AUTHOR QUERIES

Journal id: RAEL_A_260259

Corresponding author: Tian-Shyr Dai

Title: Accurate approximation formulas for stock options with discrete dividends

Dear Author

Please address all the numbered queries on this page which are clearly identified on the proof for your convenience.

Thank you for your cooperation

Query number	Query								
1	Please note that the reference Whaley (1981) and (1982) are not cited in the text.								
2	Please note that we have retained Tian-Shyr Dai as the corresponding author as per the cats mail. So please check it.								
3	Please provide volume number								

[30.11.2007-8:35pm] (RAEL) [1-7] [First Proof]

Accurate approximation formulas for stock options with discrete dividends

Tian-Shyr Dai^{a,*} and Yuh-Dauh Lyuu^b

 ^aDepartment of Information and Finance Management, Institute of Information Management and Finance, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC
 ^bDepartment of Finance and Department of Computer Science & Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106

¹⁵ Pricing options on a stock that pays discrete dividends has not been satisfactorily settled in the literature. Frishling (2002) shows that there are three different models to model stock price with discrete dividends, but only one of these models is close to reality and generates consistent option prices. We follow Frishling (2002) by calling this model Model 3.

²⁰ Unfortunately, there is no analytical option pricing formula for Model 3, and many popular numerical methods such as trees are inefficient when used to implement Model 3. A new stock price model is proposed in this article. To guarantee that the option prices generated by this new model are close to those generated by Model 3, the distributions of the

new model at exdividend dates and maturity approximate the distributions of Model 3 at those dates. To achieve this, a discrete dividend in Model 3 is replaced by a continuous dividend yield that can be represented as a function of discrete dividends and stock returns in the new model. Thus, the new model follows a lognormal diffusion process and the

30 analytical option pricing formulas can be easily derived. Numerical experiments show that our analytical pricing formulas provide accurate pricing results.

I. Introduction

35

40

Pricing options on dividend-paying stocks is a longstanding question. By assuming that the stock price follows a lognormal diffusion, Black and Scholes (1973) arrive at their groundbreaking option pricing model for nondividend-paying stocks. Merton (1973) extends the model to the case, where the underlying stock pays a nonstochastic continuous dividend yield. He defines the cost of carrying of a stock as the risk-free interest rate less the dividend yield, and the stock is assumed to grow at the cost of the carrying rate. This continuous dividend yield assumption is widely adopted for pricing options as in Krausz (1985), Barone-Adesi and Whaley (1987), Broadie and Detemple (1995, 1996), Shackleton and Wojakowski (2001), Chang and Shackleton (2003) and many others. However, almost all stock dividends are paid discretely rather than continuously. We call this dividend setting the discrete dividend if

*Corresponding author. E-mail: d88006@csie.ntu.edu.tw

Applied Economics Letters ISSN 1350-4851 print/ISSN 1466-4291 online © 2007 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/13504850701604078 Routledge Taylor & Francis Group

45

60

2

T.-S. Dai and Y.-D. Lyuu

the amounts of future dividends are assumed to be known today. Pricing options on a stock that pays discrete dividends seems to be investigated first in Black (1975).

The discrete-dividend option pricing problem has drawn a lot of attention in the literature. Three popular models for this problem are discussed in Frishling (2002), and these three models are briefly introduced as follows.

Model 1 Roll (1977) suggests that the stock price is divided into two parts: the stock price minus the present value of future dividends over the life of the option and the present value of future dividends. The

- 65 former part (call it net-of-dividend stock price) is assumed to follow a lognormal diffusion process, whereas the latter part is assumed to grow at the riskfree rate. Vanilla options can be computed by applying the Black–Scholes formula with the stock
- ⁷⁰ price replaced by the net-of-dividend stock price. Cox and Rubinstein (1985) also call this model the ad hoc adjustment.

Model 2 Musiela and Rutkowski (1997), following Heath and Jarrow (1988), suggest that the cumdividend stock price, defined as the stock price plus the forward values of the dividends paid from today up to maturity, follows a lognormal diffusion process. Thus, vanilla options can be computed by applying the Black–Scholes formula by replacing the stock price with the cum-dividend stock price and by

adding the forward values of the dividends prior to maturity to the strike price.

Model 3 The stock price jumps down with the amount of dividend paid at the exdividend date, and follows lognormal price process between two exdividend dates.

Although the above models address the discretedividend option pricing problem, Frishling (2002) shows that they are incompatible with each other and generate very different prices with the same inputs. A brief sketch is given to show why Model 1 always generates lower option prices than Model 3. Assume that the volatility input to both models is σ . Model 1 sets the volatility of the net-of-dividend stock price as

- ⁹⁵ σ , whereas Model 3 sets the volatility of the stock price as σ . The volatility of the stock price in Model 1 is lower than that in Model 3 as the volatility of the present value of future dividends, a component of the stock price, is assumed to be zero in Model 1. Model
- 100 1, therefore, produces lower option prices, and the price difference between these two models becomes larger as σ becomes larger. To remove this difference, Hull (2000) recommends that the volatility of the net-of-dividend stock price be adjusted by a simple

formula. However, our article shows that the ¹⁰⁵ performance of Hull's volatility adjustment is mixed. Similarly, we can also infer that Model 2 produces higher option prices than Model 3 as Model 2 assigns the volatility of the forward values of the dividends (which is not a part of stock price) ¹¹⁰ to be σ .

The first two models are widely accepted in the academic literature (Geske, 1979; Whaley, 1981, 1982; Carr, 1998; Chance et al., 2002) partly because 115 closed-form option pricing formulas can be easily derived. However, Frishling (2002) points out that only Model 3 can reflect the reality and provide more consistent option prices. His numerical results show that both Model 1 and Model 3 can produces 120 unreasonable pricing results for American-style options and some exotic options. For example, he argues that Model 1 could incorrectly renders a down-and-out barrier option worthless simply because the net-of-dividend stock price reaches the barrier when the dividends are large enough. In 125 reality, the option has a reasonable chance to survive since these dividends are paid later than today. On the other hand, although Model 3 is much closer to reality than the other two models, it does not allow closed-form solutions for European-style option 130 prices. Model 3 can be implemented by some numerical methods such as the tree method. But, a naive application of the tree method results in a nonrecombining tree as in Fig. 1. Note that the tree size grows drastically with the number of exdividend 135 dates. This unpleasant property renders the tree model inefficient.

Fig. 1. A tree model for pricing stock options with discrete dividends

Notes: A discrete dividend is paid out at time step 2. There separate trees beginning at time step 2 are coloured in white, light gray and dark gray, respectively.

80

85

90

Analytics for stock options with discrete dividends

- In additional to the first two models mentioned in
 Frishling (2002), efficient numerical algorithms and simple formulas can be constructed by approximating the discrete dividend with either (1) a fixed dividend yield on each exdividend date or (2) a fixed continuous dividend vield. Geske and Shastri (1985)
- 150 construct a recombining tree by following the first approach. Although their tree model is efficient, numerical results in this article show that the pricing results can deviate significantly from the results of Model 3 in pricing European-style options.
- 155 The second approach is followed by Chiras and Manaster (1978). They transform the discrete dividends into a fixed continuous dividend yield and then apply the Merton formula. As this approach can be shown to be equivalent to the first approach in pricing European-style options, it

shares the same problem. In this article, we will first construct a new stock price process (call it Model 4) that captures some important properties of Model 3. We then derive analytical pricing formulas for Model 4. To guaran-

tee that the option prices generated by Model 4 are close to those generated by Model 3, the distributions of Model 4 at exdividend dates and maturity approximate the distributions of Model 3 at those dates. In fact, a discrete dividend paid at time τ in

165

- ¹⁷⁰ dates. In fact, a discrete dividend paid at time τ in Model 3 is replaced by a proper continuous dividend yield paid from the last exdividend date (or option initial date) to time τ in Model 4. This continuous dividend yield is derived to be a function of discrete
- 175 dividends and the stock returns by Taylor expansion to make the stock price (at exdividend date or at maturity) in Model 4 close to that in Model 3. The continuous dividend yield in Model 4 can be reinterpreted as the shift of the drift and the volatility
- 180 of the stock return. Thus Model 4 follows the lognormal diffusion price process, and analytical option pricing formulas can be derived. Our approach can be easily extended to price an option with multiple discrete-dividend payouts. This prop-
- 185 erty is useful as a stock can pay up to four dividends per annum in US, for example. Numerical results show that our pricing formulas can provide more accurate pricing results than other approximation methods mentioned above.

190 The article is organized as follows. The mathematical model is briefly covered in Section II. Model 4 and the corresponding pricing formulas are derived in Section III. We will first consider the single-discrete-dividend case and then extend our approach to the multiple-discrete-dividend case. Experimental results given in Section IV verify the accuracy of our pricing formulas. Section V concludes this article.

II. The Models

In Model 3, the stock price is assumed to follow the 200 lognormal diffusion process in a risk-neutral economy:

$$\frac{\mathrm{d}S(t)}{S(t)} = r\mathrm{d}t + \sigma\mathrm{d}B(t)$$

where S(t) denotes the stock price at time t, r denotes the annual risk-free interest rate, σ denotes the 205 volatility, and B(t) denotes the standard Brownian motion. Then the stock price S(t) can be represented as

$$S(t) = S(s)e^{(r-0.5\sigma^2)(t-s) + \sigma(B(t) - B(s))}$$

if no dividend is paid between time *s* and time *t*. 210 Assume that a discrete dividend *D* is paid at exdividend date τ . Then the stock price falls by the amount αD at time τ . For simplicity, α is assumed to be one in our pricing formulas. In general, α can be less than 1 when considering the effect of tax on dividend income. An $\alpha \neq 1$ poses no difficulties for modifying our pricing formulas.

Assume that a stock option initiates at time 0 and matures at time *T*. Then the payoff at time *T* is $(S(T) - X)^+$ for a vanilla call option and $(X - S(T))^+$ 220 for a vanilla put option, where *X* denotes the strike price and $(A)^+$ denotes max(A, 0). The underlying stock is assumed to pay *n* discrete dividends between time 0 and time *T*, where *n* is a positive integer. The *i*-th dividend c_i is paid at time $\sum_{j=1}^{i} t_j$, where t_j 225 denotes the time span between the (j-1)-th exdividend date (for j > 1) or time 0 (for j = 1) and the *j*-th exdividend date.

III. Analytical Formulas

We will first construct the stock price process for 230 Model 4 in the single-discrete-dividend case and then derive an analytical pricing formula. For convenience, the stock price in Model 4 at time *t* is denoted as S'(t). We further assume that $S'(0) \equiv S(0)$. Later, we will extend our work to the multiplediscrete-dividend case. Although our discussions focus on call options, extension to put options is straightforward.

A stock option with single discrete dividend

First, consider a stock that pays only one 240 discrete dividend c_1 at time t_1 before maturity *T*. In Model 3, the stock price at time t_1 is

265

4

 $S(t_1) = S(0)e^{\mu t_1 + \sigma(B(t_1) - B(0))} - c_1$, where $\mu \equiv r - 0.5\sigma^2$. Thus the stock price S(T) is expressed as

$$S(T) = \left[S(0)e^{\mu t_1 + \sigma(B(t_1) - B(0))} - c_1\right]e^{\mu(T - t_1) + \sigma(B(T) - B(t_1))}$$

- ²⁴⁵ As S(T) is no longer lognormally distributed, closed-form option pricing formulas become hard to come by.
- The stock price process in Model 4 is designed to 250 follow a lognormal price process. To achieve this, we first replace the discrete dividend c_1 paid at time t_1 by a properly chosen continuous dividend yield q_1 paid from time 0 to t_1 as follows:

$$S(t_1) = S(0)e^{\mu t_1 + \sigma(B(t_1) - B(0))} - c_1 \equiv S(0)e^{(\mu - q_1)t_1 + \sigma(B(t_1) - B(0))}$$
(1)

An approximation solution for q_1 is then derived to make

$$S(0)e^{(\mu-q_1)t_1+\sigma(B(t_1)-B(0))}$$
(2)

follow the lognormal distribution when we substitute this approximation solution into Equation 2. The approximation solution for q_1 is derived from Equation 1 as follows:

$$S(0)e^{\mu t_1 + \sigma(B(t_1) - B(0))}(1 - e^{-q_1 t_1}) = c_1$$

$$\Rightarrow 1 - e^{-q_1 t_1} - \frac{c_1 e^{-\mu t_1}}{S(0)}e^{-\sigma(B(t_1) - B(0))}$$

The left-hand side of the above equation can be approximated by the first-order Taylor expansion as $1 - (1 - q_1 t_1)$, and the right-hand side is approximated by $k_1(1 - \sigma(B(t_1) - B(0)))$, where $k_1 = c_1 e^{\mu t_1} / S(0)$. Thus we have $q_1 \approx k_1(1 - \sigma(B(t_1) - B(0))) / t_1$.

Finally, S(T) can be approximated by S'(T) as follows:

$$S(T) = [S(0)e^{\mu t_1 + \sigma(B(t_1) - B(0))} - c_1]e^{\mu(T - t_1) + \sigma(B(T) - B(t_1))}$$

= $S(0)e^{(\mu - q_1)t_1 + \sigma(B(t_1) - B(0)) + \mu(T - t_1) + \sigma(B(T) - B(t_1))}$
 $\approx S'(0)e^{(\mu - k_1/T)T + k_1\sigma(B(t_1) - B(0)) + \sigma(B(T) - B(0))} \equiv S'(T)$

270 Note that S'(T) follows the lognormal distribution. Let Var(X) denote the variance of the random variable X. Define σ_1 by

$$\sigma_{1} \equiv \sqrt{\frac{Var[k_{1}\sigma(B(t_{1}) - B(0)) + \sigma(B(T) - B(0))]}{T}}$$
$$= \sqrt{\frac{(1 + k_{1})^{2}\sigma^{2}t_{1} + \sigma^{2}(T - t_{1})}{T}}.$$

T.-S. Dai and Y.-D. Lyuu

Then the discrete dividend c_1 paid at time 275 t_1 in Model 3 is replaced by a continuous dividend yield q_1 that can be approximately interpreted as the shift of the drift of the stock return from μ to $\mu - k_1/T$ and the volatility from σ to σ_1 in Model 4. The value for a vanilla call option can be calculated by the risk-neutral variation method as follows:

$$e^{-rT}E(S'(T) - X)^+$$
 (3)

$$= e^{-rT} E[S'(0)e^{(\mu - k_1/T)T + k_1\sigma(B(t_1) - B(0)) + \sigma(B(T) - B(0))} - X]^+$$

$$= S'(0)e^{a}N(d_{1}) - Xe^{-rT}N(d_{2})$$
(4)

where $a = \sigma_1^2 - \sigma^2/2T - k_1$, $d_1 = \ln S'(0)/X - k_1 + 285$ $(\mu + \sigma_1^2)T/\sigma_1\sqrt{T}$, and $d_2 = d_1 - \sigma_1\sqrt{T}$.

The accuracy of above formula can be improved by expanding $k_1 e^{-\sigma(Bt_1)-B(0))}$ further as $k_1(1 - \sigma[B(t_1) - B(0)] + \sigma^2[B(t_1) - B(0)]^2/2)$. To 290 make Model 4 follow a lognormal price process, q_1 is derived as follows:

$$q_{1} \approx \frac{k_{1} \left[1 - \sigma(B(t_{1}) - B(0)) + \sigma^{2} \frac{B(t_{1}) - B(0))^{2}}{2} \right]}{t_{1}}$$

$$\approx \frac{k_{1} \left[1 - \sigma(B(t_{1}) - B(0)) \right] + \delta_{1}}{t_{1}}$$
(5)

where $\delta_1 \equiv E(k_1\sigma^2[B(t_1) - B(0)]^2/2) = k_1\sigma^2t_1/2$. Thus, S'(T) can be derived as follows:

$$S'(T) \equiv S'(0)e^{(\mu - k_1/T)T + \sigma(B(T) - B(0)) + k_1\sigma(B(t_1) - B(0)) - \delta_1}$$
(6)

A more accurate formula for a call option is then obtained by substituting Equation 6 into Equation 3. The resulting pricing formula can be expressed in terms of Equation 4 with *a* and d_1 redefined as $\sigma_1^2 - \sigma^2/2T - k_1 - \delta_1$, and $\ln S(0)/X - k_1 + (\mu + \sigma_1^2)T - \delta_1/\sigma_1\sqrt{T}$, respectively. Numerical experiments in Section IV show that this formula generates accurate prices.

Multiple discrete dividends

The aforementioned approach can be further extended to price a stock option with multiple discrete dividends. We will first consider the twodiscrete-dividend case and then describe the generalized pricing formula for the multiple-discrete-dividend case without proof.

Assume that two discrete dividends c_1 (paid at time t_1) and c_2 (paid at time $t_1 + t_2$) are paid prior to time *T*. We again replace the dividend c_2 paid at time $t_1 + t_2$ by a proper continuous dividend yield q_2 paid

295

300

310

305

5

(9)

340

Analytics for stock options with discrete dividends

from time t_1 to time $t_1 + t_2$ as follows:

$$S(t_1)e^{\mu t_2 + \sigma(B(t_1+t_2) - B(t_1))} - c_2$$

$$\equiv S(t_1)e^{(\mu - q_2)t_2 + \sigma(B(t_1+t_2) - B(t_1))}$$

$$\Rightarrow 1 - e^{-q_2 t_2} = \frac{c_2 e^{-\mu t_2}}{S(t_1)}e^{-\sigma(B(t_1+t_2) - B(t_1))}$$
(7)

By substituting Equation 1 into Equation 7 with $q_1 \approx k_1[1 - \sigma(B(t_1) - B(0))] + \delta_1/t_1$, q_2 can be derived as follows:

$$q_1 \approx \frac{k_2 [1 - (1 + k_1)\sigma(B(t_1) - B(0)) - \sigma(B(t_2) - B(t_1))] + \delta_2}{t_2}$$
(8)

where $k_2 \equiv c_2 e^{-\mu(t_1+t_2)+k_1+\delta_1}/S(0)$ and $\delta_2 \equiv k_2[(1+k_1)^2\sigma^2t_1+\sigma^2t_2]/2$. Thus S(T) can be approximated by S'(T) as follows:

$$\begin{split} S(T) &= \left(S(t_1)e^{\mu t_2 + \sigma(B(t_1+t_2) - B(t_1))} - c_2\right) \\ &\times e^{\mu(T-t_1-t_2) + \sigma(B(T) - B(t_1+t_2))} \\ &= S(t_1)e^{(\mu-q_2)t_2 + \sigma(B(t_1+t_2) - B(t_1))} \\ &\times e^{\mu(T-t_1-t_2) + \sigma(B(T) - B(t_1+t_2))} \\ &= S(0)e^{(\mu-q_1)t_1 + \sigma(B(t_1) - B(0))}e^{(\mu-q_2)t_2 + \sigma(B(t_1+t_2) - B(t_1))} \\ &\times e^{\mu(T-t_1-t_2) + \sigma(B(T) - B(t_1+t_2))} \\ &\approx S'(0)e^{\left(\mu - \frac{k_1 + k_2 + \delta_1 + \delta_2}{T}\right)T + (1 + k_1 + k_2 + k_1k_2)\sigma(B(t_1) - B(0)) + (1 + k_2)\sigma(B(t_1+t_2) - B(t_1)) + \sigma(B(T) - B(t_1+t_2))} \\ &\equiv S'(T) \end{split}$$

³²⁵ where we substitute Equations 5 and 8 into Equation 9. Note that S'(T) follows the lognormal distribution. Define σ_2 by

$$\sigma_{2} \equiv \sqrt{\frac{Var[(1+k_{1}+k_{2}+k_{1}k_{2})\sigma(B(t_{1})-B(0))+(1+k_{2})\sigma(B(t_{1}+t_{2})-B(t_{1}))+\sigma(B(T)-B(t_{1}+t_{2}))]}{T}}$$
$$= \sqrt{\frac{(1+k_{1}+k_{2}+k_{1}k_{2})^{2}\sigma^{2}t_{1}+(1+k_{2})^{2}\sigma^{2}t_{2}+\sigma^{2}(T-t_{1}-t_{2})}{T}}$$

330

Again, the discrete dividends c_1 and c_2 in Model 3 are replaced by continuous dividend yields q_1 and q_2 that can be approximately interpreted as the shift of the drift of the stock return from μ to $\mu - k_1 + k_2 + \delta_1 + \delta_2/T$ and the volatility from σ to σ_2 in Model 4. The value for a vanilla call option can be calculated by the risk-neutral variation method as follows:

$$e^{-rT}E(S'(T) - X)^{+} = S'(0)e^{(\sigma_{2}^{2} - \sigma^{2}/2)T - k_{1} - k_{2} - \delta_{1} - \delta_{2}}N(d'_{1})$$
$$- Xe^{-rT}N(d'_{2})$$

335 where
$$d'_1 = \ln S'(0)/X - k_1 - k_2 + (\mu + \sigma_2^2)T - \delta_1 - \delta_2/\sigma_2\sqrt{T}$$
 and $d'_2 = d'_1 = \sigma_2\sqrt{T}$.

The pricing formula of a vanilla call option is then 345

$$S'(0)e^{\frac{\sigma_n^2-\sigma^2}{2}T-\sum_{i=1}^n (k_i+\delta_i)} N(d'_1) - Xe^{-rT}N(d'_2),$$

The pricing formula for stock options with more

discrete dividends can be derived by iteratively

repeating the aforementioned steps. The pricing formula for *n*-discrete-dividend case is illustrated

 $\sigma_i = \sqrt{\frac{\sum_{j=1}^i a_{j,i+1}^2 t_j + a_{i+1,i+1}^2 (T - \sum_{h=1}^i t_h)}{T}}.$

with the aid of recursive formulas below:

 $a_{i,j} = \begin{cases} 0, & \text{if } i > j, \\ \sigma & \text{if } i = j, \\ \sum_{h=1}^{j-1} a_{i,h} k_h + \sigma & \text{if } i < j, \end{cases}$

 $k_i = \frac{c_i e^{-\mu \sum_{j=1}^i t_i + \sum_{j=1}^{i-1} (k_j + \delta_j)}}{S'(0)}$

 $\delta_i = \frac{k_i \sum_{j=1}^i a_{j,i}^2 t_j}{2},$

where $d'_1 = \ln S'(0)/X + (\mu + \sigma_n^2)T - \sum_{i=1}^n (k_i + \delta_1)/\sigma_n \sqrt{T}$ and $d'_2 = d''_1 - \sigma_n \sqrt{T}$.

IV. Numerical Results

We compare Geske and Shastri's fixed dividend yield ³⁵⁰ model, Hull's volatility adjustment model, and all the four discrete dividend models mentioned earlier in

Table 1. Pricing a call option with single discrete dividend

	0.4						0.5						
Х	FDY	Model1	Hull	Model2	Model4	Model3	FDY	Model1	Hul1	Model2	Model4	Model3	
95 100 105	*16.263 *14.214 *12.400	*16.336 *14.270 *12.439	17.090 15.044 *13.222	17.112 15.048 *13.206	16.875 14.815 12.982	16.933 14.754 12.989	*19.890 *17.964 *16.194	*19.969 *18.003 *16.222	20.901 *18.959 17.194	20.937 *18.971 17.182	20.643 18.687 16.910	20.843 18.584 16.929	

[First Proof

Notes: The initial stock price is 100, the risk-free rate is 3%, the time to maturity is 1 year, and a five-dollar-dividend is paid at year 0.6. The volatilities of the stock price are shown in the first row. The strike prices are listed in the first column. FDY denotes the fixed dividend yield approach of Geske and Shastri (1985). Model1,..., Model4 denote the option prices generated by Model 1,..., Model 4, respectively. Hull denotes volatility adjustment approach of Hull (2000). Option prices that deviate from Model 3 by 0.3 are marked by asterisks.

Table 2. Pricing a call option with two discrete dividends

	0.4						0.5						
X	FDY	Model1	Hul1	Model2	Model4	Model3	FDY	Model1	Hul1	Model2	Model4	Model3	
95 100 105	*16.303 *14.250 *12.433	*16.336 *14.270 *12.439	17.090 *15.044 *13.222	17.112 *15.048 *13.206	16.849 14.792 12.963	16.836 14.733 12.883	*19.931 *18.001 *16.228	*19.969 *18.003 *16.222	*20.901 *18.959 *17.194	*20.937 *18.971 *17.182	20.620 18.667 16.829	20.549 18.621 16.829	

Notes: The numerical settings are the same as those settings in Table 1 except that a 2.5-dollar-dividend is paid at year 0.4 and year 0.8.Option prices that deviate from Model3 by 0.3 are marked by asterisks.

this article. Geske and Shastri (1985) use fixed dividend yields to approximate discrete dividends.

The fixed dividend yield is defined as the discrete dividend amount divided by the initial stock price. For example, the dividend yield is 5% if the initial stock price is 100 and the discrete dividend is 5. We use FDY to denote their approach. Model 1

- 360 generates lower option prices than Model 3 as argued before. To remove this difference, Hull (2000) recommends that the volatility of net-ofdividend stock price be adjusted by the volatility of the stock price multiplied by S(0)/(S(0) - D), where D 365
- denotes the present value of future dividends paid between time 0 to time T. We use Hull to denote Hull's volatility adjustment approach. Besides, we use Model1,..., Model4 to denote the option prices generated by Model 1,..., Model 4. The option 370 prices generated by Model 3 are produced by the

Monte Carlo simulation based on 100000 trials.

The numerical results for these models are listed in Table 1 and 2, where Table 1 focuses on the singlediscrete-dividend case and Table 2 focuses on the two-discrete-dividend case. All the prices that deviate from Model3 by 0.3 are marked by asterisks. It is not surprising that the option prices generated by Model 2 are higher than the prices generated by Model 3. On the other hand, Model 1 generates lower option prices

FDY does not approximate Model 3 well as it produces lower option prices than Model 1. Hull's volatility adjustment approach seems to overprice the options. It can be observed that only Model 4 produces options prices that are close to those generated by Model 3.

The option price generated by Model 3 in each case in Table 2 is lower than that in the corresponding case 390 (except one case) in Table 1. Model 4 successfully captures this trend, but all other models fail. Note that both Model 1 and Hull's volatility adjustment approach produce similar option prices in the singlediscrete-dividend case and the two-discrete-dividend case. This is because the net-of-dividend stock price in 395 the single-discrete-dividend case (= $100 - 5e^{-0.03 \times 0.6}$) is almost equal to that in the multiple-discretedividend case (= $100 - 2.5e^{-0.03 \times 0.4} - 2.5e^{-0.03 \times 0.8}$). Model 2 also produces similar option prices in both cases since the cum-dividend stock prices for both cases are almost equal.

V. Conclusions

Traditional models for pricing options on discretedividend-paying stocks either produce inconsistent pricing results or are inefficient. Our article constructs a new stock price model by replacing discrete 385

400

405

375

³⁸⁰ than Model 3. The difference among these three models becomes larger as the volatility increases.

415

435

440

[30.11.2007-8:35pm] (RAEL)

Analytics for stock options with discrete dividends

dividends with proper continuous dividend yields which can be viewed as functions of discrete dividends and stock returns. This model follows a lognormal diffusion process and analytical pricing formulas can be easily derived. Numerical results verify the superiority of our approach.

Acknowledgements

We thank Ren-Her Wang for useful suggestions.

The author was supported in part by NSC grant 94-2213-E-033-024 and NCTU research grant for financial engineering and risk management project.

The author was supported in part by NSC grant 95-2213-E-002-044.

420 **References**

- Barone-Adesi, G. and Whaley, R. E. (1987) Efficient analytic approximation of american options values, *Journal of Finance*, **42**, 301–20.
- 425 Black, F. (1975) Fact and fantasy in the use of options, *Financial Analysts Journal*, **31**, 61–72.
 - Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities, *Journal of Political Economy*, **81**, 637–59.
- Broadie, M. and Detemple, J. B. (1995) American capped
 call options on dividend paying assets, *Review of Financial Studies*, 8, 161–91.
 - Broadie, M. and Detemple, J. B. (1996) American options valuation: new bounds. approximations and a comparison of existing methods, *Review of Financial Studies*, 9, 1211–50.
 - Carr, P. (1998) Randomization and the American put, *The Review of Financial Studies*, **11**, 597–626.
 - Chance, D.M., Kumar, R. and Rich, D. (2002) European option pricing with discrete stochastic dividends, *Journal of Derivatives*, **9**, 39–45.

- Chang, S.-L. and Shackleton, M. (2003) The simplest american and real option approximations: Geske– Johnson interpolation in maturity and yield, *Applied Economics Letters*, **10**, 709–16.
- Chiras, D. P. and Manaster, S. (1978) The informational content of option prices and a test of market efficiency, *Journal of Financial Economics*, **6**, 213–34.
- Cox, J. C. and Rubinstein, M. (1985) *Options Markets*, NJ: Prentice-Hall, Englewood Cliffs.
- Frishling, V. (2002) A discrete question, Risk, 115-6.
- Geske, R. (1979) A note on an analytical valuation formula for unprotected american call options on stocks with known dividends, *Journal of Financial Economics*, **7**, 375–80.
- Geske, R. and Shastri, K. (1985) Valuation by approximation: a comparison of alternative option valuation techniques, *Journal of Financial and Quantitative Analysis*, **20**, 45–71.
- Heath, D. and Jarrow, R. (1988) Exdividend stock price behaviour and arbitrage opportunities, *Journal of 460 Business*, **61**, 95–108.
- Hull, J. (2000) *Options, Futures, and Other Derivatives,* , 4th edn, NJ: Prentice-Hall, Englewood Cliffs.
- Krausz, J. (1985) Option parameter analysis and market efficiency tests: a simultaneous solution approach, 465 *Applied Economics*, 17, 885–96.
- Merton, R. C. (1973) Theory of rational option pricing, Bell Journal of Economics and Management Science, 4, 141–83.
- Musiela, M. and Rutkowski, M. (1997) *Martingale* 470 *Methods in Financial Modeling*, Springer, Germany.
- Roll, R. (1977) An analytic valuation formula for unprotected american call options on stocks with known dividends, *Journal of Financial Economics*, **5**, 251–8.
- Shackleton, M. and Wojakowski, R. (2001) On the expected payoff and true probability of exercise of european options, *Applied Economics Letters*, **8**, 269–71.
- Whaley, R. E. (1981) On the valuation of american call options on stocks with known dividends, *Journal of Financial Economics*, 9, 207–11.
- Whaley, R. E. (1982) Valuation of american call options on dividend-paying stocks: empirical tests, *Journal of Financial Economics*, **10**, 29–58.

⁴⁵⁰ **3**

475