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Abstract

Combinatorial methods prove extremely useful towards designing blazingly
fast yet simple algorithms for pricing European-style barrier options. Closed-
form formulae to standard European-style barrier options can then be easily
derived. Combinatorial formulae under the trinomial model are also presented.
The common practice in the literature compares algorithms based on their re-
spective numbers of time steps towards convergence. We illustrate the pitfalls
of this custom by evaluating the performance of our binomial model-based al-
gorithm and the trinomial tree algorithm, whose superiority over the binomial
model is widely accepted. Contrary to common beliefs, however, our algorithm
emerges as a clear winner. In fact, the performance gap is two orders of magni-
tude. Also shattered is the myth that the binomial model converges extremely
slowly when the current stock price is very close to the barrier.

1 Introduction

In Feller’s [1968] masterpiece, An Introduction to Probability Theory and Its Applica-
tions, Vol. 1, and, subsequently, Takécs’s [1967] Combinatorial Methods in the Theory
of Stochastic Processes, combinatorial methods are found to be useful in the study



of stochastic processes. This paper follows their lead in applying these methods to
derivative pricing, specifically, European-style barrier option pricing.

The particular branch of combinatorics relevant to our purpose is the solution
to Bertrand’s ballot problem (Lint and Wilson [1994]). The original problem is con-
cerned with the number of ways a candidate can be ahead of his opponent throughout
the vote counting process given the final vote counts. The problem was solved by,
among others, André’s reflection principle. See Takacs [1962] for survey and history.
We shall see that pricing barrier options is intimately related to the ballot problem.

Options whose payoff depends on whether the underlying asset’s price reaches a
certain level are called barrier options (Hull [1997]). Such options are clearly path-
dependent. A knock-out option is like an ordinary European option except that it
ceases to exist if a certain barrier, H, is reached by the price of its underlying asset.
A call knock-out option is sometimes called a down-and-out option if H < X, where
X denotes the strike price. Similarly, a put knock-out option is sometimes called an
up-and-out option when H > X. A knock-in option, in contrast, comes into existence
if a certain barrier is reached. A down-and-in option is a call knock-in option that
comes into existence only when the barrier, H < X, is reached. An up-and-in option
is a put knock-in option that comes into existence only when the barrier, H > X, is
reached.

The value of a European down-and-in call is

Se™"(H/S)*N(z) — X e (H/S)**N (z — ov/7) (1)
where
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where S > H, q is the stock’s dividend yield, and 7 is the time to maturity. The

above formula assumes that the underlying asset price follows geometric Brownian

motion and is due to Merton [1994]. A European down-and-out call can be priced
via the in-out parity. The value of a European up-and-in put is

X e (H/S)P PN (—z + 0y/T) — Se 7 (H/S)N(~x)

for S < H. A European up-and-out call can be priced via the in-out parity.
Although closed-form solutions exist, the study of numerical methods based on
binomial /trinomial models is still useful for the new insights it brings. It also have
applications to exotic options where the terminal payoff function is non-standard and
closed-form solutions are hard to come by. We will illustrate this point with power
options. Finally, in cases where continuous trading is not an appropriate model, the
discrete-time model might offer more realistic prices (Levy and Mantion [1997]).
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In this paper, we derive a combinatorial formula for the price of down-and-in calls
under the binomial model. The technique, as we mentioned before, is based on the
solution to the ballot problem. This formula is shown in Lyuu [1997] to converge to
the closed-form solution via elementary means instead of the more advanced Fourier
transform method. More interestingly, the formula leads directly to a highly effi-
cient algorithm that runs in time proportional to the number of periods the time
is partitioned into, denoted throughout the paper by n. In addition, the memory
requirement is merely a few variables. This is in sharp contrast to the naive binomial
tree algorithm that has a time complexity proportional to n? and memory require-
ment proportional to at least n. Linear-time performance is the key that leads to
the re-thinking on the binomial model. Computer experiments show that the time
for the algorithm to converge to the analytical value is a mere tens or hundreds of
milliseconds on a typical personal computer. Such speed advantage will surely be
important for large trading desks with thousands of options to be priced on an hourly
basis.

It is a common belief that the binomial model is next to impossible to converge
when the current stock price is very near the barrier. The work reported here casts
doubt on that belief as our algorithm proves to be robust even under this supposedly
tough case. Although the running time does climb, it remains in the vicinity of
hundreds of milliseconds.

With few exceptions such as Broadie and Detemple [1996], the usual practice
in the literature compares two algorithms based on the n at which they converge.
This practice can be grossly misleading. The only objective method of comparing
algorithms is their total running times to achieve comparable results. This position
has been argued forcefully in Patterson and Hennessy [1994]. We illustrate their point
by comparing our binomial model-based algorithm and the trinomial tree algorithm,
which is widely accepted to be superior. The evidence overwhelmingly favors the
former as it is faster by two orders of magnitude to achieve the same analytical result
even if it requires a higher n. This conclusion, independent of the superiority of
trinomial algorithms in such aspects as generality, should serve as a caution to efforts
in algorithm evaluation.

Finally, we show the wide applicability of the combinatorial method by deriving a
combinatorial formula for the price of down-and-in calls under the trinomial model.

2 The Binomial Model

We quickly review the binomial approximation to the geometric Brownian motion,
dS/S = pdt+ o dW. Consider the stock price At = 7/n time from now (time zero).
From the geometric binomial random walk model, in a period of At, the stock price
either increases to S u with probability p or decreases to S d with probability 1—p.



It is easy to verify that
E[S(At)] = Se® and Var[S(At)] = §* (2" —1) 224 — S?0*At.
Matching the above two moments and imposing ud = 1 leads to

A

VAt —ovV At
= _. 2
d=ce u—d (2)

u = e’ Vet , and p=
Note that p = r in a risk-neutral economy.

To derive the combinatorial formula under the binomial model for the down-and-in
call, we must count the number of ways the stock price can reach any given terminal
price while hitting the barrier on the way. The reflection principle provides the needed
tool.

3 The Reflection Principle

Imagine a particle starts at position (0, —a) on the integral lattice and wishes to reach
(n,—b). Without loss of generality, assume a,b > 0. The particle is constrained to
move to (1 4+ 1,74+ 1) or (i+ 1,5 — 1) from (i,7), the very fashion the price under
the binomial model is supposed to evolve in,

(t+1,j+ 1) associated with the up move, S — Su
/"

¢
(1+1,7—1) associated with the down move, S — Sd

(¢,4)

How many such paths the particle can take that touch the z-axis? This question can
be rephrased as the following variant of the ballot problem. Given that a candidate
starts with a fewer votes than his opponent (which is not uncommon in many parts of
the world) and ends up with b fewer votes, how many ways can the votes be counted
in which his vote count equals his opponent’s at least once?

Consider any legitimate path from (0,—a) to (n,—b) that touches the z-axis.
Let J denote the first position this happens. By reflecting the portion of the path
from (0,—a) to J, a path from (0,a) to (n,—b) is thus constructed. Note that
this new path hits the z-axis at J. See Figure 1 for illustration. This one-to-one
mapping shows the number of paths from (0, —a) to (n,—b) that touch the z-axis is
exactly the number of paths from (0,a) to (n,—b). This is the celebrated reflection
principle of André’s published in 1887 (Lint and Wilson [1994]). Since any such path
consisting of n moves must have b+ a more down moves (“—1"s) than up moves
(“41”), the desired number equals the number of ways to permute (n —a — b)/2
“+1”s and (n+a+0b)/2 “—1"s, which is equal to

(n+7Z+b) for even n+a+0b (3)
2
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with the convention that (Z) =0 for k<0 or k£ >n.

4 Combinatorial Formulae for Barrier Options

Consider the down-and-in call option with barrier H < X as a concrete example.
Assume H < S without loss of generality for, otherwise, the option is identical to
the standard call. Let

a =

[ In (X/ (Sd"))-‘ _ [ In(X/S) q
_ | (1;(7(/;21")) _ i?ﬁ) Z
"= { In(u/d) J_{za\/A_ﬁ?J

It is easy to see that H = Suld™ " is the price among Suid" (0 < j<n) closest
to, but not exceeding, H. The role of the barrier will be played by the effective
barrier, H, for the binomial model. Similarly, X = Su®d"® is the price among
Suid™I (0 < j < n) closest to, but not exceeded by, X. A process with n moves
ends up at a price at or above X if and only if the number of up moves is at least a.

Any price of the form Su®fd"~* is at a distance of 2k from the lowest possible
price, Sd", on the binomial tree. This holds because

SukdrF = Sd~kdrk = Sdr?*. (4)

Based on the above observation, Figure 2 plots the relative distances of various prices
on the binomial tree.

The number of paths from S leading to a terminal price Su’d"7 is (?) each
with the same probability p’(1 — p)* 7. With reference to Figure 2, the reflection
principle can be applied with @ = n — 2h and b = 25 — 2h in (3) by treating the
S-line as the z-axis and the H-line as the barrier. Therefore,

n+(n—2h)+(2j—2h) | — .
e n—2h+j

among these paths hit H in the process for h < n /2. We conclude that the terminal
price Su/d™ 7 is reached by a path that hits the effective barrier with probability
(n_gh +j> p’(1—p)™ 7. Since each terminal payoff should be weighted by its probability
of occurrence in a risk-neutral world, the option value must equal

Rn;a (n - th N j) P -p)"7 (Swd i - X), (5)

where R = ¢"™/™ is the riskless return per period. Lyuu [1997] has shown that the
above formula converges to Merton’s formula as n — co. We emphasize that (5) is
merely an alternative characterization of the binomial tree algorithm for European
down-and-in calls.



4.1 Applications to other types of barrier options

Formulae for other types of barrier options can be similarly derived. Even exotic
barrier options whose payoff is an arbitrary function of the terminal stock price and
the strike price can be priced. For the down-and-in type of barrier options, just
replace Su/d”7 — X in the pricing formula with the payoff function. We illustrate
this step with two examples. Recall that a binary call pays off @) if it finishes above
the strike price and nothing otherwise (Hull [1997]). The price of a binary down-and-
in call would be the same as the pricing equation but with Su/d"” 7 — X replaced by
. Take power options as another example. Their payoff functions are non-standard:
max ((S(7) — X)P,0) and max (S(7)? — X,0) (Zhang [1997]). To price such exotic
options with a knock-in-barrier, just replace Su/d” 7 — X by (Su/d* 7 — X)” and
(Sw/d" )P — X, respectively.

5 Algorithmic Description and Performance Eval-
uation

The implementation of the pricing formula is straightforward. Define

n

n—2h +j)pj(1 -

= " (1 — ) Il i =
aj_<n_2h+j>p7(1 p)"7ud*™  and b]_(

The pricing formula (5) thus becomes R~ >3 (Sa; — Xb;). Since

n-2h+j+1l 1-p d
J i+l 2h — j D u
n—2h+j+1 1+4p
b, = biy1 X X
J j+1 2h_] P

all the a;’s and b;’s can be computed in linear time. Consequently, the pricing
formula can be computed in linear time as well. In practice, a;’s and b;’s need to be
stored in their logarithms to preserve precision.
The running time is actually proportional to 2h — a, which may be substantially
less than n. We can be more precise. Since
2
2h—a%g+wzﬁ+0(\/ﬁ), (6)

204/T/n

[\S)

the total running time should be proportional to n for sufficiently large n, indepen-
dent of the other parameters (of course, how large n needs to be does depend on
these parameters). This observation will prove useful later in accurately predicting
the algorithm’s performance without actually running it. Furthermore, the memory
requirement is minimal; a few number of variables instead of arrays suffices.
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5.1 Handling the sawtooth-like convergence

As with the binomial tree algorithm for standard European options, formula (5) leads
to sawtooth-like convergence (Figure 3). Worse, as Boyle and Lau [1994] pointed out,
unlike the binomial algorithm for standard European options, the swings now are
much larger, and the convergence rate is slow.

A solution quickly suggests itself once we understand the reasons for the slowness.
The true barrier most likely does not equal the effective barrier. The same holds for
strike price and effective strike price. Both introduce specification errors (Derman,
et al. [1995]). The problem with the strike price is less significant, as is testified by
the fast convergence of binomial tree algorithms for standard European options; its
influence is limited to the terminal price. The problem with the barrier is not neg-
ligible, because the barrier exerts its influence throughout the price process. Hence,
this part of the specification error is more pronounced.

Figure 4 shows the details of Figure 3. It suggests that convergence is actually
good if we limit n to certain values—191 in the figure, for example. These values
correspond to the cases where the true barrier coincides with, or just above, one of
the stock price levels so that

H =~ Sd’ = SeioVT/n

for some integer j, as pointed out by Boyle and Lau [1994]. The preferred n’s are
thus
B T

"= mem)/(j 0))°

There is only one minor technicality left. We picked the effective barrier, H, to be
one of the n + 1 possible terminal stock prices. However, the effective barrier above,
Sd’, corresponds to a terminal stock prices only when j = n — 2k for some k by
(4). To close this gap, we decrement n by one, if necessary, to make n — j an even
number. The final list of admissible n’s is

|, i=1,2,3,...

n=4{—(|¢—j|mod2), where Ez{ and j=1,2,3,... (7)

(In(S/H)/ (i 0))2|

These observations yield the simple rule: Evaluate the pricing formula (5) only for
the n’s in (7). The result is shown in Figure 5.

5.2 Performance of the algorithm

The computation is blazingly fast with high precision. For the calculation depicted
in Figure 5, for example, it takes about 0.0247 second for n = 2138 on a personal
computer equipped with a 100 MHz Intel Pentium processor and 32 MB of DRAM
running Windows NT 4.0. It is much faster than the quadratic-time trinomial tree
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algorithm to be introduced in Subsection 6.2. Specifically, the trinomial tree algorithm
takes about 15.4 seconds on the same platform to approach the analytical value at a
smaller n of 1731. Therefore, we can afford to pick very large n’s for the calculation.
Even at n = 53450, the running time does not exceed 0.7 second. Figure 6 tabulates
the running times of these two approaches. Without any doubt, our binomial model-
based algorithm is superior to the trinomial tree algorithm qua performance. The
trinomial tree algorithm has the advantage of being generalizable to cases with time-
varying barriers and early exercise features as in Cheuk and Vorst [1996] and Ritchken
[1995].

From (6) and the data for n > 10000 in Figure 6, the performance of our algorithm
can be predicted by the following formula

0.012826 x n (milliseconds). (8)

This predictor will prove accurate and useful in a moment.

5.3 The supposedly hard case: when the stock price meets
the barrier

It has been widely claimed and accepted that the binomial model is “extremely dif-
ficult” to achieve convergence when the barrier is close to the current price of the
underlying asset, S ~ H. Such a claim may be justified by (7), which says n, being
proportional to 1/1n*(S/H), is huge when S ~ H. But this pessimism should be
mitigated by an efficient algorithm implementation. This is vindicated by the data
in Figure 7. The numbers there hardly signify an algorithm that ventures beyond its
boundary of applicability. For instance, the maximum running time when convergence
is achieved is 368 milliseconds.

5.4 Predicting the performance

The actual running times of our algorithms could have been estimated by (8). Figure
8 tabulates both the estimated and the actual running times based on the Win-
dows/Intel platform. They are close enough to be useful as rough estimates. Similar
conclusions hold for the Sun SPARCstation platform: Visually inspecting the paren-
thesized numbers in Figure 7 yields a coefficient about 0.01 (vs 0.012826 for the
Windows/Intel platform).

6 Trinomial Tree Algorithms

An alternative to accelerating the computation uses trinomial tree algorithms such as
the one due to Ritchken [1995]. Ritchken also shows that such algorithms can price
barrier options with time-varying barriers or even multiple barriers.
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6.1 Setting up the trinomial model

We first review Ritchken’s trinomial approximation to geometric Brownian motion.
The stock price At time from now will be

SerVAL  with probability p,

S with probability p,,

W
VRN

Se—AU\/Xt with pI‘Oba,blhty Pd
where A > 1 and

1 EVAL

Pu = 02t o0
B 1

by = L KvAt

4T 99X 2o

with g/ = p — 02/2. See Figure 9. Here, )\ is a parameter that can be tuned. Note
that the trinomial model reduces to the binomial model when A = 1.

6.2 Pricing barrier options

We mentioned that the binomial model introduces specification error by replacing
the barrier with the effective barrier. The trinomial tree algorithm due to Ritchken
solves the problem cleverly by adjusting A so that the barrier is hit exactly. Here is
the idea. Observe that it takes
In(S/H)
np,=—F—
AoV At
consecutive down moves to go from S to H if n, is an integer, that is. But this is
easy to achieve by adjusting A. Typically, we find the smallest A > 1 such that n,
is an integer, that is,
A= min M
j=1,2,3,... ja\/A_t
This done, one of the layers of the trinomial tree must coincide with the barrier.

A quick look at Figures 3 and 10 gives the impression that trinomial model con-
verges faster than binomial model. But this can be misleading. We cautioned before
against comparing algorithms based on their convergence towards the analytical value
with respect to the number of time steps (n in the current scenario). This metric
ignores important details; for instance, the supposedly faster convergence may be
overwhelmed by a huge time complexity. The true comparison must be based on the
total running time (Patterson and Hennessy [1994]), by which our algorithm has an
edge. Figure 6 demonstrates this point clearly.
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6.3 Combinatorial formulae

Consider the down-and-in call option with barrier H < X. Assume without loss of
generality that H < S. Under the trinomial model, there are 2n + 1 stock prices,
Sud for —n < j < n, where u = e* VAL Let

_ [ln(X/S)-‘ and b= In(S/H)
| AoVAt  AoVAt

A process with n moves ends up at a price at or above X if and only if the number
of up moves exceeds that of down moves by at least a because Su® > X > Su?!.
Furthermore, the starting price is separated from the barrier by A down moves be-
cause Su~" = H. See Figure 11. Note that the meanings of a and h are different
from those in the binomial model.

The reflection principle applied to trinomial random walks, the following formula
for down-and-in calls can be similarly derived as

> 0.

n—2h—a n—m—2h n!

i . | .
WLZ:O jZma)%m—n) ((n—m+7+2h)/2)!m! (n—m —j—2h)/2)!
n—m+j is even

><p1(f“m+j)/2 X P X pénfm*j)m X (Suj — X) .

The above formula is just an alternative characterization of the trinomial tree algo-
rithm for down-and-in calls. It implies a simple algorithm that runs in time propor-
tional to (n — 2h — a)?, which, though not linear (hence not competitive with the
binomial model), is substantially less than n?. The bounds on m and j can be eas-
ily verified. Formulae for the other three types of barrier options have been similarly
derived in Lyuu [1997].

7 Conclusions

Combinatorial methods have found wide applicability in many fields. This paper
extends their use to pricing European-style barrier options even with non-standard
payofts. Furthermore, the combinatorial formulae yield highly efficient algorithms in
terms of both time and memory requirements. We expect combinatorial methods
to be similarly applicable to more sophisticated derivatives such as barrier options
with complex barriers. It has been shown in Lyuu [1997], for example, that look-
back options and barrier options with double barriers can be tackled with identical
techniques.

By comparing our binomial model-based algorithm against the supposedly supe-
rior trinomial tree algorithm on European-style barrier options, a picture contrary
to the common belief surfaces: The former is a clear winner qua performance. This

10



conclusion sheds doubt on the common methodology in the literature regarding al-
gorithm evaluation. The total running time to achieve comparable numerical results,
not any other proxies, remains the only objective metric.

Acknowledgments

The author thanks Professors Ren-Raw Chen and Douglas G. Rogers for discussions
and Yu-Hong Liu for assistance. The detailed comments from an anonymous referee
improved the manuscript immensely.

11



References

1]

2]

8]

[9]

[10]

BovLE, P., AND S. H. LAu. “Bumping Up against the Barrier with the Bi-
nomial Method.” The Journal of Derivatives, Summer 1994, 6-14.

BROADIE, M., AND J. DETEMPLE. “American Option Valuation: New
Bounds, Approximations, and a Comparison of Existing Methods.” The Re-
view of Financial Studies, 9, No. 4 (Winter 1996), 1211-1250.

CHEUK, T. H. F., AnD T. C. F. VorsT. “Complex Barrier Options.” The
Journal of Derivatives, Fall 1996, 8-22.

DERMAN, E., I. KANI, D. ERGENER, AND I. BARDHAN. “Enhanced Numer-
ical Methods for Options with Barriers.” Financial Analysts Journal, 51, No. 6
(November—December 1995), 65-74.

FELLER, W. An Introduction to Probability Theory and Its Applications, Vol.
1. 3rd ed. New York: John Wiley, 1968.

HurL, J. C. Options, Futures, and Other Derivative Securities. 3rd ed. Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1997.

LEVY, E., AND F. MANTION. “Discrete by Nature.” RISK, 10, No. 1 (January
1997), 74-75.

LinT, J. H. vAN, AND R. M. WILSON. A Course in Combinatorics. Cam-
bridge: Cambridge University Press, 1994.

Lyuu, Y.-D. Introduction to Financial Computation: Principles, Mathematics,
Algorithms. Manuscripts. February 1995-1997.

MEeRrTON, R. C. Continuous-Time Finance. Revised ed. Cambridge, Mas-
sachusetts: Blackwell, 1994.

PATTERSON, D. A.; AND J. H. HENNESSY. Computer Organization & Design:

the Hardware/Software Interface. San Mateo, California: Morgan Kaufmann,
1994.

RiTCHKEN, P. “On Pricing Barrier Options.” The Journal of Derivatives, Win-
ter 1995, 19-28.

TAKAcs, L. “Ballot Problems.” Zeitschrift fiir Wahrscheinlichkeitstheorie und
Verwandte Gebiete, 1 (1962), 154-158.

TAkAcS, L. Combinatorial Methods in the Theory of Stochastic Processes. New
York: John Wiley, 1967.

12



[15] ZHANG, P. G. Ezotic Options: a Guide to Second Generation Options. Singa-
pore: World Scientific, 1997.

13



Figure 1: THE REFLECTION PRINCIPLE FOR BINOMIAL RANDOM WALKS.
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Figure 2: DOWN-AND-IN CALL AND BINOMIAL TREE. The effective barrier is the
H-line, and the process starts at the S-line.
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Figure 3: CONVERGENCE OF BINOMIAL MODEL FOR DOWN-AND-IN CALLS. Plotted

are the option values as computed by (5) against the number of time periods, n. The

option’s parameters are S = 95, X = 100, H = 90, »r = 10% (continuously compounded),
0 =0.25,and 7 =1 (year). The analytical value, 5.6605, is also plotted for reference.
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Figure 4: CONVERGENCE OF BINOMIAL MODEL FOR DOWN-AND-IN CALLS (DE—
TAILED). Note that the approximation is quite close (5.63542 vs 5.6605) at n = 191.
Also observe that the formula consistently underestimates the analytical value.
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Figure 5: CONVERGENCE OF BINOMIAL MODEL FOR DOWN-AND-IN CALLS AT WELL-
CHOSEN n’S. The formula (5) is evaluated at n = 21 (1), 84 (2), 191 (3), 342 (4), 533 (5),
768 (6), 1047 (7), 1368 (8), 1731 (9), 2138 (10), 2587 (11), 3078 (12), 3613 (13) with the cor-
reponding j parenthesized. The analytical value is reached when n equals 2138.
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n  Combinatorial method  Trinomial tree algorithm
Value Time Value Time
21 5.507548 0.30
84  5.597597 0.90 5.634936 35.0
191  5.635415 2.00 5.655082 185.0
342  5.655812 3.60 5.658590 590.0
533  5.652253 5.60 5.659692 1440.0
768  5.654609 8.00 5.660137 3080.0
1047  5.658622 11.10  5.660338 5700.0
1368  5.659711 15.00 5.660432 9500.0
1731  5.659416 19.40 5.660474 15400.0
2138  5.660511 24.70  5.660491 23400.0
2587  5.660592 30.20 5.660493 34800.0
3078  5.660099 36.70  5.660488 48800.0
3613  5.660498 43.70  5.660478 67500.0
4190 5.660388 44.10 5.660466 92000.0
4809  5.659955 51.60 5.660454 130000.0
5472  5.660122 68.70
6177  5.659981 76.70
6926  5.660263 86.90
7717 5.660272 97.20
8552  5.660596 107.90
9427  5.660215 120.80
10348  5.660588 132.70
11309 5.660360 146.90
12314  5.660389 159.70
13361  5.660287 173.00
14452  5.660389 187.30
15585  5.660367 202.60
16762  5.660511 219.30
17979  5.660296 235.20
19242  5.660479 253.30
20545  5.660342 270.00
21892  5.660346 288.70
23283  5.660346 307.00
24714  5.660327 325.70
26189  5.660306 343.10
27708  5.660385 358.80
29269  5.660399 376.00
30872 5.660356 395.20
32519  5.660402 415.40
34208  5.660416 436.80
35939  5.660382 460.90
37714  5.660422 488.90
39531  5.660417 518.00
41392 5.660477 530.60
43293  5.660391 555.30
45240  5.660470 573.90
47227  5.660413 595.00
49258  5.660416 620.30
51333  5.660472 649.10
53450  5.660491 684.30

Figure 6: THE LINEAR-TIME, BINOMIAL MODEL-BASED ALGORITHM VS THE TRI-
NOMIAL TREE ALGORITHM. All the times are in thousandths of a second (milliseconds).
The analytical value is again 5.6605. The data were generated on a personal computer
equipped with a 100 MHz Intel Pentium processor and 32 MB of DRAM, running Windows
NT 4.0. (The trinomial tree algorithm converges at n = 1569, to be precise.) Note that
the binomial model-based algorithm takes less time at n = 2138 than the trinomial tree

algorithm at n = 84.
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Barrier at 95.0

Barrier at 99.5

Barrier at 99.9

n  Value Time n  Value Time n  Value Time
: 795 7.47761 8.0 19979 8.11304 253.0
2743 2.56095 31.1 3184 7.47626 38.0 79920 8.11297 1013.0
3040 2.56065 35.5 7163 7.47682 88.0 179819 8.11300  2200.0
3351 2.56098 40.1 12736 7.47661 166.0 319680 8.11299  4100.0
3678 2.56055 43.8 19899 7.47676 253.0 499499 8.11299  6300.0
4021 2.56152 48.1 28656 7.47667 368.0 719280 8.11299  8500.0
4378 2.56095 53.0 39003 7.47674 500.0 979019 &8.11299 11800.0

4751 2.56160 57.7 50944 7.47669  (510.0)

64475 7.47673  (650.0)

79600 7.47670  (820.0)

96315 7.47673  (980.0)

114624 7.47671 (1120.0)

134523 7.47673 (1320.0)

156016 7.47671 (1530.0)

179099 7.47673 (1760.0)

203776 7.47671 (1990.0)

230043 7.47673 (2250.0)

257904 7.47672 (2520.0)

287355 7.47672 (2830.0)

Analytic value 2.5615 7.4767 8.1130

Figure 7: THE LINEAR-TIME ALGORITHM WHEN THE CURRENT STOCK PRICE IS
NEAR THE BARRIER. All the times are in milliseconds. The parameters are taken from
Cheuk and Vorst [1996], where S = 100, X = 100, r = 10% (continuous compounded),
o = 0.2, and 7 = 0.5. The analytic value of an otherwise identical European call is 9.2778.
The analytic values of the down-and-in calls are then calculated from the down-and-out call
values in Exhibit 8 of Cheuk and Vorst [1996] via the in-out parity. Numbers in parenthesis
are measures based on a faster Sun SPARCstation.
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n  Estimated Actual n  Estimated Actual n  Estimated Actual

: 795 10.20 8.0 19979 256.25 253.0

2743 35.18 31.1 3184 40.84 38.0 79920 1025.056  1013.0
3040 38.99 35.5 7163 91.87 88.0 179819 2306.36  2200.0
3351 42.98 40.1 12736 163.35 166.0 319680 4100.22  4100.0
3678 47.17 43.8 19899 255.22  253.0 499499 6406.57  6300.0
4021 51.57 48.1 28656 367.54 368.0 719280 9225.49  8500.0
4378 56.15 53.0 39003 500.25 500.0 979019 12556.90 11800.0

Figure 8: THE ACCURACY OF THE PERFORMANCE PREDICTOR. Data for the actual
running times are extracted from Figure 7.
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Figure 9: TRINOMIAL MODEL FOR STOCK PRICES.
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Figure 10: CONVERGENCE OF TRINOMIAL MODEL FOR DOWN-AND-IN CALLS. Plot-
ted are the down-and-in call values as computed by the trinomial tree algorithm against
the number of time steps. The parameters are identical to those used in Figure 3. The
analytical value, 5.6605, is also plotted for reference.
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Figure 11: DOWN-AND-IN CALL AND TRINOMIAL TREE. Note that the interpretations
of a, 7, and h differ from those in Figure 2.
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