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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.
And I lost the least.
—Fischer Black




Part 1:
Computational Complexity

It 1s unworthy of excellent men
to lose hours like slaves
in the labor of computation.

—Leibniz




Measures of Complexity

1. Time

e Tractable: “solvable” in polynomzial time such as
O(n) and O(n?)
e Intractable: otherwise
— (Candidates: Asian options & certain reset options
— Approaches: analytical approximations,
approximation algorithms, Monte Carlo

simulation, etc.

2. Memory

e Maybe an issue for long-dated fixed-income securities

or path-dependent derivatives




Part 2:

Trade against the Central Bank




Competitive Analysis

The trader wants to trade USD for JPY (say)

— Applicable to any assets with relative prices
n exchange rates will be revealed
The trader acts on each exchange rate

Converting JPY back to USD is not allowed
(buy-and-hold only)

Goal: maximize the total JPY amount on day n as
compared against the adversary with complete foresight
— This adversary trades once, at the highest rate

Result is (almost) model-free (no distribution
assumptions) and therefore more robust




Trader's Dilemma

e Convert too little and future exchange rates go down

e Convert too much and future exchange rates go up




Competitive Performance

e A trading algorithm A is c-competitive if for any rate
sequence, it guarantees a JPY amount at least 1/c of the

adversary’s amount; i.e.,
E[A] > —
c
— OPT trades all its USD for JPY at the highest
exchange rate, which is known to the adversary

— ¢ > 1; the lower the better

e The least ¢ that A achieves is called its competitive

ratio
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The Model

e Geometric upper and lower bounds

— If the current rate is r, the next is € [r/6,70]

— 6 = 1.07 for the Taipei Stock Exchange

— Results available for the general [r/a,r(] case

e Related to the popular lognormal process (geometric
Brownian motion) used in finance [Hull 1999
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The Optimal Buy-and-Hold Trading Strategy

The optimal strategy per USD:

0
nf—(n—2)
0—1
nf—(n—2)

— Invest dollar on the first and last days

— Invest dollar on the other days

Achieves the optimal competitive ratio any algorithm

can attain: %wm@ﬂwv [Chen, Kao, Lyuu, Wong 1999]

Beat the popular dollar-averaging strategy, whose
n(l—6—1)

competitive ratio 1s T—p—n

Indirect support for the soundness of dollar-averaging
strategy
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Part 3:
Derivatives Pricing with Combinatorics

The shift toward options as

the center of gravity of finance [...]
—NMerton H. Miller
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Listed Futures and Futures Options, 1997-1998

Monthend Trading Contracts
Name open interest volume settled

Futures contracts
Chicago Board of Trade (CBT)
Dow Jones Industrial Index 14,494 3,505,262 31,293
Treasury bonds 838,403 114,945,293 55,595
Total CBT 2,602,372 218,204,974 556,213
Chicago Mercantile Exchange (CME) and IMM

S&P 500 Index 372,542 30,698,445 369,072
3-month Eurodollar 2,961,562 107,386,746 1,556,484

Total CME/IMM 4,191,618 181,051,919 3,179,971

Total all exchanges 8,732,915 500,562,510 4,186,906

Futures options
Chicago Board of Trade (CBT)
Dow Jones Industrial Index 39,706 354,094
Treasury bonds 959,597 37,947,756
Total CBT 2,398,298 61,369,819
Chicago Mercantile Exchange (CME) and IMM

S&P 500 Index 274,655 5,049,771
3-month Eurodollar 3,064,612 31,842,995
Total CME/IMM 3,779,892 42,172,666
Total all exchanges 8,073,479 124,107,563

14



Calls and Puts
So,S51,...,5, denote the prices of the underlying asset

The call option has a terminal payoff given by
max (S, — X, 0)

The put option has a terminal payoft given by

max(X — Sy, 0)

Variations

Backward induction
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Binomial Models

e Stock price can go from S to Su with probability p or
Sd with probability 1 — p in a period
— The Cox-Ross-Rubinstein (CRR) version:

u €

d
p

— The Jarrow-Rudd (JR) version:

mAﬁIQm\wv At+ov/At

®?,IQM\MV At—o/At

1/2
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Barrier Option Pricing

Standard backward induction takes time O(n?)

Solving the Black-Scholes differential equation takes
O(n?) time

Combinatorics cuts the time to O(n)

— Shortcoming: cannot handle American options

A rule of thumb: pricing European options is faster
than pricing American options by an order of magnitude

— Mathematically true?
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The Reflection Principle for Binomial Random Walk
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The Reflection Principle

e Imagine a particle at position (0, —a) on the integral
lattice that is to reach (n,—b), where a,b > 0

e How many paths touch the z-axis?

e Answer:

A:+m+@v mowm<mb§+9+@
2
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Single-Barrier Options
e We focus on the down-and-in call with barrier H < X

— Knocked in if the barrier is touched

— Assume H < S without loss of generality
o Let

o Tix\mv ; N ﬁim\mv J

+ 3 + 3

20V At 20V At

— H = Sud™ " is the new barrier

— X = Su®d™™? is the new strike price

e May introduce fluctuations as well
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Convergence of the Binomial Model

Down-and-in call val ue

]

250
#Peri ods

The analytical value is 5.6605
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The Combinatorial Formula

Each path from S to the terminal price Su’d™ 7 has
probability p’(1 — p)"~7 of occurring

There are @ paths, and (" i.v of them hit H

So the terminal price Su’d™7 is reached by a path that
hits the barrier with probability A:|w3: i.v P’ (1 —p)n
The option value equals

2h

v P’ (1 —p)"~J Am\gg_&:lg — Nv

— Can be summed in O(n) steps

22



Compared with the Trinomial Model (in milliseconds)

n Combinatorial method Trinomial tree algorithm

a.k.a. Ritchken (1995)
Value Time Value Time
.507548 .30
.597597 .90
.635415 .00
.655812 .60
.652253 .60
.654609 8.00
.658622 11.10
.659711 15.00
.659416 19.40
.660511 24.70
.660592 30.20
.660099 36.70
.660498 43.70
.660388 44.10
.659955 51.60

21
84
191
342
533
768
1047
1368
1731
2138
2587
3078
3613
4190
4809

Analytical value 5.6605; 100 MHz Intel Pentium processor and 32 MB
of DRAM, running Windows NT 4.0

.634936 35.
.655082 185.
.658590 590.
.659692 1440.
.660137 3080.
.660338 5700.
.660432 9500.
.660474 15400.
.660491 23400.
.660493 34800.
.660488 48800.
.660478 67500.
.660466 92000.
.660454 130000.

ot ot ot ot v Ot Ot Ot Ov Ot Ot Ot Ot Ot Ot
ot ot ot Ot O Ot Ot Ot Ov Ot Ot Ot Ot Ot
© O O O O O O O O © O ©o o O
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When the Current Stock Price Is Near the Barrier

e Some claimed it makes the binomial model impractical:

— n will have to be very large to tackle fluctuations

— But then the n? bound becomes too high

e No problem if we use an O(n)-time algorithm

Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

Value Value Value

7.47761 19979 .11304 253.0
7.47626 79920 11297 1013.0
7.47682 179819 .11300 2200.0
7.47661 319680 .11299 4100.0
7.47676 499499 .11299 6300.0
7.47667 719280 .11299 8500.0
7.47674 979019 .11299 11800.0
7.4767 .1130
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The Reflection Principle—Ilterated

©.9 ST
V7 A B

Must hit both barriers (an L-hit preceded by an H-hit)
Reflect the path first at J and then at K
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Double Barrier Options

e Double barrier options contain two barriers L and H
with L < H

e Consider options that come into existence if and only if

either barrier is hit (knock-in type)

e The number of paths in which a hit of the H-line
(x = 0) appears before a hit of the L-line (z = —s) is

3
:+@|¢+wm mowmésil_.alv
2
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The Combinatorial Pricing Formula
LT denotes a sequence of Ls, and HT a sequence of Hs

Let A; denote the set of paths that hit the barriers with

1

7\

~

a hit sequence containing HYLTH™' ... {>2

Let B; denote the set of paths that hit the barriers with

1
N

-~

a sequence containing LTHYLY ... §>2

The number of paths that hit either barrier equals

n

N(a,b,s) = MuTCIQ Ai| +]Bil)

The running time is O
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The Combinatorial Pricing Formula (continued)

n
n+a+b+(i—1) s

n—a—b+(i+1) s

2

n

28
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for even 1

for odd 1

for even 1




The Combinatorial Pricing Formula (continued)

oUm?pm
(2] -2

— The barriers are replaced by the barriers

~ ~

H = Su"d™ " and L = Suld™!

~

e The terminal nodes between L and H (inclusive)
together contribute

h
e "7 > N(2h—mn,2h —25,2(h—1))p’ (1 —p)" 7 (Su?d" 7 — X)

j=a
to the option value

e The terminal nodes outside the above-mentioned range
constitute a standard call; add this to the above
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Comparison with Backward Induction (in seconds)

70
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+ Combinatorics — Lattice
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Lookback Option
Payoff is max(.S,, — min; S;,0)

Figure <1> Comparison of combinatorial and backward methods in running time

250

Combinatorial

—— Backward

oy
=
T
o
c
c
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S
o
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Number of Periods
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Pricing Geometric Asian Options
So, S1,...,S, denote the prices of the underlying asset

The Asian call has a terminal payoff given by

max((SoS1 - - - Sn) 11 — X, 0)

Can be priced in time O(n*) using backward induction

Needed in some approximation algorithms and control
variates approach for pricing arithmetic Asian options
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The Combinatorial Approach

Use the Jarrow-Rudd binomial model

— Each move has identical probability 1/2

Computable in time O(n?) (recall the rule of thumb)

Define q(0),q(1),... with

n(n+1)/2
1+z)(1+2”)(1+2%) - (1+z") = Y q(m)z™
m=0
Value is then

n(n+1)/2
e S 27"g(m) max(S(umd" "I/ 2TmyET — X 0)
m=0
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Comparison with Backward Induction (in seconds)

400
350
300

250 + Backward induction

200 - Combinatorics
150

100
50
0

18 35 52 69 86 103120137154171
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Part 4:
The Differential Tree Approach to Model Calibration

The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough
to slip through 1it.

—Grimm’s Fairy Tales
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Outstanding U.S. Debt Market Securities (bln)

Year

Municipal

Treasury

Agency
MBSs

U.S.

corporate

Fed

agencies

Money
market

Asset —
backed

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998

859.

920.
1,010.
1,082.
1,135.
1,184.
1,272.
1,302.
1,377.
1,341.
1,293.
1,296.
1,367.
1,464.

5

W o O o N O 0 N B N W B~ &

1,360.
1,564.
1,724.
1,821.
1,945.
2,195.
2,471.
2,754.
2,989.
3,126.
3,307.
3,459.
3,456.
3,355.

Ot 00 O N O O H O 0 B W N W N

372.
534.
672.
749.
876.
1,024.
1,160.
1,273.
1,349.
1,441.
1,570.
1,715.
1,825.
2,018.

=

B 00 © B~ © O O O h W © = K

719.8
952.6
1,061.9
1,181.2
1,277.1
1,333.7
1,440.0
.7
1
6
6
9
6
0

1,542

1,662.
1,746.
1,912.
2,055.
2,213.

2,462.

293.
307.
341.
381.
411.
434.
442.
484.
570.
738.
844.
925.

1,022.

1,296.

o O 0 O © N O 00 N 00 ok~ B~ O

847.
877.
979.
1,108.
1,192.
1,156.
1,054.
994.
971.
1,034.
1,177.
1,393.
1,692.
1,978.

)

O 00 00 N N 00 N W 0w W ot w O

2.
3.

NH O OO0 0o NG R WA
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Calibration and Pricing

Pricing is basically function evaluation: P(x,y, .

given x, v, .

Calibration fundamentally is root finding: solve

P(z,y,...) =p for x,y, .

— Implied volatility, interest rate tree calibration,
spread, option-adjusted spread, etc.

Fast foot finding usually requires derivatives:

OP(z,y,...) OP(z,y,...)
ox ? oy )

How to find those derivatives efficiently?
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The Differential Tree ldea

e Given a backward induction tree for pricing
e Computation at A is driven by inputs from B and C

e Chain rule
b(x)
b'(x)
fi(a(x).b(x),c(x))

dfy, _ ¢ 1, &QO&+ ¢ f, &@O&._. ¢ f, de(x)

dx ca dx cb dx cc dx
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Calibrating the Black-Derman-Toy Model (BDT)

Number  Average number Number  Average number
of years of iterations of years of iterations
100 3.474747 1100 2.926297
200 3.236181 1200 2.917431
300 3.157192 1300 2.923788
400 3.085213 1400 2.922802
500 3.020040 1500 2.893262
600 2.973289 1600 2.870544
700 2.951359 1700 2.847557
800 2.929912 1800 2.831573
900 2.923248 1900 2.817272
1000 2.919920 2000 2.806903

The zero-coupon bond yield is described by 0.06 4+ 0.051n¢

Time partition is one period per year
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Efficiency in Calibrating BDT (in seconds)

Number

of years

Running

time

Number

of years

Running

time

Number

of years

Running

time

3000

6000

9000
12000
15000
18000
21000
24000
27000
30000
33000
36000

398.880
1697.680
2539.040
2803.890
3149.330
3549.100
3990.050
4470.320
5211.830
5944.330
6639.480
7611.630

39000
42000
45000
48000
51000
54000
57000
60000
63000
66000
69000
72000

8562.640

9579.780
10785.850
11905.290
13199.470
14411.790
15932.370
17360.670
19037.910
20751.100
22435.050
24292.740

75000
78000
81000
84000
87000
90000
120000
150000
180000
210000
240000
270000

26182.080
28138.140
30230.260
32317.050
34487.320
36795.430
63767.690
98339.710
140484.180
190557.420
249138.210
313480.390

75MHz Sun SPARCstation 20, one period per year
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Efficiency in Calculating Spread (in seconds)

Number of Running Number of Number of Running Number of
partitions time iterations partitions time iterations
500 7.850 10500 3503.410

1500 71.650 11500 4169.570

2500 198.770 12500 4912.680
3500 387.460 13500 5714.440
4500 641.400 14500 6589.360
5500 951.800 15500 7548.760
6500 1327.900 16500 8502.950

7500 1761.110 17500 9523.900

8500 2269.750 10617.370
9500 2834.170

75MHz Sun SPARCstation 20

]
]

o ot Ot Ot Ot Ot Ot O

5
5
5
5
5
5
5
5
5
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Efficiency in Calculating Implied Volatility (in seconds)

A merican call

A merican put

Number of

partitions

Running

time

Number of

iterations

Number of

partitions

Running

time

Number of

iterations

100
200
300
400
500
600
700
800

o O O O O O O O

.008210
.033310
.072940
.129180
.201850
.290480
.394090
.522040

2

100
200
300
400
500
600
700
800

o O O O O O O O

.013845
.036335
.120455
.214100
.333950
.323260
.435720
.569605

3

Intel 166 MHz Pentium, running Microsoft Windows 95
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Part 5:

Monte Carlo Pricing
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|deas and Facts
Simulation of the underlying asset price

Average the replications

Bound is only probabilistic (no guarantee)

Maybe the only viable method for complex securities

— Mortgage-backed securities and multivariate options

Promising applicability to American-style options

— Efficiency remains an issue

Quasi-Monte Carlo: jury still out
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Variance Reduction Schemes

e Crude Monte Carlo converges relatively slowly, at a rate

of O(1/+/N)

e Variance reduction (efficiency improving) schemes are

often necessary to improve convergence

— Antithetic, control variates, conditioning

e For many path-dependent options, control variates seem

to have the lowest variance
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Variance Reduction Schemes for Asian Options

0.335

0.33

0.325
— Antithetic (10°5)

0.32

- Control Variate

0.315
+ Antithetic (10°6)

0.31

0.305
20 32 44 56 68 80 92 104 116 128 140 152 164
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Part 6:

Path-Dependent Options Pricing

47



Issues

Some path-dependent derivatives are easy to price

— Barrier-type options, (simple) reset options,

geometric Asian options, etc.

Other path-dependent derivatives seem hard to price
— Arithmetic Asian options, e.g.

Theory says there are derivatives which are provably
hard to price

— No natural options have been identified as such yet

Analytical approximations, approximation algorithms,
Monte Carlo simulation, etc.
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Asian Option Defined

e 50,51,...,5, denote the prices of the underlying asset

— Arithmetic Asian call’s terminal payoft:

H_. 3
B@i:t Mumm Lbe

— Arithmetic Asian put’s terminal payoft:

1
max (X — MU Si,0)

n-+1

n
1=

0

e Want to calculate the expected payoft

49



Issues
The binomial model converges to the analytic value

Due to the non-combining of the tree, the time is in the
order of O(2")

— It seems almost every path has to be explored

Monte Carlo: no control over the error and limited
mostly to European options

Quasi-Monte Carlo is not well understood

Analytical approximations fail under some circumstances

That leaves us exact and approximation algorithms
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Approximation and Exact Algorithms

The popular Hull-White algorithm of 1993

— Interpolation on the price tree (see [Hull 1999])

— Overpricing

A recent O(kn?)-time algorithm (AMO) can deviate

from the O(2") binomial tree algorithm by at most
O(nX/k) [Aingworth, Motwani, and Oldham 2000]

— Similar to Hull-White, but analyzable

An unpublished result lowers the error bound to
O(vnlnn X/k) [Huang and Lyuu 2000]

A converging general-purpose quasi-polynomial-time
algorithm [Dai and Lyuu 1999]
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Basic Ideas of the Dai-Lyuu (DL) Algorithm

A trinomial tree that guarantees all the asset prices to

be finite-precision binary numbers
Convergence to the continuous-time model

Backward induction is carried out exactly

— Contrast this with Hull-White

The extent of the exponential explosion is dramatically
reduced

— DL can be executed comfortably at n = 141

— Note that 2! ~ 3 x 10%?
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More Details of the Dai-Lyuu Algorithm

Option value is homogeneous of degree one in the stock

price

Multiply the stock price and the exercise price by 2™ to
make sure every asset price on the tree is another integer

Since a sum of integers is an integer, the state variable

at each node, the running subtotal Muwno S;, is an integer

— This key property relieves backward induction of
approximations (such as interpolation in Hull-White)

There are memory optimization issues
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Comparison with Monte Carlo and Hull-White

Period

Monte Carlo

Hull-White

AMO

Dai-Lyuu

Lower

Upper

Value

Time

42

.32069128

.32463872

.318055

.315367

.315663

53

.32222236

.32617764

.321244

.318063

.318910

64

.32320948

32717652

.323531

.319740

321187

75

.32252936

.32648464

.325318

.320545

.322644

86

.32444756

.32842244

.326740

.321654

.323726

97

.32507268

.32905932

327897

.323094

.324915

108

.32408644

.32804956

.328836

.322812

.326661

119

.32621672

.33020728

.329614

.323427

327743

130

.32365844

.32762156

.330263

.325458

.326839

141

QO[O |C([O|OC|OC|QOC|O|O

.32463656

0
0]
0
0
0]
0
0
0]
0]
0]

.32861144

0
0
0
0
0
0
0
0
0
0

.330767

=N ol ol Holl ol Heoll ol Noll ol )

.324390

Ol | |OC|O|OC|O]|O

.326170

145

The initial underlying asset value is 50, the exercise price is

60, the risk free rate is 10% per year, the volatility is 0.3 per

year, and the option has a life of 0.5 year
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More Comparisons

Maturity Exercise Exercise Exercise Exercise Exercise

(Years) Method Price=40 Price=45 Price=50 Price=55 Price=60
0.5 HwW 10.755 6.363 .012 .108 0.317
MC 10.759 6.359 .998 112 0.324
DL 10.754 6.356 .997 .104 0.317%
Levy 10.765 6.386 .024 .105 0.313
HwW 11.545 7.616 .522 .420 1.176
MC 11.544 7.606 .515 .401 1.185
DL 11.547 7.616 517 412 1.170%*
11.576 7.662 .557 .431 1.172
HwW 12.285 8.670 .743 .585 2.124
MC 12.289 .671 .734 577 2.135
DL 12.284 .674 .750 .585 .118
12.337 .738 .801 .619 .133
HwW 12.953 .582 .792 .633 .057
MC 12.943 .569 .786 .639 .055
DL 12.944 57T .786 .625 .045
13.024 .671 .874 .691 .087

w
=

S O O OO O O O b b W N
DR R R W W WD NN N =R
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The initial underlying asset value is 50, the risk free rate is

10% per year, and the volatility is 0.3 per year.
HW denotes the Hull-White algorithm. Monte Carlo

simulations (MC) are based on 100,000 trials. DL is the
Dai-Lyuu method with the number of periods equal to 30.

Levy denotes Levy’s approach.
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Extreme-Case Comparisons with Many Methods

r,o,T,S GE Shaw Euler PWwW TW MC DL
0.05,0.5,1,1.9 .195 0.193 .194 0.194 0.195 0.196
0.05,0.5,1,2.0 .248 0.246 .247 0.247 0.250 0.249
0.05,0.5,1,2.1 .308 0.306 .307 0.307 0.311 0.309
0.02,0.1,1,2.0 .058 0.520 .056 .0624 .0568 .0565
0.18,0.3,1,2.0 .227 0.217 .219 0.219 0.220 0.220

0.125,0.25,2,2.0 172 0.172 172 0.172 0.173 0.172
0.05,0.5,2,2.0 .351 0.350 .352 0.352 0.359 0.348

The exercise price is 2.0, S is the initial price of the
underlying asset, GE is the Geman-Eydeland method, PW is
the Post-Widder method, and TW is the Turnbull-Wakeman
method.
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Part 7:

Looking into the Future
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Do We Really Have To Compute It?

Think of the option values as the range of a function

If the surface of the function is reasonably smooth, we
may invest few nights’ work in approximating the surface

Afterwards, we only need to interpolate from the surface

Issues
— Will this work for complex options?

— How many data points are needed?
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Conclusions
Derivatives pricing draws ideas from many fields
Efficient algorithms allow more strategies to be explored

Much work remains to be done

Guarded optimism: inherent complexity is probably not

a problem
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