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Abstract

The trinomial-tree GARCH option pricing algo-
rithm of Ritchken and Trevor (1999) is claimed to
be efficient. That algorithm is subsequently mod-
ified by Cakici and Topyan (2000). However, this
paper proves that both algorithms explode expo-
nentially when the number of partitions per day,
n, exceeds a typically small number determined
by the GARCH parameters. Worse, when explo-
sion happens, the tree cannot grow beyond a cer-
tain maturity date and the usual tradeoff between
accuracy and efficiency ceases to exist. Hence the
algorithms must be limited to using small n’s,
which may have accuracy problems. Numerical
data confirm the theoretical results. The problem
of designing efficient tree-based GARCH option
pricing algorithms therefore remains open.

Keywords: GARCH, trinomial tree, path de-
pendency, option

1 Introduction

Efficient numerical algorithms are paramount to
derivatives pricing. Because the exponential
function grows so fast, exponential-time algo-
rithms present the difficult choice between accu-
racy and reasonable running time much earlier
than polynomial-time algorithms. Exponential-
time algorithms are therefore said to suffer from
combinatorial explosion.

In pricing derivatives numerically, the diffusion
process of the asset price can be discretized to

yield a tree structure. Derivatives can then be
priced on the tree. The lognormal diffusion, for
instance, gives rise to the well-known CRR bino-
mial tree of Cox, Ross, and Rubinstein (1979).
Two critical features of the CRR tree, as well
as its many variations, are that it recombines
and that an m-period tree contains only O(m2)
nodes. As a consequence, vanilla options can be
efficiently priced. Efficient as the tree may be, a
pricing algorithm based on it may still explode
if the derivative itself is complex. The Asian
option fits this characterization because of the
vast amount of extra states added by its path-
dependent feature. To tackle this problem, ap-
proximations are necessary as surveyed in Lyuu
(2002).

A qualitatively more serious problem emerges
when the explosion arises from the model itself.
If the model generates unrecombining trees, pric-
ing can be expensive even for simple derivatives
like the vanilla option. When the volatility is
not a constant, such as the interest rate model
of Cox, Ingersoll, and Ross (1985), a brute-force
discretization leads to trees that do not recom-
bine: An m-period binomial tree now contains
2m+1 − 1 nodes. The situation may be rectified
by a technique of Nelson and Ramaswamy (1990)
to transform the diffusion process into one with
a constant volatility. But the methodology, even
where applicable, does not guarantee to reduce
the tree size to subexponential. The complexity
issue is particularly relevant when the diffusion
process is bivariate. Two bivariate models are the



interest rate model of Ritchken and Sankarasub-
ramanian (1995) and the GARCH option pricing
model of Duan (1995), the focus of this paper.

Bollerslev (1986) and Taylor (1986) indepen-
dently propose the GARCH process popular in
modeling the stochastic volatility of asset re-
turns. Duan (1995) later applies the model to
options pricing. Because of the massive path de-
pendency of the model, simulation has been the
algorithm of choice. The situation changes with
the appearance of the tree algorithm of Ritchken
and Trevor (1999). Their algorithm is claimed to
be efficient; furthermore, it is general enough to
work beyond GARCH models.

This paper investigates the performance of the
Ritchken-Trevor algorithm and its modified ver-
sion by Cakici and Topyan (2000). The re-
sults are discouraging, both theoretically and nu-
merically. It will be shown that the Ritchken-
Trevor-Cakici-Topyan (RTCT) algorithm creates
exponential-sized trees. The condition for this
combinatorial explosion mirrors that for GARCH
to be nonstationary. It is satisfied when the num-
ber of partitions per day, n, exceeds a typically
small number. The algorithm is hence not effi-
cient unless the tree is restricted to small n’s.

Now suppose one is willing to trade efficiency
for better accuracy with a large n. Such a trade-
off usually exists for numerical algorithms. But
this sensible practice turns out to be impossible:
When explosion occurs, the RTCT tree cannot
grow beyond a certain maturity. This extremely
negative result obliterates the tradeoff between
accuracy and efficiency taken for granted in the
literature. It also throws into question some
of the calculated prices in Ritchken and Trevor
(1999). All the theoretical results are backed up
by numerical data. The existence of efficient tree-
based GARCH option pricing algorithms there-
fore remains open.

The paper is organized as follows. The
GARCH model is presented in Section 2. Sec-
tion 3 reviews the essence of the RTCT tree.
In Section 4, conditions for the tree to explode
exponentially are proved. The nonexistence of
the tradeoff between efficiency and accuracy is
proved in Section 5. Section 6 provides numer-
ical data to back up the theoretical results and
throw into question some of the calculated prices
in Ritchken and Trevor (1999). Section 7 con-
cludes.

2 The GARCH model

Let St denote the asset price at date t and ht

the conditional volatility of the return over the
(t + 1)st day [ t, t + 1 ]. Here, “one day” is a
convenient term for any elapsed time ∆t. The
following risk-neutral process for the logarithmic
price yt ≡ lnSt is due to Duan (1995):

yt+1 = yt + r − h2
t

2
+ htεt+1,

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (1)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

It is postulated that β0, β1, β2 ≥ 0 to make the
conditional variance h2

t positive. Further impose
β1 + β2 < 1 to make the model stationary. The
violation of a version of this inequality will be
shown to make the RTCT tree explode. Pro-
cess (1) for conditional variance, due to Engle
and Ng (1993), is called the nonlinear asymmet-
ric GARCH.

3 Building the Tree

The RTCT trinomial tree approximates the
continuous-state GARCH process with discrete
states. Partition a day into n periods. Three
successor states will follow each state (yt, h

2
t ) af-

ter a period. As the trinomial tree recombines,
2n + 1 states at date t + 1 follow each state
at date t. We next pick the jump size and the
branching probabilities to match the distribution
of yt+1. Let γ = h0 and γn = γ/

√
n . (Our re-

sults will be seen to be independent of how γ is
picked.) The jump size will be some integer mul-
tiple η of γn. See Fig. 1 for illustration. Note
that the middle branch does not change the un-
derlying asset’s price. The probabilities for the
up, middle, and down branches are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (2)

pm = 1 − h2
t

η2γ2
, (3)

pd =
h2

t

2η2γ2
− r − (h2

t /2)

2ηγ
√

n
. (4)



The intermediate nodes between dates are dis-
pensed with to create a (2n + 1)-nomial tree
as in Fig. 2 to reduce the node count. The
resulting model is multinomial with 2n + 1
branches from any state (yt, h

2
t ). From Eqs. (2)–

(4), valid branching probabilities exist (i.e., 0 ≤
pu, pm, pd ≤ 1) if and only if

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min(1−| r − (h2

t /2) |
2ηγ

√
n

,
1

2
).

(5)
The updating rule (1) must be modified to

account for the adoption of the discrete-state
model. For −n ≤ ` ≤ n, state (yt, h

2
t ) at date

t is followed by state (yt + `ηγn, h2
t+1) at date

t + 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′

t+1 − c)2, (6)

ε′t+1 =
`ηγn − (r − h2

t /2)

ht

.

This transition happens with probability

∑

ju,jm,jd

n!

ju! jm! jd!
pju

u pjm

m pjd

d ,

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` =
ju − jd.

As volatility ht changes through time, we may
have to pick different η’s for different states so
that pu, pm, and pd lie between 0 and 1. This
implies varying jump sizes. As the necessary re-
quirement pm ≥ 0 implies η ≥ ht/γ, we go
through

η = dht/γ e, dht/γ e + 1, dht/γ e + 2, . . . (7)

until valid probabilities are obtained or until
their nonexistence is confirmed by inequalities
(5). Obviously, the magnitude of η grows with
ht. Backward induction starts after the tree has
been built.

Figure 3 depicts a 3-day tree with n = 1.
Nodes A and B pick η = 2. Observe that dif-
ferent states may pick different η’s. The number
of possible values of ht at a node can be expo-
nential as each path leading to the node carries a
different ht. To handle this complexity, only the
maximum and minimum ht are recorded at each
node. For example, the maximum and minimum
ht at nodes C and D pick different jump sizes.
Ritchken and Trevor (1999) add extra volatilities

between the maximum and minimum h2
t . Be-

cause these interpolated volatilities can only in-
crease the range of future volatilities, our analy-
sis will stand without considering them. Hollow
nodes in Fig. 3 are not occupied because they are
unreachable. As will be shown later, their count
is minuscule.

4 Sufficient Conditions for

Explosion

One typically increases n for better accuracy.
Unfortunately, the maximum value of ht grows
exponentially in t if n is large enough. When
this happens, the tree explodes because it must
pick an η that expands exponentially by virtue
of Eq. (7). Hence the RTCT tree must be re-
stricted to small n’s to have any hope of being
efficient. We next provide the argument for the
claimed exponential growth of ht.

Assume r = 0 and c = 0 first. The updating
rule (6) is now

h2
t+1 = β0 + β1h

2
t + β2

[

`ηγn + (h2
t /2)

]2
,

where ` = 0,±1,±2, . . . ,±n. To make h2
t+1 as

large as possible, set ` = n. The updating rule
becomes

h2
t+1 = β0 + β1h

2
t + β2

[√
n ηγ + (h2

t /2)
]2

≥ β0 + β1h
2
t + β2

[√
n ht + (h2

t /2)
]2

≥ β0 + β1h
2
t + β2nh2

t

= β0 + (β1 + β2n)h2
t .

By induction,

h2
t+1 ≥ β0

t
∑

i=0

(β1 + β2n)i + (β1 + β2n)t+1h2
0

=
β0

1 − (β1 + β2n)

+[ h2
0 +

β0

(β1 + β2n) − 1
](β1 + β2n)t+1.

The above expression grows exponentially if β1+
β2n > 1. This inequality is reminiscent of the
necessary condition β1 + β2 ≥ 1 for GARCH
to be nonstationary. When r 6= 0 or c 6= 0, the
maximum value of ht still grows exponentially in
t as long as n is suitably large. The argument is



more tedious but essentially identical. We con-
clude that the RTCT tree grows exponentially if
n is large enough.

5 The Shallowness of an Ex-

ploding Tree

Can a large n be chosen to improve accuracy if
we are willing to accept long running times? Un-
fortunately, the RTCT tree does not admit such
a tradeoff. The reason is that there is a ceiling
on volatility ht for valid branching probabilities
to exist. With the maximum value of ht growing
exponentially, this ceiling will quickly be reached
at some nodes and the tree can grow no further.
The choice of n is thus capped even if infinite
resources are available. We next derive the said
upper bound.

Inequalities (5) imply

| (h2
t /2) − r |
2ηγ

√
n

≤ h2
t

2η2γ2
,

h2
t

2η2γ2
≤ 1

2
.

Hence

h2
t ≤ (ηγ)2 ≤

[

h2
t

√
n

| (h2
t /2)− r |

]2

,

which can be simplified to yield

[

(h2
t /2)− r

]2 ≤ nh2
t .

Finally, the above quadratic inequality (in h2
t ) is

equivalent to

2(r + n) − 2
√

2rn + n2 ≤ h2
t

≤ 2(r + n) + 2
√

2rn + n2 .

We conclude that

h2
t ≤ 2(r + n) + 2

√

2rn + n2 (8)

is necessary for the existence of valid branching
probabilities. This condition does not depend on
the choice of γ because the identity γ = h0 did
not enter the analysis.

The impossibility result may sound puzzling
at first. Under the Black-Scholes model, valid
branching probabilities always exist if n is large

enough. Why, one may ask, can’t the same prop-
erty hold here? The answer lies in volatility. The
daily volatility in the Black-Scholes model is a
constant, which amounts to setting ht to some
fixed number. So every state solves the same
Eqs. (2)–(4) for probabilities, and increasing n
will eventually have inequality (8) satisfied for
all states. In contrast, the volatility ht under
GARCH fluctuates. So each state (yt, h

2
t ) faces

different Eqs. (2)–(4) in solving for probabilities.
Increasing n makes inequality (8) harder to sat-
isfy for those states with a large h2

t , whose exis-
tence under GARCH has been confirmed earlier.

6 Numerical Examples

The following parameters from Ritchken and
Trevor (1999) and Cakici and Topyan (2000) will
be assumed throughout the section: S0 = 100,
y0 = lnS0 = 4.60517, r = 0, h2

0 = 0.0001096,
γ = 0.010469, β0 = 0.000006575, β1 = 0.9,
β2 = 0.04, and c = 0. As r = c = 0, combi-
natorial explosion occurs when

n >
1 − β1

β2

=
1 − 0.9

0.04
= 2.5.

Figure 4 picks n = 3, 4, 5 to demonstrate the ex-
ponential growth of the RTCT tree. The rate of
growth clearly increases with n. For comparison,
the standard trinomial tree contains only 2t + 1
nodes at date t.

The number of nodes is a critical indicator
because the running time is proportional to it.
We mentioned earlier that there may be nodes
which are not reachable (recall Fig. 3). In prin-
ciple, if such nodes are numerous, the algorithm
can potentially run more efficiently by skipping
them. Figure 5 shows that the proportion of un-
reachable nodes among all the nodes is small for
n = 3, 4, 5. We will see shortly that the same
conclusion also holds for larger n’s. As the over-
whelming majority of nodes between the top and
bottom nodes are reachable, no substantive bene-
fits can be obtained by clever programming tech-
niques to skip unreachable nodes.

Now suppose we pick n = 100 to seek very
high accuracy at the expense of efficiency. The
theory predicts a high risk of having the RTCT
tree cut short. Indeed, with r = 0, inequality
(8) imposes the upper bound h2

t ≤ 4n = 400.



This means that a node with ht > 20 cannot
have valid branching probabilities and thus can-
not grow further. As this ceiling is breached at
date 9 because of the exponential growth of the
maximum value of ht, the tree stops growing
then if not earlier. See Table 1 for the final dates
under various n’s beyond the threshold of explo-
sion. Observe that the tree’s longest maturity
decreases rapidly as n increases. It is therefore
important not to pick too large an n, for only
trees of very short maturities will be generated
otherwise. Table 1 also tabulates the total num-
bers of nodes and unreachable ones. Again, the
overwhelming majority of the nodes are occupied
as mentioned earlier.

Some of the calculated option prices in
Ritchken and Trevor (1999) use n as large as 25
and maturity dates as far as 200. These choices
contradict our analysis and data. For example,
Table 1 says that the RTCT tree with n = 25
should stop growing at date 18. These prices
must therefore be viewed with caution. Cakici
and Topyan (2000) use n = 1 throughout; thus
explosion is avoided.

7 Conclusions

We proved that for n suitably large, the RTCT
tree explodes. The Ritchken-Trevor-Cakici-
Topyan GARCH option pricing algorithm is
hence inefficient. Worse, a global upper bound on
the volatility renders the tree shallow when ex-
plosion occurs. Cakici and Topyan (2000) claim
that their pricing algorithm is empirically accu-
rate enough at n = 1 for vanilla options. But ac-
curacy must remain a concern with under-refined
trees. The problem of designing efficient tree-
based GARCH option pricing algorithms there-
fore remains open. Our results literally carry over
to the BDT-GARCH interest rate model of Bali
(1999).
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Figure 1: Trinomial tree for logarithmic

price yt for the duration of one day.

(yt, h
2
t )

6

?
ηγn

-� 1 day

A day is partitioned into n = 3 periods, and the
jump size is ηγn. The 7 values on the right should
approximate the distribution of yt+1 given yt

and h2
t .

Figure 2: Multinomial tree for daily loga-

rithmic prices.

(yt, h
2
t )

6

?
ηγn

-� 1 day

This heptanomial tree is the outcome of the tri-
nomial tree in Fig. 1 after its interior nodes are
removed. Recall that n = 3.

Figure 3: Possible geometry of a 3-day

RTCT tree.

(y0, h
2
0)

A

B

C

D

6
?
γn = γ1

-� 3 days

A day is partitioned into n = 1 period. Nodes A
and B have a jump size of 2γ1. Nodes C and D
have two jump sizes: γ1 and 2γ1. All other nodes
have a jump size of γ1. Two nodes between the
top and bottom nodes are not reachable. They
are shown as hollow nodes.

Figure 4: Exponential growth of the RTCT

tree.
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The parameters are S0 = 100, y0 = lnS0 =
4.60517, r = 0, h2

0 = 0.0001096, γ = 0.010469,
β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and
c = 0. The dotted line is based on n = 3, the
dashed line on n = 4, and the solid line on n = 5.
The standard trinomial tree, in contrast, has only
2t + 1 nodes at date t.



Figure 5: The percent of unreachable nodes.
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The parameters are S0 = 100, y0 = lnS0 =
4.60517, r = 0, h2

0 = 0.0001096, γ = 0.010469,
β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and
c = 0. The plots show the percent of unreach-
able nodes among all nodes at each date. The
dotted line is based on n = 3, the dashed line on
n = 4, and the solid line on n = 5. The number
of unreachable nodes is insignificant in all 3 lines.



Table 1: Final maturity dates and sizes of

exploding trees.

Total number of Total number of
n Final date (t) nodes unreachable nodes
3 182 1,017,327 5,565
4 100 499,205 3,028
5 72 368,523 947

10 34 222,935 42
25 18 286,844 6,925
50 12 305,113 448

100 9 578,710 3,961
150 8 795,309 2,011
200 7 652,808 1,596
250 7 1,747,758 20,291
300 7 2,929,508 11,510
350 6 1,179,157 3,151

The parameters are S0 = 100, y0 = lnS0 =
4.60517, r = 0, h2

0 = 0.0001096, γ = 0.010469,
β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and
c = 0. With n > 2.5, all RTCT trees in the ta-
ble explode. The final maturity date of the tree
shortens quickly as n increases. The total num-
ber of nodes in each tree far exceeds the (t+1)2

of the standard trinomial tree. The overwhelm-
ing majority of nodes are reachable in all trees.


