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Abstract

Moving-average-type options are complex path-dependent deriva-
tives whose payoff depends on the moving average of stock prices.
This paper concentrates on two such options traded in practice: the
moving-average-lookback option and the moving-average-reset option.
Both options were issued in Taiwan in 1999, for example. The moving-
average-lookback option is an option struck at the minimum moving
average of the underlying asset’s prices. This paper presents effi-
cient algorithms for pricing geometric and arithmetic moving-average-
lookback options. Monte Carlo simulation confirms that our algo-
rithms converge quickly to the option value. The price difference be-
tween geometric averaging and arithmetic averaging is found to be
small. As it takes much less time to price the geometric-moving-
average version, it serves as a practical approximation to the arithmetic-
moving-average version. When applied to the moving-average-lookback
options traded on Taiwan’s stock exchange, our algorithm gives al-
most exactly the issue prices. The numerical delta and gamma of
the options reveal subtle behavior and have implications for hedging.
The moving-average-reset option is struck at a series of decreasing
contract-specified prices based on moving averages. Similar results
are obtained for such options using the same methodology.
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1 Introduction

Path-dependent derivatives are derivative securities whose payoff depends
nontrivially on the price history of the underlying asset. Some path-dependent
derivatives such as lookback and reset options can be efficiently priced. Oth-
ers, however, are known to be difficult to price as surveyed in Lyuu (2002).
Options based on the arithmetic average of the underlying asset’s prices—
such as the (arithmetic) Asian option—are prominent examples. As these
options typically lack simple closed-form solutions, the development of nu-
merical algorithms is essential.

This paper focuses on moving-average-type options. They are path-
dependent derivatives whose payoff depends on the moving average of the
stock prices. For many investors, moving average is a popular technical mea-
sure for a short-term trend in or a fair value of the stock price. This paper
concentrates on two such options found in practice: the moving-average-
lookback option and the moving-average-reset option. The moving-average-
lookback option is struck at the minimum moving average of the underlying
stock prices over a contractual period. The moving-average-reset option is
similar. It is struck at a series of decreasing contract-specified prices over a
contractual period based again on the moving averages. These two options
were traded on Taiwan’s exchange, for example. In practice, both options
use arithmetic average and are American-style. Our algorithmic method-
ology is the same for both options and is applicable to a wide variety of
moving-average-type options.

The reset feature makes the option useful in portfolio insurance as it
protects the investors amidst stock price declines. The advantages of using a
moving average instead of the stock price alone, as in ordinary reset options,
are (1) to mitigate the possibility of stock price manipulation, especially
for thin or shallow markets, (2) to provide a strike price correlated with a
perceived price trend or fair value, and (3) to lower the option price compared
with ordinary reset options. These advantages make the products appealing
to some investors.

Taiwan’s listed options market was born in 1997. Table 1 documents its
trading activities over the 1997-2001 period. Options whose strike prices
are related to the arithmetic moving average of the underlying stock prices
were first issued in 1997. The issuance of options with similar features was
particularly active in 1999 and involved all the major players in the capi-
tal market. Among them, the most prominent examples are the moving-
average-lookback options and the moving-average-reset options, the focus of
the paper. Moving-average-type options made up a significant portion of the
listed options market in 1999. In that year, a total of 13 moving-average-type



options were issued. Their combined premium stood at 3.07 billion TWD,
which was nearly 23% of the market (see Table 2).!

The price that comes with the above-mentioned advantages is complexity.
The moving-average-lookback option contains the features of Asian, look-
back, and reset options, while the moving-average-reset option contains the
features of Asian and reset options. It is the combination of features and the
adoption of a moving average that make the options so difficult to price. This
paper will concentrate on the moving-average-lookback option (MAL, here-
after). The slightly simpler moving-average-reset option (MAR, hereafter)
can be handled by the same methodology and hence will receive less cover-
age. At any rate, the general conclusions for MARs are similar to those for
MALS.

Pricing moving-average-type options is an intricate problem. Throughout
the paper S; denotes the stock price at date ¢. Let m; be the 6-day moving
average at date ¢, where ¢t > 5; thus
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Even given the previous day’s moving average,
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m,; remains dependent on the earlier price S;_g because
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This shows that process (my, S;) is not Markovian. In contrast, the averaging
process (A, S;) most relevant in pricing Asian options, where
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Recall that the payoff of the Asian option is a function of A;. Moving average
hence introduces complexity not present in Asian options.

Although process (my, S;) is not Markovian, the 6-day moving window
(Si—5, St—4, St_3,St_2, 51, S;) clearly is. It is a moving window instead of the

!The average exchange rate in 1999 was 32.27 TWD/USD.
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fixed window utilized by A; because the starting date of the 6-day averaging
window moves with the passage of time. The 6-day stock prices certainly
suffice to calculate the 6-day moving average m;. The main reason the moving
averaging process (my, S;) is non-Markovian is, therefore, that the order of
the 6 stock prices comprising m; counts. The requirement to keep track
of the order of individual stock prices complicates the design of numerical
algorithms. This paper develops practical resolution-reduction methods to
lower the amount of information needed to encode the states.

Absent analytic formulas, the Monte Carlo method is always available
(see Boyle, Broadie, and Glasserman (1997)). But it suffers from the inabil-
ity to handle early exercise. Recently, Longstaff and Schwartz (2001) have
developed a least-squares Monte Carlo approach to tackle the early-exercise
problem. A common disadvantage of both methods is that the resulting op-
tion value is probabilistic. The alternative deterministic tree method can
handle early exercise. The challenge lies in designing efficient tree-based al-
gorithms. This paper will develop algorithms based on the CRR binomial
model. Monte Carlo simulation is used to verify the calculated prices. Be-
sides being accurate, the algorithms converge quickly to the option value.
Interestingly, the price difference between geometric and arithmetic MALs is
very small. As it takes much less time to price the geometric version, it is a
practical approximation to the arithmetic version.

When the algorithms are applied to the actual contracts traded in Taiwan,
their issue prices are essentially obtained exactly. Such excellent matches
in market prices independently confirm the accuracy and practicality of the
methodology. Subsequent data after the issue date show patterns of volatility
qualitatively typical of Taiwan’s traded securities. Sensitivity measures are
needed for hedging purposes. Numerical data will reveal subtle behavior in
deltas and gammas for moving-average-type options. They have implications
for traders engaged in risk management and hedging.

There is scarcely any prior work on the pricing of moving-average-type
options. Cheng and Zhang (2000) discuss an option similar to the MAL.
However, it is based on geometric, continuous averaging over a fixed window
instead of arithmetic, discrete averaging over a moving window found in prac-
tice and treated in this paper. Zvan, Vetzal, and Forsyth (1999) discuss the
discrete Asian barrier option, but again it is based on a fixed window. Babbs
(2000) and Cheuk and Vorst (1997) discuss lookback options, Gray and Wha-
ley (1997) analyze the S&P 500 bear market warrant with a single reset, and
Hull and White (1993) and Klassen (2001) propose several approximation
algorithms to price Asian options. These works do not translate directly
into solutions to moving-average-type options because they address only one
aspect of the complexities; furthermore, none of them addresses moving aver-
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ages. Chang, Chung, and Shackleton (2000) use the Hull-White paradigm to
price an MAR-like option. But they use fixed windows, and the state-reducing
interpolation scheme lacks convergence guarantees as mentioned in Forsyth,
Vetzal, and Zvan (2001).

The remainder of this paper is organized as follows. The models are
succinctly reviewed in Section 2. Section 3 covers the pricing of geometric
MALS. Section 4 covers the pricing of arithmetic MALs. Section 5 discusses
the numerical delta and gamma of MALs. Section 6 conducts empirical studies
of two arithmetic MALs and two arithmetic MARs traded on the Taipei Stock
Exchange. Section 7 concludes the paper.

2 A Quick Review of the Models

The stock price is assumed to follow the lognormal diffusion,
dS/S = (r —q)dt + o dW,

in a risk-neutral economy with a dividend yield of g. The binomial model in
Cox, Ross, and Rubinstein (1979) will be adopted to approximate the stock’s
price dynamics. That this binomial model, called the CRR model, converges
to the continuous-time model is well-known; see, for example, Heston and
Zhou (2000).

The binomial model has parameters u and d with v > d. From any node
with stock price S, price Su follows with probability p (the up move), and
price Sd follows with probability 1 — p (the down move). If the binomial

model has n periods, covering T years, then u = e"\/m, d = 1/u, and
p=[elr=0T" —d]/(u - d).

Let node (4,7), 0 < j < i < n, stand for the node at time i with j
cumulative up moves and, by implication, :—j cumulative down moves. Node
(i,7) is reached with probability (;) (1 — p)"™7. The resulting topology has
~ n?/2 nodes and will be called the binomial tree.

This paper focuses on calls as puts can be treated similarly. MAL and
MAR have the same payoff function as the vanilla call, but their strike prices
may be lowered in the future. As a consequence, MAL and MAR cannot cost
less than an otherwise identical vanilla call. Recall that the American-style
vanilla call costs more than its exercise payoff if the underlying stock pays no
dividends or is dividend-protected. As American-style MAL and MAR cost as
much as an otherwise identical vanilla call, they cost more than the exercise
payoff, too. Hence they will not be exercised early under the same conditions.



3 Pricing Geometric MALS

This section studies the geometric-moving-average-lookback option (GMAL,
hereafter). The purpose is two-fold. First, a methodology is developed to
price the geometric-averaging version. Second, after the methodology’s ac-
curacy is verified, it is applied to the arithmetic case. Later the arithmetic
and the geometric cases will be found to produce very close prices.

3.1 Defining GMALSs

Daily closing prices are used in calculating moving averages. Let 0,1,...,n
be the n + 1 trading dates on or before the reset date Ty (in years)—or date
n. When calculating an a-day moving average, a stock prices are involved.
The a-day moving product at date 7 is defined as the product of the a prices
up to date :

i
Si—at1Si—at2 S = H Sj, a—1<i<n.
j=t—a+1

The a-day geometric moving average at date 7 is then (H;:Z._GJrl S;)Ye. The

minimum a-day geometric moving average as of the reset date is therefore

a—1 1/a a 1/a n l/a
me, = min (H Sz) s (H SZ) geeey ( H Sz)
1=0 i=1 i=n—a+1

The payoff of the European-style GMAL (EGMAL, hereafter) at expiration
date m > n is max(S,, — X,0) with the strike price

X = max(min(m,, UB), LB).

The seemingly complex strike price is easy to explain. It is struck at the
minimum a-day moving average but must be banded between LB and UB.
LB sets the lower bound on the strike price and UB the upper bound. Both
LB and UB are written in the contract. In Taiwan, for example, UB is set to
So and LB is some proportion (e.g., 90%) of UB. The American-style GMAL
is identical except that in determining the strike price X used at date %, the
moving average m, should be the minimum a-day geometric moving average
up to date 1.



3.2 The Setup of the Binomial Tree

A key feature of the a-day geometric average on the binomial tree is that it
must be Sou¥/® for some integer k. Let kyg be the smallest integer k such
that Sou*/® > UB and ki be the largest integer k such that Syu*/® < LB,
The set of potential moving averages for strike prices is then

{Souk/“ : k is an integer, ki < k < kys},

which contains kyg — kg + 1 numbers.

Assume the binomial tree partitions each day into L periods. The number
of periods before the reset date is therefore nL. The GMAL is identical to the
vanilla call at expiration with the strike price determined earlier at the reset
date. Therefore, to price European-style GMALS, the tree is built up to the
reset date and then the Black-Scholes formula is plugged in at the terminal
nodes. The tree contains ~ (nL)?/2 = O(n%L?) nodes.

The number of nodes can be reduced. Observe that moving averages
involve only daily closing prices. So although the tree covers nL periods, only
nodes falling on dates 0, 1,2, ... ,n are essential. In fact, the (nL)-period tree
can be made n-period without losing information, with one period per day
instead of L. The idea is to keep only those nodes on the dates. Each node
is then linked to those nodes that can be reached in L periods on the original
binomial tree. A node now has L + 1 successor nodes. This creates an n-
period (L + 1)-ary tree with O(Ln?) nodes instead of O(L?n?). For example,
when L = 2, a trinomial tree with half as many periods is created, as shown
in Fig. 1. It is important to note that every branch on the trinomial tree
corresponds to 2 branches on the binomial tree. As another example, when
L = 6, a heptanomial tree with one sixth as many periods results, as shown
in Fig. 2.

Let N(i, j) denote the node on the (L+1)-ary tree at date ¢ with j cumu-
lative up moves—hence ¢ — 5 down moves by implication—on the binomial
tree. Let S(i,7) denote the stock’s price at node N(i,7). Node N(i,j) has
L + 1 successor nodes

N(G+1,5),N@i+1,j+1),... ,NG+1,j+L).

In particular, the ¢th branch takes node N (i, ) to node N(i+ 1,5+ £). The
probability that this branch is followed is

p(t) = (?)pl(l —-p)tt



because it corresponds to £ up moves and L — ¢ down moves on the original
binomial tree. Their stock prices are hence related by

S(i+ 1,7+ €)= S, 5) ud"~" = S(i,j) u*". (1)
By induction, the stock price at node N(i,j) is
S(i,j) = Seu ™", 0<i<n, 0<j<iL.

Nodes on the (L + 1)-ary tree must be augmented with states besides the
stock price. Each state at time ¢ records the a daily stock prices involved in
the average at time t, i.e.,

(St—a+17 S‘t—a—|—27 sy St)

When the next stock price S;;; appears, the new state becomes

(St—a—|—27 St—a—|—37 sy SH—I):

a simple left-shifting operation. Because S;;; is the result of taking one of
the L + 1 branches from S}, a number between 0 and L suffices to represent
that transition. In general, any state (S;_q11, St—at2,--- ,5¢) contains a — 1
transitions; hence it can be represented by a tuple 5155 --S,_1, Where s; €
{0,1,...,L}. The number s; signifies that stock price S; ,.; takes the s;th
branch to reach price Sy 41:+1. By Eq. (1),

_ 2s;,—L
St—atit1 = Spoapitt™ . (2)

Take L = 2 and a = 3 for example. The tree is trinomial. Suppose 0,
1, and 2 mean down, flat, and up movements, respectively (recall Fig. 1).
The state 12 means a flat move and then an up move have been taken to
reach the current state. Table 3 tabulates the (2 + 1)2 = 9 states and their
interpretations.

For completeness, state (S;_q11, St_ar2,--- ,5¢) should be encoded by

(8182 ctSa—1, St)

instead of merely 5755 -5,_1. S; is often dropped because stock price S;
is often implicit and because ambiguity is seldom an issue. Given state
(5183 -~ Sa_1,St), the a — 1 prices preceding S; are, in reverse chronological
order,

Stu(a—l) L—2(sq—1+8q—2++51)

StUL_2Sa71, StUQL_2(5a71+Sa72)7 e



according to relation (2). The a-day geometric average for the state is there-
fore

u(
_ Stu(afl) L/2—2[sq—1(a—1)+Sqa—2(a—2)+++s1 ]/a.

St [uL—28a71u2L—2(sa,1—|—Sa,2) . a—l) L—2(8a71+5a72—|—---—|—31) :| 1/(1.

Recall that state transition is accomplished by left-shifting of the state:

8189 +Sq—1 —* S283 -+ Sq-

The leftmost number s; is dropped as the new number s, is shifted in from
the right. If b is the current state and the transition takes the fth branch,
then the next state is denoted by NEXT(b, £). See Table 4 for the complete
tabulation for the case of 3-day moving average with L = 2.

By making the stock price component of a state explicit, state transition

(8182 “ - Sa-1, St) — (5283 < Say St+1)

can be used to calculate the new a-day moving average. Here, S;,; is the
result of S; taking the s,th branch. Suppose the moving average for the left
state is A. Then the new moving average equals

AaSt+1 1/0, B Aa 1/CL
Stu(afl)L*Q(sa—1+8a—2+-"+51) - wsL—2(satsa—1+8a—2++s1)
A
= uL_2(3a+5a—1+3a—2+"'+51)/a (3)

by relation (2). Define function
MA((5182 -~ 54_1,51), Sa) = k

if the new average is Spu*/®. The computation of MA() can be based on
formula (3).

Take L = 2 and a = 3 for example. Consider node N (7,j) with stock
price Sou*~*F and state 12 from Table 3. The state is the result of a flat
move followed by an up move. After backtracking those moves, node N(i, j)
is reached from node N(i — 1,7 — 2) at date ¢ — 1 and node N(i — 2,j — 3)
at date i — 2. The associated prices are Squ?0U—2)~(=DL and Spu?0-3)-(-2)L
respectively. The 3-day moving average for the state is therefore

{Sgu[ﬁj—3L(i—1)—10] }1/3 = Gyul6i-3L(-1)-101/3,



3.3 Pricing European-Style GMALSs

Let C(3, j; b, k) denote the option price on node N (%, j) with path-dependent
state (b, k). The parameter b encodes the state. But b alone is not sufficient
for pricing purposes; the prevailing strike price is also needed. The integer
k signifies that the minimum a-day moving product of the stock prices up
to date i is S¢uF (equivalently, the moving average is Sou*/*). By contract,
this number is bounded: kg < k < kyg. This feature helps reduce the state
space. This integer k£ will be called the power index. Forward induction can
determine the minimum and maximum k precisely, denoted by mink; ; and
max k; ;, respectively, for each node N(i, 7).

The minimum geometric moving average may change after each transi-
tion. Consider the transition from node N (i, ) with state b and minimum
moving average Syu*/® to node N (i+ 1,7 +£), by taking the £th branch. De-
note the power index of the new minimum a-day moving average by z(b, ¢, k).
By considering how the minimum moving average is affected if (1) the new
moving average is not smaller than the current minimum moving average,
(2) the new moving average is between lower bound LB and the current min-
imum moving average, and (3) the new moving average is smaller than LB,
the following formula obtains:

k, it k < MA(b, £)
2(b,0,k) =4 MA(b, ), if kg < MA(b, L) <k .
kLB; if MA(b,E) < kip

The function z(b, ¢, k) that updates the prevailing strike price is straightfor-
ward to calculate.

Ground has been laid for the pricing algorithm. The terminal payoffs
are given by the Black-Scholes formula for all combinations of stock price
S(n, j) and strike price Syu¥/®, where mink, ; < k < maxk, ;. Inductively,
the backward-induction formula is

i b, K) = Yo P(0) C(i + 1,5 + & NEXT(, £), (b, £, k) 0
R

where mink; ; < k < maxk; ; and R represents the gross riskless return per
day. The option value appears in C(0,0;0,0).

The algorithm for the EGMAL runs in O(n?L%"?) time. Here is the analy-
sis. There is a total of O(n?L) nodes. Each node contains (L+1)%~! possible
b’s and O(L?) possible k’s. Formula (4) takes O(L) time to compute. Mul-
tiply these four bounds to obtain the time bound. As the time bound is
exponential in a, both a and L cannot be large. This is typically the case in
practice.
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3.4 Pricing American-Style GMALSs

For American-style GMALs, two changes must be made. First, the option
holder can exercise the option on or before the reset date. Early exercise is
addressed by taking the maximum of the continuation value C(i, j; b, k) and
the exercise payoff Sou?~* — SyuF/®. Second, after the reset date when the
strike price is set, the option is simply a vanilla American-style call. The
Black-Scholes formula from each state on a terminal node should be replaced
with the familiar binomial tree algorithm to price an American-style option.

3.5 Numerical Results

The binomial tree and Monte Carlo simulation are used to price the 3-day
and 5-day EGMALs. Assume Sy = UB = 50, r = 2%, ¢ = 4%, T =1 (year),
and Ty = 1/12 (year). Suppose there are 22 trading days in a month; hence
n = 22. LB, o, and the moving-average length a will be varied. Fix L = 8 for
the 3-day cases (¢ = 3) and L = 3 for the 5-day cases (a = 5). The pricing
results by Monte Carlo simulation are based on 1,000,000 paths: 500,000 plus
500,000 antithetic.

The numerical results are tabulated in Table 5. Two observations will
be made. First, the prices calculated by the algorithm are within two times
the standard error generated by Monte Carlo simulation. The accuracy of
the algorithm is therefore assured. Second, empirically, the option value
decreases with the moving-average length a and LB, but it increases with o.

The convergence behavior is shown in Fig. 3. The price can be seen to
converge quickly, with accuracy up to two decimal places when the number
of periods per day, L, is at least 3. The pattern of convergence oscillates in
a regular manner. This suggests Richardson’s extrapolation as a heuristic to
improve the accuracy, and it indeed leads to tighter option prices.

4 Pricing Arithmetic MALs

This section applies the same methodology to price the arithmetic-moving-
average-lookback option (AMAL, hereafter). AMAL is similar to GMAL except
that the geometric moving average is replaced with the arithmetic average:

: S

o Yicran S

Mg = min ==l 7
a—1<t<n a

Because of the nonnormality of the logarithm of the arithmetic sum of stock
prices when modeled by the geometric Browning motion, the same complexity
issue facing Asian options reappears.
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4.1 Pricing AMALS on the Binomial Tree

A strike price must be some moving average. In preparation for the algo-
rithm, all the possible strike prices between LB and UB are enumerated and
put in table M, sorted from the smallest to the largest:

LBSM(l) < "'SM(kmax) SUB,

where k.., is the size of M. The possible strike prices in the arithmetic
version therefore form the set

{M (k) : k is an integer,1 < k < kpax}-

The basic computational structure remains the same as in the geometric
version. Let C(3,j; b, k) denote the option price on node N(i,j) with path-
dependent state (b, k). The number b is the same as in the GMAL case.
Integer k is an index into the table M such that M(k) is the prevailing
strike price. As M grows exponentially in a, its size should be reduced
further. The algorithm simply rounds the strike prices in M to 3 decimal
places.? The reduced resolution has the effect of equating strike prices in
M that are close to each other such as 20.0001 and 20.0004. Take LB = 45
and UB = 50 for example. The set of possible strike prices is a subset of
{45.000, 45.001, ... ,50.000}, about 5001 in number. The size of M can thus
be treated as a constant.

Let MA(b, ) denote the new moving average after taking the fth branch
at node N (i, j) with state b. For any moving average y, let function f(y) give
the index k of (rounded) y in table M, i.e., M(f(y)) = y. Such a function
can be easily computed and put in a table once and for all for fast lookup
later. The backward-induction formula for the AMAL is identical to that for
the GMAL in formula (4) except for the definition of x(b, ¢, k). This function
now becomes

k, if M(k) < MA(b, ¢)
z(b b, k) = f(MA(b, 0)), if LB < MA(b,¢) < M(k)
1, if MA(b,¢) < LB

The explanation is the same as before. The overall pricing structure thus
mirrors that in the geometric case.

The algorithm runs in O(n?L%™!) time. Although the time bound seems
lower than that for the GMAL, the opposite is typically true in practice. The
reason is the big constant factor in the running time.

2The idea comes from the fact that quoted prices are rounded to 2 decimal places in the
markets. It turns out that 3 decimal places already demonstrate excellent accuracy even
though some information is lost. See Dai and Lyuu (2002) for a more elaborate approach.
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4.2 Numerical Results

With the same parameters as in the geometric version, Table 6 demonstrates
that the prices of European-style AMALs (EAMALS, hereafter) are close to the
earlier geometric counterparts in Table 5. The convergence is quite fast as
shown in Fig. 4. The price of a GMAL is greater than that of an otherwise
identical AMAL because of the smaller mean of the geometric average. This
claim is proved rigorously in Fang (2002). Although their price difference
increases with the moving-average period a and volatility o, it remains small.
Figure 5 shows that the difference is quite stable when L > 3. As it takes
much less time to price the GMAL, it is a good approximation to the AMAL
in practice.

5 Some Greeks

Delta and gamma are key to risk management and hedging. Because of the
price similarity between GMAL and AMAL, EGMAL will be the focus. The
general observations made below apply to all MALs, however. The sensitivity
of MAR will also be studied. The formulas to compute the sensitive measures
are from Pelsser and Vorst (1994).

5.1 Delta

Figure 6 shows option prices with different combinations of LB and UB. In
the extreme case when UB = LB, the EGMAL reduces to a vanilla call. The
price difference between the vanilla call and the EGMAL diminishes as Sy
increases. When Sy decreases, on the other hand, the reset feature makes
the EGMAL’s price decrease more slowly than the vanilla call’s. An interest-
ing feature of the figure is the concavity of the EGMAL price when the stock
price falls between LB and UB. It suggests nonmonotonicity in the value
of delta, unlike the vanilla call. This phenomenon reflects the two forces
determining the option value. As the stock price decreases, the downward
stock price tends to drag down the option value, whereas at the same time
the prospect of a lower strike price tends to raise the option value. When the
stock price is between LB and UB, the strike-price effect is at its strongest
and is able to counteract the decrease in the option value. The option holder
is therefore protected by the downward-reset feature. When the stock price
penetrates below LB, however, the stock-price effect dominates, and the pro-
tection ceases to exist.

Figure 7 explores this issue with delta information. Indeed, the delta of
EGMAL is not a monotonically increasing function of Sy. Looked at more
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closely, the delta is a decreasing function of the stock price when the stock
price is roughly between LB and UB.

5.2 Gamma

Delta’s complex behavior suggests a similar case for gamma, and Figure 8
confirms that. Gamma is negative roughly between LB and UB; for vanilla
European-style calls, in contrast, gamma is always positive. When a se-
curities firm writes a derivative security with a positive gamma, the firm’s
position has a negative gamma. In that case, the delta hedge strategy will
result in hedging losses—the so-called gamma risk. A delta-gamma hedge
strategy may be followed instead. This is especially relevant when the un-
derlying stock price is volatile or when the hedging frequency is low. The
opposite is true when the derivative has a negative gamma. Apparently,
issuing a derivative with negative gamma benefits the issuer.

MAL without an LB is an extreme case. Gamma is essentially zero for
So < UB, which implies that the option value decreases with the underlying
stock price in roughly a linear manner. This reflects the fact that the strike
price can be continuously adjusted down to zero.

5.3 Delta Jumps of MARs

One more parameter Ng is added in the specification of MARs. The MAR has
N reset strike prices set linearly between LB and UB:

UB — h,UB — 2h,... ,LB,

where h = (UB — LB)/N;. The strike price is changed to the lowest reset
strike price that the prevailing moving average touches or penetrates.

Like most reset options, the feature of discrete reset strike prices makes
the MAR witness delta jump at the stock price such that the strike price is
lowered. Hence MAR can be very sensitive to the stock price. Consider an
arithmetic MAR (AMAR, hereafter) at the reset date n. The prevailing strike
price is 50, a = 3, S, = S,_1 = 50, LB = 48, UB = 50, and Ny = 2. The
reset strike prices are thus 49 and 48. Clearly, the strike price will be revised
down to 49 if 44 < §5,, < 47, and down to 48 if S,, < 44. This results in two
kinks for the option value and two delta jumps at S,, = 47 and S,, = 44 as
shown in Fig. 9.

Because the delta jump depends on past a — 1 stock prices, it makes the
stock price at the reset date, S,, play a less critical role in MAR than for
ordinary reset options, whose strike price depends solely on the stock price.
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The probability of a delta jump at the reset date is also smaller. This is yet
another advantage of MARs.

6 Empirical Studies

Now that the performance of the algorithms has been assured and sensitivity
measures studied, the paper turns to empirical studies using them. The fo-
cus is on pricing and delta-hedge effectiveness. Two American-style AMALSs,
PLO6 and PLO7 issued by Polaris Securities, and two American-style arith-
metic MARS, GCO6 and NS02 issued by Grand Cathay Securities and National
Securities, respectively, will be the targets of study.

The contracts are specified in Table 7, and the ensuing parameter setups
for the algorithms are tabulated in Table 8. The prices calculated by the algo-
rithms, in Table 9, are essentially identical to the issue prices: 26.81 ~ 26.98,
16.67 ~ 16.76, 19.88 =~ 20, and 19.89 ~ 20.25. The relative differences be-
tween the implied volatilities calculated by the algorithms and those released
by the securities firms are less than 1%. The GMAL approximations are also
very tight for PLO6 and PLO7. Prices calculated by both AMAL and GMAL al-
gorithms are within one standard error of the Monte Carlo simulation based
on 2,000,000 paths (1,000,000 plus 1,000,000 antithetic). The tightness of
the results gives us confidence in their respective correctness.

The implied volatilities of PL06 and PLO7 in Figs. 10 and 11 are calculated
with the AMAL algorithm up to September 18, 1999.% The two plots show that
the volatilities lie within the range of 55% and 65%. This level of volatility
is typical of stocks in Taiwan. Interestingly, there is obvious divergence
of movements between implied volatilities and the underlying stock prices
in both figures. Because these options are issued in fixed quantities, they
may carry a fixed-supply premium. This feature also makes short selling
somewhat constrained.

Delta hedge for a short option position will be investigated for the two
American-style AMALs: PL06 and PLO7. Daily hedging is adopted. The
experiments show that, on September 20, 1999, a hedge loss of 2.24 TWD
(—8.30%) is incurred on PL06, and a hedge loss of 0.06 TWD (—0.03%)
is incurred on PLO7. This is probably because of the increase in volatilities
during this period: The issue volatilities are 54.80% and 54.95% for PL06 and
PLO7, respectively, whereas the implied volatilities on September 20, 1999,

3Because of a major earthquake on September 21, 1999, the Taipei Stock Exchange
was shut down from September 21 to September 26. Therefore, the implied volatilities in
Fig. 11 stop on September 20, 1999. After September 27, all the options were no longer
resettable (review Table 7) and became vanilla calls.
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are 63.82% and 58.24%. Observe also that during the period, the prices of the
underlying asset of PL06 exceed UB, whereas those of PLO7 move between
LB and UB. The previous section implies that these price behaviors will
disadvantage the hedging of PL06 but benefit the hedging of PLO7 because of
negative gamma. These inferences are consistent with the above findings.

7 Conclusions

This paper develops a general methodology for pricing moving-average-type
options. In particular, it gives practical algorithms for the moving-average-
lookback option and the moving-average-reset option. Both options were
traded on Taiwan’s exchange, for example. The algorithms converge quickly
to the correct value as verified by simulation. Interestingly, the price differ-
ence between the geometric and arithmetic moving-average-lookback options
is very small. As it takes much less time to price the geometric version, it
is a good approximation to the arithmetic version. The delta and gamma of
these options are investigated and found to possess complex behavior. This
phenomenon has implications for hedging. The algorithms are tested empir-
ically against those moving-average-type options traded on Taiwan’s stock
exchange. The results show surprisingly tight matches in the issue prices and
implied volatilities supplied by the issuers. When applied to delta hedge, the
algorithms show conclusions consistent with those suggested by the numerical
results.
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Table 1:

Listed Options Market in Taiwan: 1997-2001

Year Issue Premium Issue Volume Trading Volume per Year
(Millions TWD)  (Millions of Shares) (Millions TWD) (Millions of Shares)
1997 4,032 204 1,960 165
1998 4,743 270 13,069 1,492
1999 13,381 866 64,782 3,807
2000 12,668 1,110 162,262 11,588
2001 4,772 893 28,440 7,784

Note. These options were called warrants because they were issued in fixed
quantities. They were listed by the Taiwan Stock Exchange Corporation
(TSEC). Options in Taiwan are dividend-protected. TWD: New Taiwan
dollar.
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Table 2:

Moving-Average-Type Options Issued in 1999 on the Taipei Stock Exchange

Contract Type Issue Date Issue Volume Issue Premium

(Thousands of Shares)  (Millions TWD)
GCO6 Reset 28-Apr 10,700 216.68
GCO7 Reset 27-May 17,500 239.40
GCO8 Reset 09-Jun 10,000 248.30
GCO09 Reset 14-Jun 13,600 206.86
GC10 Reset 20-0ct 12,000 262.44
YTO7 Reset 23-Nov 22,000 226.64
NS02 Reset 16-Jun 10,000 200.00
NS03 Reset 13-Sep 10,000 205.00
FBO1 Reset 08-Jul 20,000 220.00
FB02 Reset 18-Aug 18,000 306.00
CS04 Reset 04-Sep 11,700 216.74
PL06 Lookback  21-Aug 10,000 269.80
PLO7 Lookback  27-Aug 15,000 251.40

Note. All the options have a maturity of one year. To put the numbers in
perspective, the total dollar amount of options issued in 1999 was 13.4 mil-
lion TWD. GC: Grand Cathay Securities (capital 10.5 billion TWD); YT:
Yuanta Securities (capital 11.7 billion TWD); NS: National Securities (cap-
ital 8 billion TWD); FB: Fubon Securities (capital 10.5 billion TWD); CS:
Capital Securities (capital 9.2 billion TWD); PL: Polaris Securities (capital
6 billion TWD). The capitalization figures are based on 1999 filings.
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S (4, 5) u? S(i,4) u?

S(i, ) S(i, 4) ® 5(i,5)

S@i,j)u? S@i,j)u?
(2,7) 1 day (z,7)

(b)

Figure 1:

Turning a Binomial Tree into an (L + 1)-ary Tree: L = 2. (a) A 2-period
binomial tree covering one day. (b) A I1-period trinomial tree covering one
day after the intermediate nodes are removed from the binomial tree of (a).
A period for the trinomial tree lasts twice as long as that for the binomial
tree. A down move on the trinomial tree (b) corresponds to 2 down moves
on the binomial tree (a). A flat move on the trinomial tree corresponds to a
total of 1 up move and 1 down move on the binomial tree. An up move on
the trinomial tree corresponds to 2 up moves on the binomial tree.
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SGE+1,j+6)=S(i,7)ub
SGE+1,54+5)=5(,7)u*
SGE+1,j+4)=8(i,j)u?
S(i,7) @ S(i+1,7+3)=5(,7)
SGE+1,j+2)=S(i,j5)u?
SGE+1,7+1)=5@,7)u*
] @ oy ® 5(i+1,4) = S(i.j)u®
Figure 2:

Turning a Binomial Tree into an (L+1)-ary Tree: L = 6. Because a 6-period
binomial tree has 7 terminal prices, a heptanomial tree obtains. For example,
S(i+1,j+4) is reached by taking 4 up moves (hence 2 down moves) on the
original binomial tree.
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Table 3:

Encoding 2-Day Movements

State Moves on Binomial Tree
00 O0up move 4 down moves
01 1up move 3 down moves

02 2 up move 2 down moves
10 1 up moves 3 down moves
11  2up move 2 down moves
12 3 up moves 1 down moves
20 2up move 2 down moves
21 3 up moves 1 down move
22 4 up moves 0 down move

Note. Graphically from Fig. 1(b), 0, 1, and 2 mean down, flat, and up
movements, respectively. Figure 1(a) gives a more complete picture: 0 means
2 down moves, 1 means a total of 1 down move and 1 up move, and 2 means
2 up moves, all referring to the original binomial tree.
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Table 4:

State Transition for 2-Day Movements

Current State b One-Day Forward NEXT(b, £)

00 0/
01 14
02 20
10 0/
11 14
12 20
20 0/
21 14
22 Y

Note. The branch taken is /. The new state results from dropping the
leftmost number and appending ¢ from the right. Assume ¢ = 3 and L = 2.
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Table 5:

Pricing EGMALSs

a=3,L=28 a=5 L=3

LB o CRR MC SE CRR MC SE
0.3 6.1689 6.1712 ( ) 6.0769 6.0745 ( )

45 04 8.1916 8.1942 ( ) 8.0924 8.0871 ( )
0.5 10.1367 10.1392 ( ) 10.0360 10.0339 ( )

0.3 6.2694 6.2723 ( ) 6.1566 6.1521 ( )

40 04 8.4219 8.4242 (0.0026) 8.2832  8.2797 (0.0027)
( ) ( )

( ) ( )

( ) ( )

( ) ( )

0.5 10.4953 10.4992 10.3402 10.3332
0.3 6.2714 6.2731 6.1579  6.1551
35 04 8.4414  8.4460 8.2970  8.2922
0.5 10.5581 10.5604 10.3882 10.3836

Note. The parameters are S; = UB = 50, r = 2%, ¢ = 4%, T = 1, and
T, = 1/12 (n = 22). SE is the standard error of Monte Carlo simulation
(MC) based on 1,000,000 paths: 500,000 plus 500,000 antithetic.
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Figure 3:

Convergence of the EGMAL Algoerithm. The parameters are Sp = UB = 50,
oc=40%,r = 2%, g = 4%, T = 1, n = 22, and a = 3. EG* and MC
represent the prices obtained by Richardson’s extrapolation and the Monte
Carlo simulation (MC), respectively. Monte Carlo simulation (MC) is based
on 1,000,000 paths: 500,000 plus 500,000 antithetic. Here, MC gives a vlaue
of 8.1942 with a standard error of 0.0029. A band with a width of 2 standard
errors above and below MC is plotted for reference.
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Table 6:

Pricing EAMALS

a=3,L=28 a=5 L=3

LB o CRR MC SE CRR MC SE
0.3 6.1684 6.1706 ( ) 6.0757  6.0726 ( )

45 04 8.1909 8.1933 ( ) 8.0907 8.0864 ( )
0.5 10.1358 10.1380 ( ) 10.0340 10.0314 ( )

0.3 6.2688 6.2715 ( ) 6.1552  6.1507 ( )

40 0.4 8.4209 8.4225 (0.0026) 8.2809  8.2775 (0.0027)
( ) ( )

( ) ( )

( ) ( )

( ) ( )

0.5 10.4937 10.4987 10.3371 10.3299
0.3 6.2708 6.2724 6.1564  6.1542
35 04 8.4404  8.4449 8.2946  8.2881
0.5 10.5563 10.5573 10.3847 10.3812

Note. The parameters are S; = UB = 50, r = 2%, ¢ = 4%, T = 1, and
T, = 1/12 (n = 22). SE is the standard error of Monte Carlo simulation
(MC) based on 1,000,000 paths: 500,000 plus 500,000 antithetic.
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Figure 4:

Convergence of the EAMAL Algorithm. The parameters are Sy = UB = 50,
o=40%,1r=2%,q=4%,T =1, T, = 1/12 (n = 22), and a = 3. EA*
and MC represent the prices obtained by Richardson’s extrapolation and the
Monte Carlo simulation, respectively. The MC result is based on 1,000,000
paths: 500,000 plus 500,000 antithetic. It gives a value of 8.1933 with a
standard error of 0.0029. A band with a width of 2 standard errors above
and below MC is plotted for reference.
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Price Difference of GMAL and AMAL. Both European style and American
style are considered. The parameters are Sy = UB = 50, o = 40%, r = 2%,
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L

Figure 5:

q=4%,T=1,T,=1/12 (n=22), and a = 3.
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L C_00 50
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Figure 6:
Dependency of EGMAL’s Price on Lower and Upper Bounds. The parameters
are 0 = 30%, r =2%,q=4%,T =1,T, =1/12 (n=22), L = 3, and a = 3.
C_x_y means the EGMAL comes with LB =x and UB =y.

30



1.0

—— Delta 45 50
08 | |——Ddta 40 50
------- Delta_00_50
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Figure 7:
Delta of EGMAL. The parameters are o = 30%, r = 2%, ¢ = 4%, T = 1,
Ts =1/12 (n=22), L = 3, and a = 3. Delta_x_y means LB = x and UB =y.
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Figure 8:

Gamma of EGMAL. The parameters are o = 30%, r = 2%, ¢ = 4%, T = 1,
Ty, =1/12 (n = 22), L = 1, and ¢ = 3. Gammax_y means LB = x and
UB =y.
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Figure 9:
Delta of AMAR at Reset Date. The parameters are S, o = S,_1 = 50,
o=30%, r=2%,q=4%,T =11/12, n =0, a = 3, LB = 48, UB = 50,
and N; = 2 (thus, reset strike prices are 49 and 48). The prevailing strike
price is 50.
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Table 7:

Contract Specifications of PL06, PL0O7, GCO6, and NS02

PL06 PLO7 GCO06 NS02
Type Lookback Lookback Reset Reset
Issue date 08/21/°99 08/27/°99 04/28/°99 06/16/°99
First trading date 09/02/°99 09/06/°99 05/12/°99 06/30/°99
Reset date 09/20/°99 09/27/°99 08/11/°99 07/15/°99
Expiration date 09/01/°00 09/05/°00 05/11/°00 06/29/°00
Moving-average period (days) 6 6 6 3
UB 103.75 64.45 81.00 81.30
LB 0.9xUB  09xUB 09xUB  0.9xUB
Number of reset strike prices — — ) )
Issue volatility 54.38% 54.58% 49.10% 50.43%
Issue price (TWD) 26.98 16.76 20.25 20.00

Note. Information is provided by the issuing firms.
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Table &:

Parameter Setups for PL06, PL07, GCO6, and NS02 for the Tree Algorithm

PLO6 PLO7 GCO6 NS02
So 103.75 64.45 81.00 81.30
UB  103.75 64.45 81.00 81.30
LB 93.38 98.01 72.90 73.17

o 54.38% 54.58% 49.10%  50.43%
r 5.00%  5.00%  5.00%  5.00%
g  0.00% 0.00% 0.00%  0.00%
T 378/365 376/365 380/365 380/365
T, 31/365 32/365 105/365 30/365
n 24 24 81 21
a 6 6 6 3
L 2 2 2 11
N, — — 5 5
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Table 9:

Prices and Volatilities of PL06, PL07, GCO6 and NS02

AMAL AMAR
PLO6 PLO7 GCO6 NS02
CRR 26.8125 16.6689 19.8866 19.8841
GMAL approximation (CRR) 26.8181 16.6725 — —
MC 26.8160 16.6714 19.9003 19.8786
Standard error 0.0071  0.0045 0.0104  0.0050

Implied volatility by CRR 54.80% 54.95% 49.50% 50.78%

Note. The parameters are based on Table 8. Recall the earlier proof that
says MAL and MAR will not be exercised early when options are dividend-
protected, as is the case here. Monte Carlo simulation thus gives valid results
even if the MAL and MAR above are American-style.
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Figure 10:

Implied Volatilities of PLO6.
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Figure 11:

Implied Volatilities of PLO7.
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