A General Computational Method for Calibration

Based on Differential Trees

Yuh-Dauh Lyuu
Associate Professor
Dept. Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan
Tel: 886-2-2362-5336 ext. 429
Fax: 886-2-2362-8167
lyuu@csie.ntu.edu.tw

http://www.csie.ntu.edu.tw/ " lyuu

July 23, 1999

Abstract

This paper presents a general computational paradigm for model calibration
called the differential tree method. The idea is very simple, and the method
is particularly applicable when the model under consideration has a tree (lat-
tice) structure. We illustrate its wide applicability with three canonical prob-
lems: no-arbitrage interest rate model calibration, spread and option-adjusted
spread of non-benchmark bonds, and implied volatility of American-style op-
tions. Comprehensive computer experiments show the differential tree method

to be highly efficient in all three case studies.

1 Introduction

Many computational problems in derivative pricing involve trees. The binomial option

pricing model and various discrete-time interest rate models are familiar examples.

Computation on such structures conceptually proceeds via backward induction on
the tree with local calculation at each node taking inputs from its successor nodes.
Efficient algorithms are generally obtainable for pricing purposes if the tree recom-
bines.

Our main concern, model calibration, is the inverse of the pricing problem: Given
price information, it finds parameter values on the tree that generate model prices
consistent with the data. Calibration, therefore, can be perceived as a root-finding
problem. In this paper, we propose a general iterative procedure, the differential tree
method (Lyuu [1995]), for the calibration of models based on trees.

The basic idea behind the differential tree method is simple. It takes advantage
of the inductive structure of the tree to calculate not only the model price but also
its derivatives with respect to the parameters whose values we desire. This extra
effort adds only a small amount of overhead to the overall computation, yet it pays
off immensely in terms of faster convergence and clean software design.

We illustrate the wide-ranging applications of the method with three canonical
problems: calibration of no-arbitrage interest rate models (in this paper, the Black-
Derman-Toy model [1990]), the calculation of spread and option-adjusted spread
(OAS) of non-benchmark bonds, and the computation of the implied volatility of
American-style options (all listed stock options in the U.S. are American, for exam-
ple). In each case, we obtain efficient algorithms in terms of speed, computer memory,
and convergence rates. This claim will be substantiated with extensive computer ex-
periments.

This paper is organized as follows. In Section 2, the differential tree method is
presented in its full generality. In Section 3, the method is applied to the calibration
of the Black-Derman-Toy model. Treatments of spread and option-adjusted spread
then follow suit in Section 4. Section 5 applies the method to calibrating the Cox-
Ross-Rubinstein binomial option pricing model with American option prices. In each
of the three cases, extensive computer experiments are conducted to investigate the
method’s performance and range of applicability. Section 6 ends the paper with

conclusions.

2 The Differential Tree Method

Let P(z) be a function defined by evaluation via backward induction on a tree. In

our context, P(x) denotes price. Such a framework captures derivative pricing un-

der discrete-time models. Its inverse function, the solution to P(x) = p given p,
defines the calibration problem. Pricing and calibration are therefore dual problems.
In general, P and x can be vectored; for instance, P(x) can be the discount func-
tion. To make matters simple, this paper focuses on binomial trees; generalization to
multinomial trees is straightforward.

Backward induction on a tree can be seen as a cascading of function evaluations.
Consider any node A with two successor nodes named B and C. In the chain of
computations, node A computes a certain function f4(a,b,c) in which a is locally
computable, whereas b and ¢ are supplied by similar computation at nodes B and
C, respectively. Node A in turn will feed its two predecessor nodes with f4, and so
on down the tree. Function P is simply the final result of these function evaluations
at the root of the tree. If a, b, and ¢ are functions of some parameter x, then f4
computed at A is also a function of z, and this holds inductively for P as well. See
Figure 1’s top row for illustration.

To solve for x, one needs a fast root-finding scheme. The Newton-Raphson method
is one such scheme. This popular iterative method uses a function and its derivative
to improve upon the current approximation to the root until the error lies within
some specified bounds. Being quadratically convergent, the Newton-Raphson method
doubles the precision in each iteration.

To employ the Newton-Raphson method to solve P(x) = p, one needs P'(x).
In principle, we can write down P(x) explicitly and then differentiate it term by
term. This idea becomes infeasible, however, when the tree is large. Fortunately, the
differential tree method takes advantage of the tree by computing P’(x) along with
P(z) inductively, as described below.

The node A mentioned before computes dfs/dx in addition to f4 and then
forwards both f4 and dfs/dx to its two predecessor nodes. This extra calculation is
straightforward: With db/dx and dc/dx from nodes B and C, respectively (besides
b(xz) and c(x) generated for the computation of P(z), of course), and with da/dx
available locally, we can calculate df4/dx thus,

dfa(a(z),b(x),c(x)) Ofada(x) N Ofa db(x) N Ofade(x)
dx Ja dx ob dx Oc dr

Backward induction now continues from node A to its two predecessor nodes and,

inductively, toward the root, which produces P(z) and P’(x). The Newton-Raphson
method then finds a new approximation to the root before the next iteration begins.
This process repeats itself until the desired accuracy is achieved. The overall scheme is

simple and adds little overhead to the original backward induction algorithm. We will
call a tree with these derivative values a differential tree (see Figure 1 for illustration).

In general, x can be a vector. Take the two-dimensional case as an example,
= (s,t). Then we need to calculate (Hildebrand [1976])

Ofala(x),b(x),c(x)) Ofada(x) N 0fa 0b(x) N Ofa dOc(x)

Os ~ Oa Os ob 0Os Jc 0Os
Ofala(z),b(z),c(x)) O0fada(xz) Ofadb(x) = Ofadc(x)
ot - Oa Ot o ot dc Ot

Again, inductively, 0b(x)/ds, Oc(x)/0s, db(x)/0t, and dc(x)/0t are available from
nodes B and C, and the same computational principle applies. In the general case
where x is n-dimensional, the differential tree has to calculate n partial derivatives.

Let us illustrate the differential tree idea with an example: implied volatility under
the binomial option model. Consider European puts. The standard CRR binomial

pricing model implies the following backward induction formulation (Hull [1997]),

pb+(l-p)c

Fi(b.0) { Us

max (X — Su’,0) if A is a terminal node

if A is an internal node

Here, N
et —d

u—d
is the probability of an up move, r is the interest rate, S is the current stock price,

p=

u=eVA (= 1/u, Su’ is the stock price at node A (so the number of up moves
exceeds that of down moves by j in order to reach A), X is the strike price, and a
time period has duration At. To apply the differential tree method, simply compute

the following derivative as well,

2 ! _ ot 1— ! . . .
pletpt—pe+1=p)e’ i A is an internal node

de erAt
T =<0 if A is a terminal node but not exercised
o)
—JjV AL Sy’ if A is a terminal node but exercised

The sections to follow deal with three canonical calibration problems: interest
rate model calibration, spread and option-adjusted spread of non-benchmark bonds,
and implied volatility of American options (described above). All our programs are
written in C. Following Patterson and Hennessy [1994], we take the position that
the running time is the only valid performance measure. Other measures such as the

number of iterations and/or the number of time partitions needed for convergence

will be mentioned but not given dominating emphasis since they lead to misleading
conclusions (Lyuu [1998]).

Before closing this section, a few words about the computer setup and perfor-
mance reports. All timing information will be in seconds. A variety of computing
platforms were employed, including the Intel Pentium MMX processor, a 75MHz Sun
SPARCstation 20, and a 200MHz Sun ULTRASPARC. (The 300MHz Sun ULTRA-
SPARC IIi with a good C compiler from Sun was capable of cutting the reported
running times based on the Sun SPARCstation 20 by about 90%.) Throughout this
paper, n denotes the depth of the tree, i.e., the total number of time periods.

3 Calibration of Interest Rate Models: the Black-
Derman-Toy Model

Our first application is concerned with the calibration of interest rate models. Cali-
bration aims to set up a short rate tree consistent with the observed term structures,
specifically the yields and, in some models, yield volatilities of zero-coupon bonds of
all maturities as well. Although the differential tree method clearly applies to other
models, we pick the Black-Derman-Toy (BDT) model for two reasons: analytical in-
tractability and popularity. Calibration of the BDT model needs to fit both the bond
prices and their yield volatilities.

For the BDT binomial tree, the logarithm of the future short rate obeys the
binomial distribution. The limiting distribution for the short rate is hence lognormal.
The BDT binomial tree of possible short rates for each future period is constructed
as follows. Each short rate is followed by two short rates for the following time period
of length At. In Figure 2, node A coincides with the start of period j during which
short rate r is in effect. At the conclusion of period j, a new short rate goes into
effect for period j + 1. This may take one of two possible values: r;, the “low” short
rate outcome (up move, for the bond price), shown at node B, or rj, the “high”
short rate outcome (down move, for the bond price), at node C. Each rate has a fifty
percent chance of occurring in a risk-neutral economy. Percent volatility of the short

rate, Ar/r, is

1
o= W, X In(ry/m)

when the short rate follows a lognormal process in the limit. Note that
r
Th eQO’\/A_t' (1)
Tl
To nail down the values of r, and r;, we need information from the current term
structures to establish the relation between r and its two successors.

As the binomial process unfolds, we make sure that the paths recombine. In

general, there are j possible rates applicable for period j. They are

ey o2 L
Tjy TjUjy TU5y ooy TiUG

where

v; = eQaj\/At

is the multiplicative ratio for the rates in period j. The volatilities o; above are
indexed by j because volatility is a function of time. We shall call r; the baseline
rate. Figure 3 depicts the tree structure.

With the abstract process in place, concrete numbers are needed to set it in
motion: They are the annualized rates of return associated with the various riskless
bonds making up the benchmark yield curve and their volatilities. For example, the
on-the-run yield curve may be used as the benchmark curve. The term structure of
volatilities (or volatility structure) may be estimated either from historical data or
from interest rate derivatives. The binomial tree should be consistent with both term
structures. From now on, for economy of expression, all numbers are measured by
the period (At = 1) unless otherwise stated.

To store the whole tree, the space requirement would be proportional to n?, which
is prohibitively expensive for a large tree. For instance, modeling daily interest rate
movements for thirty years amounts to keeping an array of roughly (30 x 365)?/2 ~
6 x 107 double-precision floating-point numbers. If each number takes up eight bytes,
storage alone would consume nearly half a gigabyte! Fortunately, memory require-
ment can be made minimal. This is because only the baseline rates r;’s and the
multiplicative ratios v;’s need to be stored in computer memory since the rest of the
tree are known functions of them. The storage requirement is hence down to O(n).

See Sandmann and Sondermann [1994] for the pitfall in using continuously com-
pounded rates. Canabarro [1995] and Backus, Foresi, and Zin [1996] assess the BDT
model critically. See Ingersoll [1987] for a history of early models. An influential
methodology pioneered by Ho and Lee [1986] takes the market yield curve as given.

Models based on such a paradigm are usually called no-arbitrage models, to which
the BDT model belongs.

3.1 The differential tree method

To derive the actual values for r, and r;, a naive approach starts with the implied
one-period forward rates and their volatilities. It then dictates that the expected
short rate equal the implied forward rate for the same period; in other words, the
unbiased expectations theory holds. This method corresponds to the scheme “with no
iteration” in Bjerksund and Stensland [1996]. However, Lyuu [1995] has proved that
this approach overestimates the prices of benchmark securities as long as the yield
volatilities are positive, independent of whether the volatility structure is fit.

We now present a correct approach using the differential tree method. Recall that
there are j possible short rates for period j. According to the binomial interest
rate model, the j rates are rj, v, 70,2, ... 707 77! where r; is the baseline rate.
Suppose the price of the j-period zero moves up to P, and down to P; one period
from today. Obviously, P, and P, are functions of r; and v;. In a risk-neutral

world, it must hold that
ilp,+1p, 1

14+7 (1+y)J’

where y is today’s yield of the j-period zero, which is known.

Viewed from now, the future (j—1)-period yield at the beginning of period two is
uncertain. Let y, represent the (j—1)-period yield to maturity at the “up” node, y4
the (j — 1)-period yield to maturity at the “down” node, and x? the variance viewed
from now of the (j — 1)-period yield to maturity. The variance of the (j — 1)-period
yield is

K° = p (1 —p)In*(yu/ya).
Hence, for p=1/2,
k= (1/2) In(yu/ya)-

As the bonds are zero-coupon bonds,
—-L L
Yu=P,’7' =1 and y, =P, 7" — 1.

Substitute to get

k= (1/2)In (@) . (3)

Pdii—l -1

7

Finally, rearrange (2) and (3) as simultaneous equations,

2(1+T1) _
f(P,P) = PutPa= Ty =0

g(PPy) = P —1—e* (P71 1) =0

Since P, and P, are functions of r; and v;, f(P,, Py) and g(P,, P;) are functions
of r; and v; as well, denoted F'(r;,v;) and G(r;,v;), respectively. For economy of
expression, we use f(r,v) instead of f(r;,v;), g(r,v) instead of g(r;,v;), and so on.
Given the kth approximation (r(k),v(k)), the Newton-Raphson method says the
(k + 1)st approximation (r(k+1),v(k+ 1)) satisfies

ORr@el) 2EC®) | 1 Ar(k+1) | | F(r(k),v(k))
9rRok) 2GaRoE) | | Ay(k +1) G(r(k),v(k))

where Ar(k+1)=r(k+1)—r(k) and Av(k+1)=v(k+1) — v(k).
We still need 0F/0r, OF /0v, 0G/0r, and 0G/Jv in the matrix above to solve
for (r(k+1),v(k+1)). Obviously,

OF 9P, 0P

o or + or
OF _ OP. 0P
v O ov
and, by the chain rule,
% _ 0g 0P, = 0g 0Py
or OP, Or oP; or
oG dg 0P, 0g 0P,

v 0P, v | OP; ov

In the above four equations, the common terms requiring evaluations are dP,/0r,
dP,/or, OP,/0v, OP;/0v, 0g/0P,, and 0g/0P,. The differential tree method can
compute them as follows. Working backward, the method finds P,, P,;, dP,/0r,
OP,/0r, 0P, /v, and 0P,;/dv. As for the two remaining terms dg/0P, and 0g/dP,,
they can be computed directly from the definition of ¢ as

0 1 _J'_
g _ 1 p

0P, j—1

dg D

_J — K—P j—1
ap, ° j_14d

Thus we conclude the matrix can be set up.

The standard differential tree method leads to a backward induction implemen-
tation. Since each pass across the tree takes O (j2) time to obtain the jth baseline
rate and the jth multiplicative ratio, the total time is O (n?®), assuming the Newton-
Raphson method takes a constant number of iterations to get to the desired accuracy.

This assumption turns out to be reasonable in practice, as we will see later.

3.2 Forward induction

To reduce the computation time to O (n?), forward induction can be employed
(Jamshidian [1991]). This scheme inductively figures out, by moving forward in time,
how much $1 at a node contributes to the total price (see Figure 4). This number is
called the state price since it is the price of a claim that pays $1 at that particular
state (node) and zero elsewhere. We call a tree with these state prices a binomial
state price tree. As before, there is no need to explicitly store the whole tree.

Let us be more precise about the mechanism. Suppose we are at the end of period
J. So there are j + 1 nodes. Let the baseline rate for period j be r; = r, the
multiplicative ratio be v; = v, and Py,..., P; be the state prices at the nodes of the
beginning of period j. One dollar j periods from now has a known market value of
1/(1 + y)?, where y denotes the j-period spot rate. Alternatively, one dollar at the
end of period j has a present value of
P P P P;

flr,v) = T1r T4 Txr T TqroT

To match the yield volatilities, we use the same logic as leads to (3) to obtain

(Pu,1+ Puz o L4 Puj)77'%1—1

_ 1+rv 1+rv2 14+rvi—1
g(r,v) = (1/2)In _
(@_ﬁ. Pa,2 +...+i@) -t _ 1
147 1+rv 14+rvi—2

In the above the P,;’s denote the state prices of the tree rooted at the up node, while

the Py;’s denote the state prices of the tree rooted at the down node. Now, solve

1
) =y

g(r,v) = Kk

Here, the Newton-Raphson method can be used to solve for » and v as the deriva-
tives are easy to evaluate. The overall running time is now O (n?). We emphasize

9

that forward induction is an efficient implementation of backward induction with

differential trees; it does not change the underlying computational logic a bit.

3.3 Experimental results

Consider the following term structures in Hull and White [1990],

r*+0.05 x Int for t-year zero-coupon bond yield
1.4 x (1 — e %1%%) /t for t-year zero-coupon bond yield volatility

3.3.1 Convergence of the differential tree method

The differential tree method converges very fast. Figure 5 reveals that, with one
partition per year, it takes an average of less than 3.5 iterations to achieve a relative
error of 107! with r* = 0.06. With the Newton-Raphson method, it is critical to
get a suitable initial guess. Using the baseline rate and multiplicative ratio of the
previous period as the initial guesses for the current period has turned out to work

well.

3.3.2 Comparison between forward induction and backward induction

The running time of backward induction with the differential tree is O (n3) versus
O (n?) for forward induction. We benchmark backward induction with differential
trees and forward induction in Figure 6. The result is as expected: The forward
induction implementation is far more efficient. The running time is quadratic at
0.000020 x n? seconds. Furthermore, we can calibrate the tree up to 270,000 years
(see Figure 7). From here on, the paper adopts a relative error of 107® since our

emphasis now shifts toward the growth rate of running time.

3.3.3 Aspects of forward induction

Figure 8 looks at the problem from a different perspective. It fixes the time span at
30 years and looks at how forward induction performs by increasing the number of
partitions. The conclusion is it can go as fine as 70 periods per year. The running
time is quadratic, at about 0.000098 x n? seconds. The experiment is then repeated
for 10-year trees with the results shown in Figure 9. The running time there grows

roughly as 0.000051 x n? seconds, and we can go as fine as 1,850 periods per year.

10

4 Spread Calculation

4.1 Spread of non-benchmark option-free bonds

Model prices calculated from trees calibrated off the benchmark bonds as a rule do
not match market prices of non-benchmark bonds. To gauge the incremental return,
or yield spread, over the benchmark bonds, one looks for the spread over the short
rates in the tree that equates the model price and the market price (Fabozzi [1991]).
When the underlying bond contains embedded options, the spread is called option-
adjusted spread. We treat option-free bonds first and bonds with embedded options
later. The techniques are identical save for the possibility of early exercise.

When a constant amount s is added to every rate in the binomial interest rate tree,
the model price will be a monotonically decreasing, convex function of s. Call this
function P(s). For a given market price p, we can employ a root-finding algorithm
to solve P(s) = p.

Evaluating P’(s) directly by expansion looks intimidating. Fortunately, the dif-
ferential tree method can be used to evaluate both P(s) and P’(s) in one pass. Here
is the idea. Every node of the tree, call it node A, is the root of a subtree of the
original tree and computes a price p4(s) during the process of computing the model
price P(s) via backward induction. Node A is also associated with a short rate r.
Hence, prices computed at A’s two successor nodes, B and C, will be discounted by
the factor 1/(1+r+ s) to obtain pa(s),

_ . pB(s) +pc(s)
pafs) = ¢ 2(1+r+s)
All this is standard. To compute p/,(s) as well, node A simply calculates

_ Pp(s) +pc(s) _ pe(s) +pc(s)
2(1+r+s) 2(1+r+s)?’

/

Pla(s)

where ¢ denotes the cash flow at A. Now, computing p/s(s) is easy since p/z(s)
and pi(s) have been supplied by nodes B and C. Applying the above argument
inductively will eventually lead to P(s) and P’(s). See Figure 10 for illustration.
The running time depends on the convergence rate of the Newton-Raphson method.
In practice, only a small number of iterations is needed to bring the algorithm to con-
vergence. Hence the empirical running time is O (n?). The memory requirement is

again linear in n.

11

The experiments apply the differential tree method to zero-coupon bonds under
the BDT model and flat term structures,

8% for t-year zero-coupon bond yield

10% for t-year zero-coupon bond yield volatility

The differential tree method converges very fast. For example, it takes about 7.85
seconds for a tree with 500 periods on a 75MHz Sun SPARCstation 20 with 64MB
of DRAM. In general, the running time is about 0.000031 x n? seconds.

4.2 Option-adjusted spread of non-benchmark bonds with
embedded options

The calculation of OAS is the same as before except for the possibility of early exercise.

The function p4(s) is slightly modified,

C p3<8)+pc<8))’ (4)

pA(S):C+m1n< "2(147+s)

where C' is the call price. The derivative p/,(s) is then

)0 if exercised
Pa5) =\ palo) () _ ppe)trel) if ot exercised

2 (147r+s) 2(14r+s)?

The experiments apply the differential tree method to 8% callable coupon bonds
under the BDT model and flat term structures. The results show that the differential
tree method converges very fast. For example, it takes about 8.11 seconds for a
tree with 500 periods on a 75MHz Sun SPARCstation 20 with 64MB of DRAM. In
general, the running time is quadratic, at about 0.0000065 x n? seconds per iteration.

5 Volatility Implied by American Options

The last case study is concerned with the implied volatility of American options. With
early exercise, the option price as a function of volatility ¢ is no longer differentiable

everywhere. The backward induction formulation for American puts is

max (IW’ X — Suj) if A is an internal node

max (X — Su/,0) if A is a terminal node

fa(o,bc) = {

12

(Compare it to European options in Section 2.) To apply the differential tree method,

compute
if potp blfgﬁf(lfp)¢ if A is an internal node but not exercised
d—A =40 if A is a terminal node but not exercised (5)
o :
— VAt Su? if A is exercised

Note that the computational problem here is structurally similar to the OAS of (4).
We solve the Black-Scholes formula for the implied volatility as the initial guess.
The fast convergence of the differential tree method is tabulated in Figure 11. The
running time is quadratic: about 0.00000081 x n? seconds for the American call and
0.00000045 x n? seconds per iteration for the American put. Note that American calls
will not be exercised early in our case of non-dividend-paying stock. Increasing the
number of partitions may sometimes decrease the running time due to the reduction

of the number of iterations. This is the case for the American put at n = 600.

6 Conclusions

This paper presented the differential tree method, then applied it to representative
computational problems in asset pricing. The method was furthermore shown to
be extremely efficient. In terms of software development, the method results in a
program structure which almost parallels that of its dual, the pricing module; only
the derivatives calculation and adjustments to the approximate root at the end of
each iteration need to be added.

Other interesting applications are easy to think of. Take the calibration of interest
rate models again. For finite-dimensional models, the limited number of parameters
makes matching exactly the term structures impossible. For them, one may aim to
minimize the mean square error || P(z) — p||*> between the market and the model-
implied term structures. By providing the derivatives efficiently, the differential tree
method can easily solve this optimization problem. We conclude that, as a general
computing paradigm, the differential tree method has potential for efficient calibration
of any tree-based models.

13

Acknowledgments

The author thanks George Wei-Tso Chan, Wei-Jui Chen, and Chih-Jen Lin for assis-

tance and discussions.

14

References

1]

[10]

[11]

BAckus, D., S. FORESI, AND S. ZIN. “Arbitrage Opportunities in Arbitrage-
Free Models of Bond Pricing.” Manuscript, April 16, 1996. To appear in Journal

of Business and Economic Statistics.

BJERKSUND, P., AND G. STENSLAND. “Implementation of the Black-Derman-
Toy Interest Rate Model.” Journal of Fized Income, September 1996, pp. 67-75.

Brack, F., E. DERMAN, AND W. Toy. “A One-Factor Model of Interest
Rates and Its Application to Treasury Bond Options.” Financial Analysts Jour-
nal, January—February 1990, pp. 33-39.

CANABARRO, E. “Where Do One-Factor Interest Rate Models Fail?” Journal
of Fixed Income, September 1995, pp. 31-52.

CHEN, W.-J. Calibrating Interest Rate Models with Differential Tree Algo-
rithms: the Case of Black-Derman-Toy Model. Master’s Thesis, Department of

Computer Science and Information Engineering, National Taiwan University,
Taiwan, July 1997.

FaBozzi, F. J. Fized Income Mathematics: Analytical & Statistical Techniques.
Revised ed. Chicago: Probus, 1991.

HILDEBRAND, F. B. Advanced Calculus for Applications. 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1976.

Ho, T. S. Y., AND S.-B. LEE. “Term Structure Movements and Pricing

Interest Rate Contingent Claims.” Journal of Finance, Vol. 41, 5 (December
1986), pp. 1011-1029.

HurL, J. C. Options, Futures, and Other Deriwatives. 3rd ed. Englewood Cliffs,
NJ: Prentice-Hall, 1997.

HurL, J. C., AND A. WHITE. “Pricing Interest-Rate-Derivative Securities.”
Review of Financial Studies, Vol. 3, 4 (1990), pp. 573-592.

INGeERsSOLL, J. E., JRr. “Interest Rates.” In J. Eatwell, M. Milgate, and P.
Newman (Ed.), The New Palgrave: Finance, New York: Norton, 1987.

15

[12] JamsHIDIAN, F. “Forward Induction and Construction of Yield Curve Diffusion
Models.” Journal of Fixzed Income, June 1991, pp. 62-74.

[13] Lyuu, Y.-D. Introduction to Financial Computation: Principles, Mathematics,
Algorithms. Manuscript. Taipei, Taiwan: National Taiwan University, 1995.

[14] Lyuu, Y.-D. “Very Fast Algorithms for Barrier Option Pricing and the Ballot
Problem.” Journal of Derivatives, Spring 1998, pp. 68-79.

[15] PATTERSON, D. A., AND J. H. HENNESSY. Computer Organization € Design:
the Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann, 1994.

[16] SANDMANN, K., AND D. SONDERMANN. “A Note on the Stability of Lognor-
mal Interest Rate Models and the Pricing of Eurodollar Futures.” Mathematical
Finance, Vol. 7, 2 (April 1994), pp. 119-125.

16

b(x)

b'(x)
£, (a(x),b(x), c(x))
daf, _ < fi da(x)+ ¢ f db(x)+éﬁ, de(x)
d ¢a dv b dv e dx c(x)
c'(x)

Figure 1: THE DIFFERENTIAL TREE METHOD. Computation at node A is driven by
inputs from B and C.

17

0.5 T

0.5 rh

< >l >lea—>
period j-1 period ; period j+1

Figure 2: BINOMIAL INTEREST RATE PROCESS. From node A, there are two equally
likely scenarios for the short rates. Rate r is applicable to node A for period j. Rate 7y

is applicable to node B and rate r; to node C, both for period j + 1.

18

Figure 3: BINOMIAL TREE FOR THE BDT MODEL.

19

0.112832
2.895% e
4.00% 0.333501
I P,
—+—-
20+r) 20+r)
0.327842
€ 0.228308
Implied forward rates: 0.107173
4.0% 4.4% 4.5%
< > >4 >
period 1 period 2 period 3
(a) (b)

Figure 4: SWEEPING A LINE ACROSS TIME FORWARD TO COMPUTE THE BINOMIAL
STATE PRICE TREE. The state price at a node is a weighted sum of the state prices of its

two predecessors.

20

Number of Average number Sample Number of Average number Sample

Years of iterations deviation Years of iterations deviation
100 3.474747 0.519196 1100 2.926297 0.394491
200 3.236181 0.436405 1200 2.917431 0.394738
300 3.157192 0.373056 1300 2.923788 0.379878
400 3.085213 0.384873 1400 2.922802 0.373977
500 3.020040 0.414660 1500 2.893262 0.399234
600 2.973289 0.431584 1600 2.870544 0.415614
700 2.951359 0.428502 1700 2.847557 0.430938
800 2.929912 0.430495 1800 2.831573 0.439798
900 2.923248 0.421481 1900 2.817272 0.447092

1000 2.919920 0.412023 2000 2.806903 0.451480

Figure 5: CONVERGENCE OF THE DIFFERENTIAL TREE METHOD. The zero-coupon
bond yield is described by 0.06 + 0.05 x Int. The time partition is one period per year.
Sample deviation refers to that of the number of iterations. The termination condition is

10~13 relative error.

21

Number of Backward Forward Number of Backward Forward

Years induction induction Years induction induction
100 1.8 0.2 1100 2237.1 24.5
200 14.2 0.8 1200 2887.5 29.5
300 47.5 1.8 1300 3703.7 35.2
400 109.2 3.2 1400 4632.5 41.1
500 207.3 5.0 1500 5557.0 46.6
600 352.2 7.1 1600 6682.1 52.2
700 560.0 9.6 1700 8099.5 58.7
800 844.7 12.6 1800 9286.6 65.3
900 1223.5 15.9 1900 11088.6 72.9

1000 1690.7 20.1 2000 12745.2 80.9

Figure 6: BACKWARD INDUCTION VERSUS FORWARD INDUCTION. The setup is the
same as Figure 5. All times are measured in seconds obtained on a 200MHz Sun ULTRA-
SPARC with 256MB of DRAM. The termination condition is 107! relative error. Data
are from Chen [1997].

22

Number of Running Number of Running Number of Running

Years time Years time Years time
3000 398.880 39000 8562.640 75000 26182.080
6000 1697.680 42000 9579.780 78000 28138.140
9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

Figure 7: FORWARD INDUCTION (CONTINUED). We continue the benchmarking in
Figure 6 for forward induction except that the termination condition is 107 relative error,
and the times are measured on a slower 75MHz Sun SPARCstation 20 with 64MB of
DRAM.

23

Number of Running Number of Running
partitions time partitions time
300 7.310 1500 166.130
600 26.400 1800 291.120
900 59.480 2100 497.130
1200 106.130 2400 diverge

Figure 8 FORWARD INDUCTION: THE 30-YEAR CASE. The setup is the same as Figure
7 except that r* = 0.08, and the tree covers 30 years. The algorithm fails to terminate at

2,400.

24

Number of Running Number of Running Number of Running

partitions time partitions time partitions time
2100 242.110 4300 956.470 8500 3585.680
2300 291.850 4500 1037.540 9500 4500.570
2500 349.140 4700 1126.620 10500 5475.320
2700 407.370 4900 1202.000 11500 6579.760
2900 468.490 5100 1313.750 12500 7798.940
3100 527.100 5300 1394.370 13500 9191.240
3300 588.520 5500 1498.260 14500 10697.090
3500 651.360 5700 1609.560 15500 12167.020
3700 727.550 5900 1728.960 16500 13748.310
3900 804.130 6500 2067.470 17500 15732.760
4100 858.850 7500 2750.240 18500 17537.810

Figure 9: FORWARD INDUCTION: THE 10-YEAR CASE. The setup is the same as Figure
8 except that the tree covers 10 years. The algorithm fails to terminate at 19,000.

25

pi(s)
N pp(s)+ pc(s)
pals)=c+ 2(1+r+s)
f
ooy Pr(s)+ pp(s) pp(s)+pe(s)
)= s 214 r+s)
Pc(s)
pe(s)

(©

Figure 10: THE DIFFERENTIAL TREE FOR SPREAD. (a) The original binomial interest
rate tree with short rates replaced by the discount factors. (b) The derivatives of the
numbers in (a). (c) The simultaneous evaluation of a function and its derivative with the

binomial tree structure.

26

American call

American put

Number of Running Number of | Number of Running Number of
partitions time iterations partitions time iterations

100 0.008210 2 100 0.013845 3

200 0.033310 2 200 0.036335 3

300 0.072940 2 300 0.120455 3

400 0.129180 2 400 0.214100 3

500 0.201850 2 500 0.333950 3

600 0.290480 2 600 0.323260 2

700 0.394090 2 700 0.435720 2

800 0.522040 2 800 0.569605 2

Figure 11: IMPLIED VOLATILITY OF AMERICAN OPTIONS. The computer setup uses a
PC equipped with an Intel 166MHz Pentium MMX and 32MB of DRAM, running Microsoft
Windows 95. The program terminates when the volatility improves by less than 107°. The
parameters for the American options are 49 (stock price), 50 (exercise price), 2.39 (option

price), 5% (interest rate), and 140 (days to maturity). The implied volatility is found to be

19.95% for the call and 18.55% for the put.

27

