25)

First,

nh2
t + (aγn − µ)2

nγn| aγn − µ | − 1 =
h2

t

γn| aγn − µ | +
| aγn − µ |

nγn

− 1

≥ h2
t

γn

1

(γn/2)
+
| aγn − µ |

nγn

− 1 by inequality (13)

≥
(

2h2
t

H2
min

− 1

)
+
| aγn − µ |

nγn

by inequality (20)

> 0.

Therefore, it suffices to show that

[
nh2

t + (aγn − µ)2

nγn| aγn − µ | − 1

]2

−
[ √

nh2
t + (aγn − µ)2

nγn

]2

> 0.
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Indeed,

[
nh2

t + (aγn − µ)2

nγn| aγn − µ | − 1

]2

−
[ √

nh2
t + (aγn − µ)2

nγn

]2

=
1

n2γ2
n

[ (
nh2

t

| aγn − µ | + | aγn − µ | − nγn

)2

− nh2
t − (aγn − µ)2

]

=
1

n2γ2
n

[
n2h4

t − 2n2h2
t γn| aγn − µ |

(aγn − µ)2
+ n2γ2

n − 2nγn| aγn − µ |+ nh2
t

]

≥ 1

n2γ2
n

[
n2h2

t

(aγn − µ)2
(h2

t − γ2
n) + (n2 − n) γ2

n + nh2
t

]
by inequality (13)

> 0,

as desired.

Appendix C

We shall prove that the size of the MT tree is only quadratic in maturity N if criterion

(23) holds. From Eq. (21),

η ≤
⌈√

nh2
t + (γ2

n/4)

nγn

⌉
by inequality (13)

=

⌈
2
√

nh2
t + [ H2

min/(16n) ]√
nHmin

⌉
by equality (22)

=

⌈√
4h2

t

H2
min

+
1

4n2

⌉

≤
⌈

2ht

Hmin

⌉
+ 1

≤ 2ht

Hmin

+ 2. (26)

Define C ≡ Hmin[
√

n + 1/(4
√

n) ] and D ≡
√

β1 + β2(
√

n + c)2 . According to
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updating rule (15),

h2
t+1 ≤ max

−n≤`≤n

{
β0 + β1h

2
t + β2h

2
t

[
`ηγn + aγn − (r − h2

t /2)

ht

− c

]2
}

= max
−n≤`≤n

{
β0 + β1h

2
t + β2

[
`ηγn + aγn − (r − h2

t /2)− cht

]2
}

≤ max
−n≤`≤n

{
β0 + β1h

2
t + β2

[ | `ηγn |+ | aγn − (r − h2
t /2) |+ | − cht |

]2
}

≤ β0 + β1h
2
t + β2

(
nηγn +

γn

2
+ cht

)2

by inequality (13)

≤ β0 + β1h
2
t + β2

[(
2nht

Hmin

+ 2n +
1

2

)
γn + cht

]2

by inequality (26)

= β0 + β1h
2
t + β2

[
(
√

n + c) ht + C ]2
by equality (22)

=
[
β1 + β2(

√
n + c)2

]
h2

t + 2β2C(
√

n + c) ht + β0 + β2C2

= (Dht + P)2 +Q,

where P and Q are positive numbers independent of ht and t. Hence there exists

a number R > 0 independent of ht and t such that

h2
t+1 ≤ (Dht + P)2 +Q ≤ (Dht +R)2 .

(For example, one can pick R = P +
√Q.) This leads to

ht+1 ≤ Dht +R. (27)

Let Ht stand for the largest of all the volatilities at date t. Note that H0 = h0.

By inequality (27), state (yt, h
2
t )’s 2n + 1 successor volatilities are all dominated by

Dht+R. Suppose Ht+1 at date t+1 follows volatility h̃t at date t (which may be an

interpolated volatility). Then Ht+1 ≤ Dh̃t +R ≤ DHt +R; hence Ht+1 ≤ DHt +R.

By induction,

Ht+1 ≤ R
t∑

i=0

Di +Dt+1h0 =
R

1−D +

[
h0 +

R
D − 1

]
Dt+1.

Therefore, Ht+1 at date t + 1 does not grow exponentially when D ≤ 1, i.e., when

β1 + β2(
√

n + c)2 ≤ 1, which establishes criterion (23).

We proceed to derive the quadratic tree size. Assume D ≤ 1. It is important to

note that

Ht+1 ≤ R
1−D + h0Dt+1 ≤ R

1−D + h0.
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By bound (14) and inequality (26), the number of nodes at date t > 0 is at most

t−1∑
i=0

[
2n

(
2Hi

Hmin

+ 2

)
+ 1

]
= (4n + 1) t +

4n

Hmin

t−1∑
i=0

Hi

≤ (4n + 1) t +
4n

Hmin

t

( R
1−D + h0

)

=

[
4n + 1 +

4n

Hmin

( R
1−D + h0

)]
t.

Hence the number of nodes at date t is linear in t as depicted in Fig. 17. The total

size of an N -day MT tree is therefore at most

1 +
N∑

t=1

[
4n + 1 +

4n

Hmin

( R
1−D + h0

) ]
t = O(N2),

a quadratic growth.
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Total number of Total number of

n Final date (N) nodes unreachable nodes

3 182 1,017,327 5,565

4 100 499,205 3,028

5 72 368,523 947

10 34 222,935 42

25 18 286,844 6,925

50 12 305,113 448

100 9 578,710 3,961

150 8 795,309 2,011

200 7 652,808 1,596

250 7 1,747,758 20,291

300 7 2,929,508 11,510

350 6 1,179,157 3,151

Table 1: Final maturity dates and sizes of exploding RTCT trees. All RTCT

trees in the table explode. The total number of nodes in each tree exceeds the

(N + 1)2 of the standard trinomial tree. The overwhelming majority of these nodes

are reachable in each tree as shown in column four. The final maturity date of the tree

shortens quickly as n increases. The parameters are S0 = 100, r = 0, h2
0 = 0.0001096,

γ = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.
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K 2 10 20 50 100 200

Option price 4.2301 4.2365 4.2267 4.2274 4.2265 4.2268
∞L 4.2714
∞U 4.3087

Table 2: Case where CT fails. K denotes the number of volatilities per node.

The option is a European call with a strike price of 100 and a maturity of 100 days.
∞L and ∞U form the 95% confidence interval for the true option price based on

Monte Carlo simulation of the continuous-state model (1) with 500,000 paths. The

parameters are S0 = 100, r = 0, h2
0 = 0.0001096, γ = h0 = 0.010469, β0 = 0.000007,

β1 = 0.9, β2 = 0.04, n = 1, and c = 0.
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n CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL
1 0.5888 0.5903 0.5856 0.9093* 0.9023 0.8945 1.3116* 1.3400 1.3291 1.8565* 1.8765 1.8609
2 0.5674 0.5701 0.5652 0.9091 0.9132 0.9054 1.3020 1.3126 1.3016 1.8511 1.8604 1.8447
3 0.5736 0.5746 0.5697 0.9284 0.9319 0.9242 1.3103 1.3190 1.3080 1.8532 1.8604 1.8448
4 0.5742 0.5758 0.5709 0.9214 0.9289 0.9211 1.3081 1.3115 1.3006 1.8492 1.8540 1.8384
5 0.5836 0.5841 0.5793 0.9273 0.9322 0.9244 1.3095 1.3172 1.3062 1.8454 1.8605 1.8449
10 0.5839 0.5843 0.5795 0.9257 0.9298 0.9221 1.3059* 1.3174 1.3064 1.8026* 1.8623 1.8467
25 0.5877 0.5923 0.5875 0.9257 0.9310 0.9233 1.2867* 1.3175 1.3065 stopped
50 0.5874 0.5915 0.5866 0.9238* 0.9335 0.9258 1.2651* 1.3172 1.3062 stopped
100 0.5876 0.5886 0.5837 0.9202* 0.9314 0.9237 stopped stopped
150 0.5876 0.5899 0.5851 0.9189* 0.9304 0.9226 stopped stopped
200 0.5877 0.5897 0.5849 0.9179* 0.9308 0.9231 stopped stopped
�

L
�

U

n CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL
1 2.9415 2.9626 2.9376 3.6043 3.6331 3.6021 4.1647 4.1964 4.1603 5.8926 5.9190 5.8667
2 2.9345 2.9464 2.9213 3.5976* 3.5947 3.5637 4.1570 4.1739 4.1379 5.8863 5.9096 5.8533
3 2.9193* 2.9536 2.9285 3.5567* 3.6240 3.5928 4.0794* 4.1874 4.1512 stopped
4 2.8784* 2.9482 2.9231 3.4499* 3.5967 3.5658 3.8945* 4.1789 4.1427 stopped
5 2.8168* 2.9473 2.9222 stopped stopped stopped
10 stopped stopped stopped stopped
25 stopped stopped stopped stopped
�

L
�

U
5.8620

1.3170 1.8620

5.9160
4.1420

200

0.5920 0.9310

2.9440 4.1790
3.5730
3.6050

2.9180

50 75 100

Maturity of Option (Days)
2 5

0.5870 0.9230

10 20

1.3060 1.8460

Table 3: Cases where CT fails to converge with increasing n. The option is

a European call with a strike price of 100. The CT tree may stop growing before

the required maturity when n exceeds a threshold. ∞DL and ∞DU form the 95%

confidence interval for the option price based on Monte Carlo simulation of the full

RTCT tree (7) with 500,000 paths. Asterics mark option prices that lie outside this

interval. ∞L and ∞U form the 95% confidence interval for the true option price

based on Monte Carlo simulation of the continuous-state model (1) with 500,000

paths. The parameters are S0 = 100, r = 0, h2
0 = 0.0001096, γ = h0 = 0.010469,

β0 = 0.000006575, β1 = 0.9, β2 = 0.04, K = 20, and c = 0.

36



� � �� �� �� ��� ���

� ���
��� ���

��� ����
�	 ����

	� ����
�� ����

�


� ���
	�� ���

��	 ���
�		 ���

��	 ���
	�� ���

	��
� �

�


�� ���

��� ���

�� ���

��� ���
��� ���

���

� �
�
	��� �

�
���� ��

���� ��
�
		 ����

�� ���


�

�


��

� � �� �� �� ��� ���

� ���
	�� ���

	�� ���

�� ���


�� ���

�� ���


��

� ���
��� ���

	�� ���
	�� ���

	�� ���
	�� ���

	��
� �

�
���� ���

��� ���
	�� ���

	�� ���
	�	 ���

	��

� �
�
	�
� ���

��
 ���
��
 ���

	�� ���
	�� ���

	��

�


��

���
	��

��
��
	

��

��

�

���
	��

��
��
	

�

Table 4: Case where CT fails but MT succeeds. The option is a European call

with a strike price of 100 and a maturity of N = 100 days. ∞L and ∞U form the 95%

confidence interval for the true option price based on Monte Carlo simulation of the

continuous-state model (1) with 500,000 paths. Although the CT tree explodes with

n ≥ 3, the cut-off maturity happens to exceed N days. Hence the option prices for

n ≥ 3 can still be found albeit with great difficulties. The parameters are S0 = 100,

r = 0, h2
0 = 0.0001096, γ = h0 = 0.010469, β0 = 0.000007, β1 = 0.9, β2 = 0.04, n = 1,

and c = 0.
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Table 5: Convergence of MT. ∞DL and ∞DU form the 95% confidence interval for

the true option price based on Monte Carlo simulation of the full MT tree (15) with

500,000 paths. None of the option prices lie outside this confidence interval. ∞L and
∞U form the 95% confidence interval for the true option price based on Monte Carlo

simulation of the continuous-state model (1) with 500,000 paths. All parameters are

from Table 3.
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Table 6: Accuracy of MT with nonzero r and c. The option is a European

put with a strike price of X. ∞L and ∞U form the 95% confidence interval for the

true option price based on Monte Carlo data from Duan and Simonato (2001). DS

lists the option prices from Duan and Simonato (2001) given the most computational

efforts. The table does not compute prices for n > 1 when the maturity exceeds 30

days because the tree explodes. All parameters are from Duan and Simonato (2001):

S0 = 50, r = 5% (annual), h2
0 = 0.0001096, β0 = 0.00001, β1 = 0.8, β2 = 0.1, and

c = 0.5.
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