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The geometric average trigger reset option resets the strike price based on
the geometric average of the underlying asset’s prices over a monitoring
window. Similar contracts have been traded on exchanges in Asia. This
paper derives an analytic formula for pricing this option with multiple
monitoring windows. The analytic formula in fact is a corollary of a
general formula that holds for a large class of path-dependent options:
It prices any option whose value can be written as a linear combination
of Eðeb�X1fX2AgÞ, where X is a multinormal random vector and b is some
constant vector. Numerical experiments suggest that the pricing formula
approximates the values of arithmetic average trigger reset options
accurately. Thus pricing the arithmetic average trigger reset option can
benefit from using this formula as the control variate in Monte Carlo
simulation. Numerical results also suggest that the geometric average trig-
ger reset option does not have significant delta jump as the standard reset
option, and this useful property reduces the hedging risk dramatically.

I. Introduction

A reset option is a path-dependent option whose
strike price can be reset based on certain criteria.
For example, the strike price of a reset call can be
reset downward if the underlying asset’s price falls
below a predetermined value. The underlying asset
is assumed to be stock in this paper for convenience.
Most reset features embedded in a reset call (put)
protect the investors amid declines (increases,
respectively) in stock price. This makes a reset option
useful to portfolio insurance. To prevent price
manipulation, many contracts use the average price

of the stock during a certain time period, the so-called
monitoring window, as a reset trigger. At the end
of each monitoring window lies a reset date.
The advantages of using the average price as a reset
trigger instead of the stock price alone, as in standard
reset options, are (1) to mitigate the possibility of
stock price manipulation, especially for thinly traded
markets, (2) to provide a strike price correlated with
a perceived price trend or fair value, and (3) to lessen
the delta jump problem associated with standard
reset options. These advantages make the products
appealing to some investors. The price that comes
with the abovementioned advantages is complexity,
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as the option combines the features of both Asian
and reset options. Similar securities have been issued
before. For example, Grand Cathay, a securities firm
in Taiwan, issued two average reset options on the
Taipei Stock Exchange in 1999.

Standard reset options have been investigated
before. Gray and Whaley (1997, 1999) analyse the
S&P 500 bear market warrant with a single reset
and derive an analytic solution for it. Heynen and
Kat (1995) discuss discrete lookback options, which
are closely related to reset options. For reset options
with the average feature, Chang et al. (2004) give a
numerical approach for pricing arithmetic average
trigger reset options by extending the approximation
algorithm of Hull and White (1993). This approach,
however, lacks convergence guarantees as mentioned
in Forsyth et al. (2002). Kao and Lyuu (2003) present
perhaps the most general algorithm for pricing
average-trigger-reset-type options. But their approach
applies only to discretely monitored options and is not
efficient enough for the present case.

Formally, a geometric average trigger reset option
is an option that uses the geometric price average in
a monitoring window to set the strike price at the end
of that monitoring window, the reset date. Cheng and
Zhang (2000) derive an analytic formula for the
option with a single monitoring window. However,
their formula is erroneous, as will be demonstrated
later. This paper will establish the formula for
geometric average trigger reset options with an
arbitrary number of monitoring windows, generaliz-
ing Cheng and Zhang (2000). In fact, the analytic
formula is a corollary of a general formula that is
of independent interest. This much more general
formula prices any option whose value can be
written as a linear combination of Eðeb�X1fX2AgÞ,
where X is a multinormal random vector and b is
some constant vector. Vanilla options, geometric
Asian options, rainbow options, and quanto
options all fall into this category, with closed-form
formulas as multiple integrations. Because evaluating
a multidimensional integral is a well-known hard

computational problem, the approximation solution
of Broadie et al. (1997) remains important for these
options.

In real markets, the arithmetic average trigger reset
options are more frequently traded than the
geometric ones. However, no explicit closed-form
solution exists for arithmetic average trigger reset
options. This paper suggests that the values of
geometric and arithmetic average trigger reset
options are very close even when the volatility of
the stock price is as high as 150% in Table 1.
Besides, the arithmetic average trigger reset options
can be efficiently priced by a quasi-Monte Carlo
method, the control variate method (see Liao and
Wang, 2002). This method replaces the evaluation
of an unknown value (like the value of an arithmetic
average trigger reset option) with the evaluation of
the difference between this unknown value and a
benchmark (like the value of a geometric average
trigger reset option) whose value can be easily
obtained. The formula defined in this paper provides
a good benchmark for the control variate method.

The paper is organized as follows. The geometric
average trigger reset option is formally defined in
Section II. The analytic formula for pricing geometric
average trigger reset options is derived as a corollary
of a general analytic pricing formula in Section III.
Numerical results are given in Section IV to support
our claims. Section V concludes the paper.

II. Geometric Average Trigger
Reset Options

An option starts at time 0 and matures at T. Let r
denote the risk-free interest rate, S(t) denote the stock
price at time t, and � denote the volatility of stock
price S. It is assumed that S(t) follows

dS ¼ rS dtþ �S dW

in a risk-neutral economy, where W is the standard
Wiener process.

Table 1. Geometric and arithmetic average trigger reset call values

Volatility 50% 80% 100% 120% 150%

Geometric 26.165 37.781 44.971 51.562 60.460
Arithmetic 26.105 37.653 44.784 51.424 60.162
Difference 0.23% 0.34% 0.42% 0.27% 0.49%

Note: The initial stock price is 100, the strike price is 95, the risk-free interest rate is 5%, the time to maturity is
1 year, and the length of the monitoring window which ends at year 0.5 is 0.2 year. ‘Geometric’ and ‘Arithmetic’
denote the geometric and arithmetic average trigger reset calls, respectively. The value of arithmetic average
trigger reset calls are computed by the Monte Carlo simulation based on 1 000 000 paths. ‘Difference’ denotes
relative price differences.

836 T.-S. Dai et al.



Geometric average trigger reset options are reset
options whose strike price can be reset to the
geometric average of the stock prices over monitoring
windows. Consider a general reset option with m
reset dates: t1, t2, . . . , tm, where 0 � t1 < t2 < � � � <
tm�1 < tm � T. These m monitoring windows are
½ t1 � ‘1, t1 �, ½ t2 � ‘2, t2 �, . . . , ½tm � ‘m, tm�, where ‘i
denotes the length of the ith monitoring window.
The geometric price average of the stock during the
ith monitoring window is defined as

avgðtiÞ ¼ exp
1

‘i

Z ti

ti�‘i

lnSðtÞ dt

� �

Let K(t) be the strike price prevailing at time t.
Initially, Kð0Þ ¼ K, the original strike price. The
reset procedure for the call at reset date ti is

KðtiÞ ¼
Kðti�1Þ if avgðtiÞ � Kðti�1Þ

avgðtiÞ if avgðtiÞ < Kðti�1Þ

�
The payoff of the call at the maturity date is
maxðSðT Þ � KðtmÞ, 0Þ. Similarly, the reset procedure
for the put at time ti is

KðtiÞ ¼
Kðti�1Þ if avgðtiÞ � Kðti�1Þ

avgðtiÞ if avgðtiÞ > Kðti�1Þ

�
and the payoff of the put at the maturity date is
maxðKðtmÞ � SðT Þ, 0Þ. This paper focuses on deriving
analytical pricing formula for calls; the extension to
puts is straightforward.

III. The Analytic Approach

A general analytic pricing formula for pricing a large
class of path-dependent options is presented below.
The analytic formula for geometric average trigger
reset options will then be derived as a corollary.

A general formula

Let b be an m-dimensional vector, X be a non-
degenerate m-dimensional normal random vector,
and A be a subspace of the m-dimensional space
<

m. All vectors such as b and X will be row vectors
throughout the rest of the paper. Superscript ‘�’
denotes the transpose of a vector or matrix. The
general pricing formula holds for any derivative
whose value can be expressed as a linear combination
of EðebX

�

1fX2AgÞ. Many sophisticated derivatives fit
this category as mentioned in the introduction.

Assume that the mean vector and the covariance
matrix of X are � and �, respectively. Because X is
not degenerate, det� 6¼ 0. The probability density

function of X is

fðxÞ ¼
1

ðð2�Þ1=2Þmðdet�Þ1=2
e�ðx��Þ�

�1
ðx��Þ�=2

Therefore,

EðebX
�

1fX2AgÞ

¼

Z
A

1

ðð2�Þ1=2Þmðdet�Þ1=2
ebx

�
�ðx��Þ��1ðx��Þ�=2 dx

ð1Þ

Let a ¼ b�. Then

bx� � ðx� �Þ��1ðx� �Þ�=2

¼ ���1a� þ ða��1a�=2Þ

� ½ x� ð�þ aÞ���1½ x� ð�þ aÞ��=2
� �

Equation 1 can now be rewritten as

1

ð
ffiffiffiffiffiffi
2�
p
Þ
m
ðdet�Þ1=2

e���1a�ea��1a�=2

�

Z
A

e�½x�ð�þaÞ ��
�1
½x�ð�þaÞ ��=2 dx

¼
e�b

�
þb�b�=2

ð
ffiffiffiffiffiffi
2�
p
Þ
m
ðdet�Þ1=2

Z
A

e�½x�ð�þb�Þ ���1½x�ð�þb�Þ ��=2 dx

ð2Þ

The Black–Scholes formula will be derived from
Equation 2 as the first application. Let X ¼
lnðSðT Þ=Sð0ÞÞ and A ¼ fX jX � lnðK=Sð0ÞÞg. The
mean and the variance of X are ðr� �2=2ÞT and
�2T, respectively. The value of the vanilla call equals

e�rTEðSðT Þ � KÞþ

¼ e�rT Sð0ÞEðe1X
�

1fX2AgÞ � KEðe0X
�

1fX2AgÞ
h i

¼ Sð0ÞN
lnðSð0Þ=KÞ þ ðrþ �2=2ÞT

�ðT Þ1=2

 !

� e�rTKN
lnðSð0Þ=KÞ þ ðr� �2=2ÞT

�ðT Þ1=2

 !

where N(�) denotes the distribution function of the
standard normal distribution and Equation 9 is
used in the second identity.

Equation 2 reduces the problem of evaluating

EðebX
�

1fX2AgÞ to the integration of a multi-dimensional
normal distribution over a region A. If the region A
is already a rectangular polyhedron or if X is a one-
dimensional normal random vector, the result can be
rewritten similar as the above for the vanilla call
option. On the other hand, if A is a polyhedron but
not a rectangular one, X can be multiplied by a matrix
C to change A into a rectangular polyhedron, A0.
This step transforms the pricing formula into one
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involving distribution functions. More precisely,
with Y� ¼ CX�, Equation 2 becomes

e�b
�
þb�b�=2

ð
ffiffiffiffiffiffi
2�
p
Þ
m
ðdet�

0

Þ
1=2

Z
A0
e�½y�ð�þb�ÞC���

0
�1
½y�ð�þb�ÞC���=2 dy

ð3Þ

where �0 ¼ C�C�.

Analytic formula for geometric average trigger
reset options

Next Equation 3 is used to derive the pricing formula
for the geometric average trigger reset call option
with m monitoring windows. Define

Xi � lnðavgðtiÞ=Sð0ÞÞ, i ¼ 1, 2, . . . ,m

Xmþ1 � lnðSðT Þ=Sð0ÞÞ

X � ½X1,X2,X3, . . . ,Xmþ1 �

X is clearly an ðmþ 1Þ-dimensional normal random
vector. The undiscounted value of a reset call isXm
i¼1

Sð0ÞE ebmþ1X
�

1fX2Aig

� �
� Sð0ÞE ebiX

�

1fX2Aig

� �h i
þ Sð0ÞE ebmþ1X

�

1fX2Amþ1g

� �
� KE 1fX2Amþ1g

	 

ð4Þ

where

Ai ¼ X jKðtmÞ ¼ avgðtiÞ,SðT Þ � avgðtiÞ
� �
1 � i � m

Amþ1 ¼ X jKðtmÞ ¼ K,SðT Þ � K
� �

bi ¼ ½ 0, . . . , 0,
zfflfflfflfflffl}|fflfflfflfflffl{i�1

1, 0, . . . , 0
zfflfflfflffl}|fflfflfflffl{mþ1�i

� 1 � i � mþ 1

X’s mean vector � is equal to"
r�

�2

2

 !
t1 �

‘

2

� �
, r�

�2

2

 !
t2 �

‘

2

� �
, . . . , r�

�2

2

 !

� tm �
‘

2

� �
, r�

�2

2

 !
T

#
:

Let �i, j be the covariance of Xi and Xj. Then the
elements of the covariance matrix � ¼ ½�i, j � are

�i, i ¼ �
2 ti �

2‘

3

� �
if 1 � i � m

�i, j ¼ �j, i ¼ �
2 ti �

‘

2

� �
if 1 � i < j � mþ 1

�mþ1,mþ1 ¼ �
2T

Consequently, each term in Equation 4 can be
reduced to the integration of a multinormal distribu-
tion by Equation 2. To state the formula in terms of
distribution functions, a matrix is needed for each
integration to transform the polyhedral integration

area into a rectangular one. This transformation is
divided into the two following cases.

Case 1: Area Akð1 � k � mÞ

Note that each point X ¼ ðX1, . . . ,Xmþ1Þ in Ak

satisfies these mþ 1 inequalities:

Xk � lnðK=Sð0ÞÞ

Xk � Xi � 0 for 1 � i � mþ 1 and i 6¼ k

As Ak is not rectangular, a matrix Ck is needed to
linearly transform it into a rectangular one. Ck is
defined as

Ckði, kÞ ¼ 1 if 1 � i � mþ 1

Ckði, iÞ ¼ �1 if 1 � i � mþ 1 and i 6¼ k

Ckði, jÞ ¼ 0 otherwise

where Ckði, jÞ denotes the element at the ith row and
the jth column of Ck. Define Y ¼ CX�. Area Ak is
hence transformed into

A0k ¼ YjYk � lnðK=Sð0ÞÞ Yi � 0 for
�
1 � i � mþ 1 and i 6¼ k

�
:

Case 2: Area Amþ1

Note that each point X ¼ ðX1, . . . ,Xmþ1Þ in Amþ1

satisfies these mþ 1 inequalities:

Xi � lnðK=Sð0ÞÞ for 1 � i � mþ 1

Although they define a rectangular polyhedron, a
matrix Cmþ1 is required to transform it so the desired
formula can be expressed in terms of a distribution
function. Let

Yi ¼ �Xi for 1 � i � mþ 1

Then the desired Cmþ1 is �1 where I is the
ðmþ 1Þ � ðmþ 1Þ identity matrix. Area Amþ1 is now
transformed into

A0m þ 1 ¼ YjYi � � lnðK=Sð0ÞÞ for 1 � i � mþ 1
� �

After the transformation described above, the
undiscounted value of the option now equals

Sð0Þ
Xm
i¼1

(
erT
Z
A0i

e� y�ð�þbmþ1�ÞC
�
i½ ���1i y�ð�þbmþ1�ÞC

�
i½ �
�
=2

ð
ffiffiffi
2
p
�Þmþ1½det�i�

1=2
dy

�erðti�‘=2Þ��
2‘=12

�

Z
A0i

e� y�ð�þbi�ÞC
�
i½ ���1i y�ð�þbi�ÞC

�
i½ �
�
=2

ð
ffiffiffi
2
p
�Þmþ1½det�i�

1=2
dy

)
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þSð0ÞerT
Z
Amþ10

1

ð
ffiffiffi
2
p
�Þmþ1½det�mþ1�

1=2

� e� y�ð�þbmþ1�ÞC
�
mþ1½ ���1mþ1 y�ð�þbmþ1�ÞC�mþ1½ �

�
=2dy

�K

Z
Amþ10

e�ðy��C
�
mþ1Þ�

�1
mþ1ðy��C

�
mþ1Þ

�=2

ð
ffiffiffi
2
p
�Þmþ1½det�mþ1�

1=2
dy

where �i � Ci�C�i .

The special case of a single reset

Next the special case of a single monitoring window
is considered. The undiscounted value of this option
is Equation 4 with m¼ 1. The mean vector of X is

� ¼ r�
�2

2

 !
t1 �

‘

2

� �
, r�

�2

2

 !
T

" #

The covariance matrix of X is

� ¼
�2 t1 �

2‘
3

	 

�2 t1 �

‘
2

	 

�2 t1 �

‘
2

	 

�2T

" #

The desired transformation matrices C1 and C2 for
integration areas A1 and A2, respectively, are

C1 ¼
1 0
1 �1

� 
, C2 ¼

�1 0
0 �1

� 
By Equation 3, the integration areas A01 and A02 are

A01¼ ðY1,Y2Þ jY1 � lnðK=Sð0ÞÞ,Y2 � 0
� �

A02¼ ðY1,Y2Þ jY1 �� lnðK=Sð0ÞÞ,Y2 �� lnðK=Sð0ÞÞ
� �

Let b1 ¼ ½ 1, 0 � and b2 ¼ ½ 0, 1 �. The undiscounted
value of the option is

Sð0Þ erT N �1 � ð�þ b2�ÞC
�
1,C1�C�1ð Þ

� Sð0Þ erðt1�‘=2Þ��
2‘=12 N �1 � ð�þ b1�ÞC

�
1,C1�C�1ð Þ

þ Sð0Þ erT N �2 � ð�þ b2�ÞC
�
2,C2�C�2ð Þ

� KN �2 � �C
�
2,C2�C�2ð Þ ð5Þ

where �1 � ðlnðK=Sð0ÞÞ, 0Þ, �2 � ð� lnðK=Sð0ÞÞ,
� lnðK=Sð0ÞÞÞ, and Nð�,�0Þ is the cumulative normal
distribution function with mean vector 0 and the
covariance matrix �0.

The floating-strike geometric Asian option has
payoffs ½SðT Þ � expð

R T
0 lnSðtÞdt=T Þ�þ and ½ exp

ð
R T
0 lnSðtÞdt=T Þ � SðT Þ�þ for calls and puts at matur-

ity, respectively (see Angus, 1999). It is a special case of
the geometric average trigger reset option with one
monitoring window. The claimed correspondence is
established by equalizing the reset date with the
maturity, the length of the single monitoring window
with the life span of the option, and letting the
initial strike price to be infinity for the call and zero
for the put.

IV. Numerical Results

Our analytic formula (see Equation 5) is first
compared against the formula in Cheng and Zhang
(2000). The results are tabulated in Table 2, where
‘CZ’ denotes the Cheng–Zhang formula and ‘Exact’
denotes Equation 5. The Monte Carlo simulation
(‘MC ’) based on 100 time steps and 1 000 000 paths
as the benchmark. It is apparent that Equation 5 pro-
duces values consistent with the Monte Carlo simula-
tion result, whereas Cheng and Zhang’s formula
does not. This confirms that their formula is incorrect.

The difference between the formula derived and
the Cheng–Zhang formula is sketched as follows.
The property is used that EðebX

�

1fX2AgÞ can be
reduced to an integration of a multidimensional
normal distribution by Equation 1. This significantly
reduces the work to derive the analytical formula for
geometric average trigger reset options since their
values can be viewed as a linear combination of
EðebX

�

1fX2AgÞ (see Equation 4). Although Cheng and
Zhang (2000) also show that the value of the option
can be written as Equation 4, they derive their
formula by complex calculations. Some errors seem
to be made in the process. For example, the variance
of ð1=‘Þ

R t1
t1�‘

Wu du derived in Lemma B.1 of their
paper should be t1 � 2=3‘ instead of t1 þ ‘=3, where
Wu denotes the standard Wiener process.

It is well-known that the delta jump problem
makes hedging difficult for standard reset and barrier
options. Modifications on standard reset and barrier
options are therefore necessary to lessen the problem
as surveyed in Hsueh and Liu (2002). The geometric
average trigger reset option turns out not to have
significant delta jumps. Figure 1 compares the deltas
of a vanilla call, a standard reset call (‘Standard
Reset’), and a geometric average trigger reset call
(‘Average Reset’). It is evident that the geometric

Table 2. Comparison with the Cheng–Zhang formula

Reset date MC Exact CZ

1.00 17.189 17.254 10.866
0.75 17.990 18.141 10.553
0.50 18.133 18.226 9.139
0.25 17.936 17.847 5.567

Note: The initial stock price is 100, the initial strike price
is 95, the risk-free interest rate is 5%, the volatility is 30%,
the time to maturity for the option is one year, and the
length of monitoring window is 0.06 year. ‘CZ’ denotes
the formula suggests by Cheng and Zhang (2000) and
‘Exact’ denotes Equation 5. The Monte Carlo simulation
(‘MC ’) based on 100 time steps and 1 000 000 paths is
used as the benchmark. The Cheng–Zhang formula fails
all four cases.
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average trigger reset option does not have significant
delta jumps as the standard reset option.

V. Conclusions

The geometric average trigger reset option resets the
strike price based on the geometric average of the
stock prices over monitoring windows. Similar con-
tracts have been traded on exchanges in Asia. This
paper derives an analytic formula for such options.
The formula is in fact a corollary of a much more
general formula that is of independent interest as it
is applicable to a large class of path-dependent
options. Numerical experiments suggest that the
pricing formula derived in this paper can estimate
the values of arithmetic average trigger reset options
very accurately. Pricing the arithmetic average trigger
reset options can benefit from using our formula as
the control variate in the Monte Carlo simulation.
Besides, it is also shown that the geometric average
trigger reset option does not have significant delta
jumps as the standard reset option. This useful
property reduces the hedging risk dramatically.
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Fig. 1. Deltas of Vanilla Call, Standard Reset Call, and Geometric Average Trigger Reset Call

The options start at year 0 and mature at year 1, the initial stock price is 100, the strike price is 95, the risk-free interest rate is
5%, and the volatility is 50%. The standard reset call resets its strike price to 90 once the stock price falls below 90. The reset
date for the geometric average trigger reset call is at year 0.5. The length of the monitoring window for the geometric average
trigger reset call is 0.2 year. The x-axis denotes the stock price at year 0. The y-axis denotes the delta. The data for vanilla and
standard reset calls are from Hsueh and Liu (2002).
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